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By using current biological understanding, a conceptually simple,
but mathematically complex, model is proposed for the dynamics
of the gene circuit responsible for regulating nitrogen catabolite
repression (NCR) in yeast. A variety of mathematical ‘‘structure’’
theorems are described that allow one to determine the asymp-
totic dynamics of complicated systems under very weak hypoth-
eses. It is shown that these theorems apply to several subcircuits
of the full NCR circuit, most importantly to the URE2–GLN3 sub-
circuit that is independent of the other constituents but governs
the switching behavior of the full NCR circuit under changes in
nitrogen source. Under hypotheses that are fully consistent with
biological data, it is proven that the dynamics of this subcircuit is
simple periodic behavior in synchrony with the cell cycle. Although
the current mathematical structure theorems do not apply to the
full NCR circuit, extensive simulations suggest that the dynamics is
constrained in much the same way as that of the URE2–GLN3
subcircuit. This finding leads to the proposal that mathematicians
study genetic circuits to find new geometries for which structure
theorems may exist.

delay equations � GATA factors � GLN3

As microarray technology has brought systems biology to the
theater, the desire to understand gene regulatory networks

has brought mathematical modeling to center stage. Recent
work has focused on two goals: the determination of recurring
network motifs (1) followed by an understanding of their design
significance through an analysis of their dynamics (2, 3). Thus,
it is now a central objective in mathematics, neuroscience,
molecular biology, and medicine to understand how and to what
extent the structure of the connections between the components
of a system determine its dynamic behavior. We refer to math-
ematical results that relate these two properties as structure
theorems. Our impression is that this body of work has received
insufficient attention from biologists, bioinformaticians, engi-
neers, and physicists pursuing gene regulatory networks. The aim
here is to demonstrate through an important example, the
process of nitrogen catabolite repression (NCR) in yeast, the
power of the theory, its current limitations, and some promising
new directions.

Fig. 1 shows a circuit of five genes whose dynamics ultimately
control NCR in yeast. Although much is known about the
architecture of the NCR circuit and the interactions among its
components, quantitative models do not exist, and neither a
molecular-level nor a systems-level understanding is at hand.

The power and promise of the structure theorem approach is
to be able to infer dynamics from a (possibly annotated) graph
of biological interactions, like that shown in Fig. 1. One of the
earliest structure theories, called the chemical reaction network
theory, was developed by M. Feinberg (4, 5). This theory
provides a classification of the dynamics of chemical reaction
networks based on the associated circuit diagram. This method
is completely scalable because the results depend only on the
possible reactions and not on the number of elements, nor on any

particular assignment of reaction rates. Recent work indicates
that the results of the theory can be obtained by using symbolic
computations and computer algebra (6). What is gained by this
approach is that the dynamics of extremely large chemical
reaction systems is readily computable in a manner that com-
pletely avoids numerical simulation of the underlying differential
equations. Unfortunately, the theory is based on mass action
kinetics that are not sufficiently general for modeling signal
transduction�gene regulatory circuits.

Feedback control is ubiquitous in biological systems and gene
regulation and is clearly present in the NCR circuit of Fig. 1.
Cyclic feedback systems represent an important class of models
with nearest-neighbor interactions where the nodes lie around a
circle. If these connections are unilateral and monotone, Mallet-
Paret and Sell (7) have shown that all solutions converge to
either an equilibrium or a periodic orbit. This theorem is the
so-called Poincare–Bendixson theorem for monotone cyclic
feedback systems. On a coarse level, the overall structure of the
global dynamics of cyclic feedback systems is well understood,
even if one relaxes the monotonicity assumption (8). However,
in this case, chaotic dynamics are possible. The NCR circuit is not
a cyclic feedback system, and results for this more general, but
obviously important, circuit geometry are lacking.

By now it is well accepted that even simple dynamical systems
can have extremely complicated or chaotic asymptotic states.
Thus, it is of great interest to be able to understand whether such
behavior is possible given a particular circuit topology. A class of
systems, where almost all solutions converge to equilibria, are
competitive and cooperative systems (9–12). These systems
belong to the more general class of monotone systems (13),†† that
include dynamical systems generated by parabolic partial differ-
ential equations (14, 15) and delay-differential equations. Al-
though the full NCR circuit is not monotone, it contains
subcircuits, such as that regulating the GLN3 gene product,
Gln3p, that are. Notice that the URE2–GLN3 subcircuit is
independent of the remainder of the NCR circuit. Thus, a
reasonable first step is to understand the dynamic behavior of the
GLN3 gene and the Ure2p-dependent gating mechanism.

