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Abstract

In this paper we introduce an algorithm to efficiently optimize a class of similar
cost functions which are used in Rate Distortion Theory, Deterministic Annealing,
Information Distortion and the Information Bottleneck Method. Our algorithm is
efficient because it explicitly takes into account the bifurcation structure of optima
of the cost functions.

1 Introduction

This paper analyzes a class of optimization problems

max
q∈∆

G(q) + βD(q) (1)

where∆ is a constraint space,G andD are real valued functions ofq, andmaxq∈∆ G(q) is
known. The goal is to solve (1) forβ = B ∈ [0,∞).

This type of problem arises in Rate Distortion Theory [1, 2], Deterministic Annealing [3],
Information Distortion [4, 5, 6] and the Information Bottleneck Method [7, 8].

The following basic algorithm, various forms of which have appeared in [3, 4, 6, 7, 8], can
be used to solve (1) forβ = B.

Algorithm 1 Let

q0 be the maximizer ofmax
q∈∆

G(q) (2)

and letβ0 = 0. For k ≥ 0, let (qk, βk) be a solution to (1). Iterate the following steps until
βK = B for someK.

1. Performβ-step: Letβk+1 = βk + dk wheredk > 0.

2. Takeq
(0)
k+1 = qk + η, whereη is a small perturbation, as an initial guess for the

solutionqk+1 at βk+1.



3. Optimization: solve
max
q∈∆

G(q) + βk+1D(q)

to get the maximizerqk+1, using initial guessq(0)
k+1.

We introduce methodology to efficiently perform algorithm 1. Specifically, we implement
numerical continuation techniques [9, 10] to effect steps 1 and 2. We show how to detect
bifurcation and we rely on bifurcation theory with symmetries [11, 12, 13] to search for the
desired solution branch. This paper concludes with the improved algorithm 5 which solves
(1).

2 The cost functions

The four problems we analyze are from Rate Distortion Theory [1, 2], Deterministic Anneal-
ing [3], Information Distortion [4, 5, 6] and the Information Bottleneck Method [7, 8]. We
discuss the explicit form of the cost function (i.e.G(q) andD(q)) for each of these scenarios
in this section.

2.1 The distortion function D(q)

Rate distortion theory is the information theoretic approach to the study of optimal source
coding systems, including systems for quantization and data compression [2]. To define how
well a source, the random variableY , is represented by a particular representation usingN
symbols, which we callYN , one introduces adistortion functionbetweenY andYN

D(q(yN |y)) = D(Y, YN ) = Ey,yN
d(y, yN ) =

∑
y

∑
yN

q(yN |y)p(y)d(y, yN )

whered(y, yN ) is thepointwise distortion functionon the individual elements ofy ∈ Y and
yN ∈ YN . q(yN |y) is a stochastic map orquantizationof Y into a representationYN [1, 2].
The constraint space

∆ := {q(yN |y) |
∑
yN

q(yN |y) = 1 andq(yN |y) ≥ 0 ∀y ∈ Y } (3)

(compare with (1)) is the space of valid quantizers in<n. A representationYN is optimal if
there is a quantizerq∗(yN |y) such thatD(q∗) = minq∈∆ D(q).

In engineering and imaging applications, the distortion function is usually chosen as themean
squared error[1, 3, 14],

D̂(Y, YN ) = Ey,yN
d̂(y, yN ) =

∑
y

∑
yN

q(yN |y)p(y)d̂(y, yN )

where the pointwise distortion function̂d(y, yN ) is the Euclidean squared distance. In this
case,D̂(Y, YN ) is a linear function of the quantizer.