These comments provide the motivation for the work de-
scribed here. We introduce a biologically motivated, conceptu-
ally simple, but mathematically complex, model for the URE2–
GLN3 subcircuit that governs the switching behavior of the
circuit as a whole. This model is based on delay-differential
equations and can be naturally scaled to describe the full NCR
circuit. Furthermore, we explicitly state the qualitative mathe-
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matical assumptions that are necessary for the analysis of the
URE2-GLN3 subcircuit and refer to experimental data that
support these assumptions.

Our results contain a description of a rigorous mathematical
analysis of the URE2-GLN3 subcircuit (the proofs of which
appear in Supporting Appendix, which is published as supporting
information on the PNAS web site). The main results, described
in Theorems 1–4, show that if the time for nuclear transport is
small compared with that of the cell cycle, then the dynamic
behavior of both mRNA and protein species within this subcir-
cuit will consist of periodic oscillations where the period is an
integer multiple of the cell cycle. By using our model, we have
numerically simulated the full NCR circuit and compared it with
an experimental mRNA expression time-series for the same
process (see Fig. 2). The strong qualitative and quantitative fit
provides at least partial validation for our model.

NCR and the URE2–Gln3 Subcircuit Model
All living organisms require nitrogen as a basic building block of
biomolecules, such as proteins and nucleic acids. NCR is the
physiological process by which Saccharomyces cerevisiae selec-
tively uses good nitrogen sources (glutamine, asparagine, and
ammonia in some strains) in preference to poor ones (allantoin,
proline, and urea). NCR-sensitive gene expression is mediated

by the regulatory circuit shown in Fig. 1 (16, 17). In the presence
of excess nitrogen (a good nitrogen source in adequate supply),
transcription of genes encoding the proteins needed to transport
and degrade poor nitrogen sources occurs at only very low levels;
it is, if you will, ‘‘repressed.’’ Conversely, when the amount of a
good nitrogen source becomes limiting, or only poor nitrogen
sources are available, the genes needed for their transport and
catabolism are transcribed. Excellent supporting evidence for
this fact is demonstrated in the work of Lee et al. (1), where that
study failed to detect the NCR circuit, precisely because it was
off under the experimental conditions of a rich nitrogen supply
they used. The NCR circuit is a complex switch, much of whose
sensitivity and range remains unexplored. To model the most
basic nitrogen state dependency, we introduce a binary variable
N � 0 in good nitrogen source and N � 1 in a poor nitrogen
source that accounts only for the extreme on and off character-
istics of the switch.

The transcription factors Gln3p, Gat1p, Dal80p, and Deh1p
are all from the GATA family of zinc-finger DNA binding
proteins, i.e., they recognize and bind GATA containing cis-
acting elements. Because they all recognize similar or indistin-
guishable sequence motifs, it is proposed that they act in concert
at the same promoter by competition (16, 17). A quantitative
model of their joint gene regulatory interaction has not been
described. It is known that the repressors DAL80 and presum-
ably DEH1 bind both as homodimers and heterodimers, and it
is believed that their affinity for the DNA is greater than for the
monomeric activators GLN3 and presumably GAT1, but no clear
measurements have been reported. Gln3p and Gat1p recognize
individual cis-acting elements, whereas Dal80p requires two
appropriately spaced and oriented cis-acting elements. As a first
approximation to model the competition among the GATA
factors at the relevant promoters that incorporates an excluded
volume effect, we introduce the fraction of nuclear activators f(t)
that is defined as the ratio of the sum concentrations of Gln3p
and Gat1p over the sum of the concentration of all four
transcription factors.