In neural coding, one can model a neuralcoding schemeas a stochastic mapp(y|x) from
the stimulus spaceX to the space of neural responsesY . One approach used to deter-
mine p(y|x) is to quantize the neural responsesY into a smaller event spaceYN . Since
the metric between spike trains may not coincide with Euclidean distance [15], we do not
want to imposeD̂(q) as the distortion function. The natural measure of closeness be-
tween two distributions is the Kullback-Leibler divergenceKL. For each fixedy ∈ Y and
yN ∈ YN , p(x|y) andp(x|yN ) are a pair of distributions on the stimulus spaceX. We take
d(y, yN ) = KL(p(x|yN )||p(x|y)) as a pointwise distortion function. Unlike the pointwise



distortion functions usually investigated in information theory [1, 3], this one is nonlinear,
it explicitly considers a third space,X, of inputs, and it depends on the quantizerq(yN |y)
throughp(x|yN ). We define our distortion function as the expected Kullback-Leibler diver-
gence over all pairs(y, yN )

DI(q(yN |y)) = DI(Y, YN ) := Ey,yN
KL(p(x|yN )||p(x|y)).

A straightforward calculation [4, 6] shows that

DI(Y, YN ) = I(X; Y )− I(X; YN ).

We interpret this function as aninformation distortion measure, hence the symbolDI . The
only term inDI which depends on the quantizer isI(X; YN ), so we can replaceDI with the
effective distortion

Deff (q) := I(X; YN ).
Deff (q) is the functionD(q) from (1) which has been considered in [4, 5, 6].

The Information Bottleneck Method is another unsupervised non-parametric data clustering
technique which has been applied to document classification, gene expression, neural coding
and spectral analysis [7, 8]. It also usesDeff (q) as the distortion function.

2.2 Rate Distortion

There are two related methods used to analyze communication systems at a distortionD(q) ≤
D0 for some givenD0 ≥ 0 [1, 2, 3]. In rate distortion theory [1, 2], the problem of finding a
minimum rate at a given distortion is posed as aminimal information ratedistortion problem:

minq(yN |y)∈∆ I(Y ; YN )
D(Y, YN ) ≤ D0

. (4)

This formulation is justified by the Rate Distortion Theorem [1]. A similar exposition using
the Deterministic Annealing approach [3] is amaximal entropyproblem

maxq(yN |y)∈∆ H(YN |Y )
D(Y ; YN ) ≤ D0

. (5)

The justification for using (5) is Jayne’s maximum entropy principle [16]. These formulations
are related sinceI(Y ; YN ) = H(YN )−H(YN |Y ).

Let I0 > 0 be some given information rate. In [4, 6], the neural coding problem is formulated
as an entropy problem as in (5)

maxq(yN |y)∈∆ H(YN |Y )
Deff (q) ≥ I0

. (6)

which uses the nonlinear effective information distortion measureDeff .

Tishby et. al. [7, 8] pose an information rate distortion problem as in (4)

minq(yN |y)∈∆ I(Y ; YN )
Deff (q) ≥ I0

. (7)

Using the method of Lagrange multipliers, the rate distortion problems (4),(5),(6),(7) can be
reformulated as finding the maxima of

max
q∈∆

F (q, β) = max
q∈∆

[G(q) + βD(q)] (8)

as in (1) whereβ = B. For the maximal entropy problem (6),

F (q, β) = H(YN |Y ) + βDeff (q) (9)



and soG(q) from (1) is the conditional entropyH(YN |Y ). For the minimal information rate
distortion problem (7),

F (q, β) = −I(Y ;YN ) + βDeff (q) (10)
and soG(q) = −I(Y ;YN ).

In [3, 4, 6], one explicitly considersB = ∞. For (9), this involves taking
limβ→∞maxq∈∆ F (q, β) = maxq∈∆ Deff (q) which in turn givesminq(yN |y)∈∆ DI . In
Rate Distortion Theory and the Information Bottleneck Method, one is only interested in
solutions to (8) for finiteB which takes into account a tradeoff betweenI(Y ;YN ) andDeff .

For lack of space, here we consider (9) and (10). Our analysis extends easily to similar
formulations which use the mean squared error distortionD̂(q), as in [3].