An important feature of NCR is the URE2-dependent gating
mechanism that keeps the circuit repressed in a good nitrogen
source, which is depicted by the blunted blue arrows labeled 1
and 2 in Fig. 1. There is convincing evidence (17–24) to suggest
that Gln3p and, to a lesser extent, Gat1p are sequestered in the
cytoplasm in complex with Ure2p, and it is hypothesized that the
aggregation of the complex is driven by nitrogen state-dependent
phosphorylation. Under conditions of excess nitrogen, the Gln3p
and Gat1p proteins are suggested to be phosphorylated and are
found to be bound to Ure2p in the cytoplasm, although the
precise mechanism is not understood (17–24). There is good

Fig. 1. The NCR circuit. Green arrows indicate up-regulation; blunted red
arrows represent down-regulation at the level of transcription. Dashed lines
indicate a weaker response. Blue lines indicate repression that is not at the
transcriptional level. A subset of the connections are numbered, and these are
referred to in the text. Arrow 10 indicates up-regulation of DEH1 by GAT1.

Fig. 2. mRNA expression from simulation of System 8 and from experiment with yeast strain BY4743, after a switch from good to poor nitrogen. Blue is Dal80,
black is GAT1, red is GLN3, green is URE2, and yellow is DEH1. The time axis is in minutes. These data compare favorably; the key features are the relatively constant
GLN3 levels, fast rise in the DAL80, and the crossing of the DAL80 and GAT1 curves in the first few minutes after the switch.

5648 � www.pnas.org�cgi�doi�10.1073�pnas.0501339102 Boczko et al.



evidence supporting the direct physical interaction of Gln3p with
Ure2p; there is less direct evidence of a complex with Gat1p. In
a nitrogen-poor environment, or in rapamycin-treated cells, the
cytoplasmic Gln3p and Gat1p proteins move into the nucleus
where they activate transcription at the GAT1, DAL80, and
DEH1 genes (17, 19–22). It is natural to model this process as
a bimolecular interaction of Ure2p with Gln3p to form a
protein–protein complex C, with rate constants that depend on
the nitrogen state variable N. As a first approximation, we
assume no back reaction in the two different nitrogen states. If
N � 0, then

Ure2p � Gln3p h
kf

C ,

and if N � 1, then

Ure2p � Gln3p j
kr

C .

Compartmentalization is a key feature of living organisms.
The Ure2p-dependent gating of cytoplasmic Gln3p, but not
nuclear Gln3p, demonstrates that a compartmental description
is both natural and necessary. Because we are considering yeast,
we include cytoplasmic and nuclear compartments and consider
explicitly the transport of transcription factors and mRNA
between them. We model transport with time delays rather than
as convection or diffusion. The transport time delays reflect an
average time spent in conveyance, in a compartment, between
nucleus and cytoplasm. We begin with the assumption that this
process can be modeled with a single time delay, �, that may vary
from protein to protein. Once the mass in transit has reached the
nuclear pore complex, a well described mechanism involving
karyopherins transports the cargo in or out. In our model, we
denote by Kimp� and Kexp� a pair of concentration-dependent
nuclear import and export rate functions.

There are two removal mechanisms operative on both mRNA
and protein, dilution due to volume growth and degradation.
Volumetric growth around a cell cycle has been measured (25,
26) in bacteria and budding yeast and is found to be exponential.
The observed exponential growth rate means that the rate at
which macromolecules are removed by dilution is accurately
modeled by a linear decay term. Most of the experimental
evidence of mRNA and protein decay is well described by single
exponential decay (27, 28). There has been a growing appreci-
ation for nontranscriptional control mechanisms. In the NCR
circuit, an operative mechanism of control is nitrogen state-
dependent control of degradation rates. The mechanism for
enforcing this control is not understood, but its existence has
been demonstrated (29). In the model, we let �, �, �, �, and �
represent degradation rate constants that may depend on the
nitrogen state N.

The GLN3 and URE2 genes are believed to be constitutively
expressed. We therefore let the parameters rg, ru denote the
constitutive production rate of GLN3 and URE2 mRNA.
Following Mahaffy (30), we introduce a function S(t) that
takes into account the cell cycle: the continuous exponential
growth in volume of the budding yeast, and discrete exponen-
tial increase in the genes due to replication of the DNA. It is
well known that time delays are involved and important in both
transcription and translation. Notice that because of the
constitutive production rate, there is no apparent transcrip-
tional time delay for these two genes. We denote by T� a
concentration-dependent translation initiation rate function
and denote by � a delay that takes into account the elongation
and folding of the nascent protein.