3 Improving the algorithm

We now turn our attention back to algorithm 1 and indicate how numerical continuation
[9, 10], and bifurcation theory with symmetries [11, 12, 13] make it more efficient.

We begin by rewriting (8), now incorporating the Lagrange multipliers for the equality con-
straint

∑
yN

q(yN |yk) = 1 from (3) which must be satisfied for eachyk ∈ Y . This gives the
Lagrangian

L(q, λ, β) = F (q, β) +
K∑

k=1

λk(
∑
yN

q(yN |yk)− 1). (11)

There are optimization schemes, such as the Fixed Point [4, 6] and projected Augmented
Lagrangian [6, 17] methods, which exploit the structure of (11) to find local solutions to (8)
for step 3 of algorithm 1.

3.1 Bifurcation structure of solutions

It has been observed that the solutions{qk} undergobifurcationsor phase transitions[3, 4,
6, 7, 8]. We wish to pose (8) as a dynamical system in order to study thebifurcation structure
of local solutions forβ ∈ [0,B]. To this end, consider the equilibria of the flow(

q̇

λ̇

)
= ∇q,λL(q, λ, β) (12)

for β ∈ [0,B]. These are points

(
q∗
λ∗

)
where∇q,λL(q∗, λ∗, β) = 0 for someβ. The

Jacobian of this system is the Hessian∆q,λL(q, λ, β). Equilibria,(q∗, λ∗), of (12), for which
∆qF (q∗, β) is negative definite, are local solutions of (8) [17, 18].

The(n + K)× (n + K) Hessian of (11) is

∆q,λL(q, λ, β) =
(

∆qF (q, β) JT

J 000

)

where000 is K × K [18]. ∆qF is then × n block diagonal matrix ofN K × K matrices
{Bi}N

i=1 [4]. J is theK × n Jacobian of the vector ofK constraints from (11),
J = ( IK IK ... IK )︸ ︷︷ ︸

N blocks

. (13)

The kernel of∆q,λL plays a pivotal role in determining the bifurcation structure of solutions
to (8). This is due to the fact that bifurcation of an equilibria(q∗, λ∗) of (12) atβ = β∗
happen whenker∆q,λL(q∗, λ∗, β∗) is nontrivial. Furthermore, the bifurcating branches are
tangent to certain linear subspaces ofker∆q,λL(q∗, λ∗, β∗) [12].



3.2 Bifurcations with symmetry

Any solution q∗(yN |y) to (8) gives another equivalent solution simply by permuting the
labels of the classes ofYN . For example, ifP1 andP2 are twon × 1 vectors such that for
a solutionq∗(yN |y), q∗(yN = 1|y) = P1 and q∗(yN = 2|y) = P2, then the quantizer
where q̂(yN = 1|y) = P2, q̂(yN = 2|y) = P1 and q̂(yN |y) = q∗(yN |y) for all other
classesyN is a maximizer of (8) withF (q̂, β) = F (q∗, β). Let SN be the algebraic group of
all permutations onN symbols [19, 20]. We say thatF (q, β) is SN -invariant if F (q, β) =
F (σ(q), β) whereσ(q) denotes the action onq by permutation of the classes ofYN as defined
by anyσ ∈ SN [18]. Now suppose that a solutionq∗ is fixed by all the elements ofSM

for M ≤ N . Bifurcations atβ = β∗ in this scenario are calledsymmetry breakingif the
bifurcating solutions are fixed (and only fixed) by subgroups ofSM .