Letting x represent nuclear Gln3p, letting X and U represent
GLN3 and URE2 mRNA, respectively, and finally letting 	 and

 represent cytoplasmic Gln3p and Ure2p, respectively, we

formulate the following differential delay model for the URE2–
GLN3 subcircuit:

ẋ � Kimp�	� t � ��� � Kexp�x� t�� � ��N�x� t�

Ẋ � rgS�t� � ��N�X�t�

	̇ � T�X�t � �1�� � ��N�	�t� � kf�N�	�t�
�t�

� kr�N�C�t� � Kexp�x� t � ��� � K imp�	� t��

U̇ � ruS�t� � ��N�U�t� [1]


̇ � T�U�t � �2�� � ��N�
�t� � kf�N�	�t�
�t�

� kr�N�C�t�

Ċ � kf�N�	�t�
�t� � kr�N�C�t�.

The variables of our model, x, X, 
, etc., describe the concen-
trations of the relevant protein or mRNA species, not necessarily
in a single cell but in a small aggregate of synchronously dividing
cells. Although budding yeast can be synchronized by a variety
of means, including the mating pheromone �-factor, this inter-
vention is not absolutely necessary, because it can be observed
by microscopy that a single yeast will induce a small clump of
synchronously dividing cells for several generations, and thus the
model predictions can be compared with experiment.

Qualitative Assumptions and Experimental Data
The results in Theorems 1–4 that describe the asymptotic dynamics
of System 1 rest on a few simple assumptions that we now spell out
explicitly. We want to emphasize that these assumptions are qual-
itative in nature and do not depend on the particular form of the
functions involved, nor on the particular values of the parameters
and constants. This consideration is extremely important in mod-
eling a circuit where the quantitative values of many of the rate
constant have not been established. However, as we argue below,
there is ample evidence that our qualitative assumptions are valid.

1. The transport rate functions Kimp and Kexp are required to be
positive and monotonically increasing functions that are
bounded from above. The rate of the nuclear transport
process as a function of concentration has been measured in
vitro (31), and these data fit a simple model function K(a, b,
c, x) � [ax(1 � bx)]�(c � x) with parameter values a � 60,
b � 0.03, and c � 4 when the protein concentration variable
x is expressed in micromoles. This function satisfies all of the
assumptions save boundedness. These measurements were
made in vitro, free of competitive intracellular clutter, and
only over a finite concentration range; thus, it is not surpris-
ing that the rates were not observed to saturate. We are left
to make the reasonable assumption that the transport rate is
bounded from above; that is, given a large enough concen-
tration of protein, the nuclear pore complex will reach a state
at which it cannot translocate matter any faster.

2. The mass action kinetics term for the aggregation rate of the
Gln3p–Ure2p complex, kf(N)	(t)
(t) can be of a more general
functional form, kf(N)g(	(t), 
(t)). The only requirement is that
the partial derivatives of the rate function g(�, �) are positive.

3. The translation initiation rate function T is required to be
positive. Translation initiation rates as a function of concen-
tration have been measured in vitro for yeast (32) and are well
described by the function T(a, c, x) � ax2�(c � x) with the
measured parameter values a � 0.1 and c � 0.26; x represents
mRNA concentration expressed in micromoles.

4. The right-hand sides of System 1 need to be at least C1. This
restriction is a technical assumption that is biologically
plausible. The only place that caution is required is in the
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cell-cycle function S(t) that might involve a discontinuity
associated with the cell division. This discontinuity can be
approximated arbitrarily well by a smooth function.

Results
Our main result guarantees that when the nitrogen source is
switched from a good source to a poor one, or vice versa, the
dynamics of the URE2–GLN3 subcircuit typically converges to
a periodic solution that is in synchrony with the cell cycle. The
solutions can be subharmonic, that is, periodic with a period that
is a multiple of the cell cycle, but this multiple is bounded above
by some integer m. By ‘‘typically,’’ we mean that such behavior
occurs for an open and dense set of initial conditions. One
consequence of these results is that chaotic dynamics and
quasiperiodic dynamics, although possible, are unstable and thus
will not be observed in real systems. To facilitate continuity of
presentation, most of the technical details, including definitions
and proofs, are compiled in Supporting Appendix.

The first observation is that one can solve explicitly for X(t)
and U(t),

X�t� � X�0�e���N�t � e���N�t�
0

t

e��N�srgS�s�ds

[2]

U�t� � U�0�e���N�t � e���N�t�
0

t

e��N�sruS�s�ds.