To determine where a bifurcation of a solution(q∗, λ∗, β) occurs, one determinesβ for
which ∆qF (q∗, β) has a nontrivial kernel. This approach is justified by the fact that
∆q,λL(q∗, λ∗, β) is singular if and only if∆qF (q∗, β) is singular [18]. At a bifurcation
(q∗, λ∗, β∗) whereq∗ is fixed bySM for M ≤ N , ∆qF (q∗, β∗) hasM identical blocks.
The bifurcation is generic if

each of the identical blocks has a single0-eigenvector,vvv,
and the other blocks are nonsingular. (14)

Thus, a generic bifurcation can be detected by looking for singularity of one of theK ×K
identical blocks of∆qF (q∗, β). We call the classes ofYN which correspond to identical
blocks unresolvedclasses. The classes ofYN that are not unresolved are calledresolved
classes.

The Equivariant Branching Lemma and the Smoller-Wasserman Theorem [12, 13] ascertain
the existence of explicit bifurcating solutions in subspaces ofker∆q,λL(q∗, λ∗, β∗) which
are fixed by special subgroups ofSM [12, 13]. Of particular interest are the bifurcating
solutions in subspaces ofker∆q,λL(q∗, λ∗, β∗) of dimension1 guaranteed by the following
theorem

Theorem 2 [18] Let (q∗, λ∗, β∗) be a generic bifurcation of (12) which is fixed (and only
fixed) bySM , for 1 < M ≤ N . Then there existsM bifurcating solutions,

(
q∗
λ∗
β∗

)
+

(
tuuum

β(t)

)
, where1 ≤ m ≤ M,

[uuum]ν =





(M − 1)vvv if ν is themth unresolved class ofYN

−vvv if ν is some other unresolved class ofYN

000 otherwise
(15)

andvvv is defined as in (14). Furthermore, each of these solutions is fixed by the symmetry
groupSM−1.

For a bifurcation from the uniform quantizer,q 1
N

, which is identically 1
N for all y and allyN ,

all of the classes ofYN are unresolved. In this case,

uuum = (−vvvT , ...,−vvvT , (N − 1)vvvT ,−vvvT , ...,−vvvT ,000T )T

where(N − 1)vvv is in themth component.

Relevant to the computationalist is that instead of looking for a bifurcation by looking for
singularity of then × n Hessian∆qF (q∗, β), one may look for singularity of one of the
K × K identical blocks, whereK = n

N . After bifurcation of a local solution to (8) has
been detected atβ = β∗, knowledge of the bifurcating directions makes finding solutions of
interest forβ > β∗ much easier (see section 3.4.1).



3.3 The subcritical bifurcation

In all problems under consideration the solution forβ = 0 is known. For (9), (10) this
solution isq0 = q 1

N
. For (4) and (5),q0 is the mean ofY . Rose [3] was able to compute

explicitly the critical valueβ∗ whereq0 loses stability for the Euclidean pointwise distortion
function. We have the following related result.

Theorem 3 [21] Consider problems (9), (10). The solutionq0 = 1/N loses stability at
β = β∗ where1/β∗ is the second largest eigenvalue of a discrete Markov chain on vertices
y ∈ Y , where the transition probabilitiesp(yl → yk) :=

∑
i p(yk|xi)p(xi|yl).

Corollary 4 Bifurcation of the solution(q 1
N

, β) in (9), (10) occurs atβ ≥ 1.

This result together with numerical evidence presented in Figure 1 strongly suggests that the
bifurcation from(q 1

N
, β) is subcritical (i.e. a first order phase transition) for (9) and (10).

This should be contrasted with the results for (4) and (5). Here the convexity and mono-
tonicity of the rate distortion curve [2] implies continuity of this curve for0 ≤ D(Y, YN ) <
maxD(Y, YN ) which implies that all bifurcations must be supercritical (i.e. second order
phase transitions). The argument showing convexity of the rate distortion curve relies on the
fact that the distortion̂D(q) is linear inq and does not have immediate generalization for
the analogous curves in problems (9) and (10). The analogy of problem (10) to problem (4)
leads [8] to suggest that all bifurcations for (10) are supercritical (i.e. second order phase
transitions), which our evidence does not confirm.
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Figure 1:A joint probability space on the random variables(X, Y ) was constructed from a mixture
of four Gaussians as in [4]. Using this probability space, the functions (9) and (10) were maximized
to determine a quantizationq∗(yN |y) of Y into a representationYN of 4 elements.Top panel: The
distortionDeff (q∗(β)) andF (q∗, β) as defined in (9).Bottom panel: The distortionDeff (q∗(β))
andF (q∗, β) as defined in (10). Atβ ≈ .7191, q∗ 6= q 1

N
sinceDeff (q∗) 6= 0. By Corollary 4, a

bifurcation of the solutionq 1
N

does not occur untilβ ≥ 1. This evidence supports the conjecture that
the bifurcation fromq 1

N
is subcritical.

3.4 Numerical Continuation

Numericalcontinuationmethods efficiently analyze the solution behavior of dynamical sys-
tems such as (12) [9, 10]. Continuation methods can speed up the search for the solutionqk+1

atβk+1 in step 3 of algorithm 1 by improving upon the arbitrary choiceq
(0)
k+1 = qk +η. First,



the vector(∂βqT
k ∂βλT

k )T which is tangent to the curve∇q,λL(q, λ, β) = 000 at (qk, λk, βk)
is computed by solving the matrix system

∆q,λL(qk, λk, βk)
(

∂βqk

∂βλk

)
= ∂β∇q,λL(qk, λk, βk). (16)

Now the initial guess in step 2 becomesq
(0)
k+1 = qk +dk ·∂βqk wheredk = ∆s

||∂βqk||+||∂βλk||+1

for ∆s > 0. Furthermore,βk+1 in step 1 is found by using this samedk. This choice ofdk

assures that a fixed step along(∂βqT
k ∂βλT

k )T is taken for eachk. We use three different
continuation methods which implement variations of this scheme:Parameter, Tangentand
Pseudo Arc-Length[9, 18]. These methods can greatly decrease the optimization iterations
needed to findqk+1 from q

(0)
k+1 in step 3. The cost savings can be significant, especially

when continuation is used in conjunction with a Newton type optimization scheme which
explicitly uses the Hessian∆qF (qk, βk). Otherwise, the CPU time incurred from solving
(16) may outweigh this benefit.

3.4.1 Branch switching

Suppose that a bifurcation of a solutionq∗ of (8) has been detected atβ∗. To proceed, one
uses the explicit form of the bifurcating directions,{uuum}M

m=1 from (15) to search for the
bifurcating solution of interest, sayqk+1, whose existence is guaranteed by Theorem 2. To
do this, letuuu = uuum for somem ≤ M , then implement abranch switch[9]

q
(0)
k+1 = q∗ + dk · uuu.

4 The improved algorithm

We conclude with an efficient algorithm to solve (1). The section numbers in parentheses
indicate the location in the text supporting each step.

Algorithm 5 Letq0 be the maximizer ofmaxq∈∆ G, β0 = 1 (3.3) and∆s > 0. For k ≥ 0,
let (qk, βk) be a solution to (1). Iterate the following steps untilβK = B for someK.

1. (3.4) Performβ-step: solve (16) for(∂βqT
k ∂βλT

k )T and selectβk+1 = βk + dk

wheredk = ∆s
||∂βqk||+||∂βλk||+1 .

2. (3.4) The initial guess forqk+1 at βk+1 is q
(0)
k+1 = qk + dk · ∂βqk.

3. Optimization: solve
max
q∈∆

G(q) + βk+1D(q)

to get the maximizerqk+1, using initial guessq(0)
k+1.

4. (3.2) Check for bifurcation: compare the sign of the determinant of an identical
block of each of

∆q[G(qk) + βkD(qk)] and∆q[G(qk+1) + βk+1D(qk+1)].

If a bifurcation is detected, then setq
(0)
k+1 = qk + dk ·uuu whereuuu is defined as in (15)

for somem ≤ M , and repeat step 3.
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