Because S(t) is periodic in time, then X(t)3X� (t) and U(t)3U� (t)
as t3 �, where both X� (t) and U� (t) are periodic functions of time.

Switch from Good to Bad Nitrogen Source. First, consider the case
when at t � 0 the system switches from a good nitrogen source
to a poor nitrogen source (N3 1). In this case, System 1 reduces
to the following nonautonomous system of delay differential
equations:

ẋ � Kimp�	� t � ��� � Kexp�x� t�� � �x� t�

	̇ � T�X�t � �1�� � �	�t� � kRC�0�e�krt

� Kexp�x� t � ��� � K imp�	� t�� [3]


̇ � T�U�t � �2�� � �
�t� � kRC�0�e�krt,

where X(t), U(t) are as in System 2.
System 3 is an asymptotically periodic system of differential

delay equations. Indeed, as t 3 �, this system asymptotically
approaches the system

ẋ � Kimp�	� t � ��� � Kexp�x� t�� � �x� t�

	̇ � T�X� �t � �1�� � �	�t� � Kexp�x� t � ��� � K imp�	� t�� [4]


̇ � T�U� �t � �2�� � �
�t�,

where X� (t) and U� (t) are the periodic functions defined above.
Notice that the 
 equation decouples from the first two

equations and can be solved explicitly


�t� � 
�0�e��t � e��t�
0

t

e�sT�U� �s � �2��ds.

Now we consider the remaining system,

ẋ � Kimp�	� t � ��� � Kexp�x� t�� � �x� t�
[5]

	̇ � T�X� �t � ��� � �	�t� � Kexp(x� t � ��) � K imp�	� t�� .

Let r be the minimal period of the function S(t) that is also the
minimal period of the functions X� (t) and U� (t). Then, System 5 is
an r-periodic system of delay-differential equations. System 5 has
the additional important property that if an initial condition has
each of its components nonnegative, then this property will
remain unchanged along the entire solution for all t  0.
Therefore, we can restrict our phase space to the biologically
relevant positive cone C�

1 of the Banach space of continuous
functions from the interval [��, 0] to the plane R2, denoted
C([��, 0], R2), which is the relevant phase space for delay
differential equations like System 5.

Let T(t, t0, w0) be the solution of System 5 with initial
condition T(t0, t0, w0) � w0. Standard results guarantee exis-
tence and uniqueness (13, 33). One typical way to attack
problems of this type is to consider the behavior of a map that
is defined by looking at the value of a solution at regular time
intervals. Let F : C�

1 3 C�
1 be such a time r solution map of

the System 5, i.e.,

F�w0� :� T�r , 0, w0� , w0 � C�
1 .

The superscript in C�
1 represents the fact that 5 is a system where

N � 1. We can now state the result.

Theorem 1. Assume that the length of the period of the cell cycle is
at least twice as long as the transport delay associated with nuclear
import. Then, typically the solution to System 5 will converge to a
periodic orbit with a period equal to a multiple of the cell-cycle
period. More concisely, if r  2�, then there exists a positive integer
m and an open dense set of initial conditions w0 � C�

1 , such that
T(t, t0, w0) converges to a periodic orbit with period equal to sr for
some integer s � m.

Although we know of no direct experimental measurements of
nuclear import�export time delays for the NCR-circuit genes,
there are several indirect measurements to estimate �. The
mRNA expression profiles shown in Fig. 2 support the conclu-
sion that � � 6. Furthermore, the data in figure 6 of ref. 23 show
that the nuclear accumulation of a GLN3-GFP construct is no
slower than 6 min. This value of � is significantly smaller than half
the cell cycle (72 min), and thus the physical systems satisfy the
assumptions of the theorem.

This result holds not only for System 5 but also for System 4,
because the explicit solution 
(t) can be appended to any
solution x(t), 	(t) of 5. We now extend the result for 4 to the full
nonautonomous System 3.

Theorem 2. Consider 3 and assume that all of the invariant sets of
4 are hyperbolic. Then the set of points (t0, w0) � R � C�

1 such that
T(t, t0, w0) converges to a single periodic orbit with a period sr, s �
m, contains an open and dense set.

Switch from Poor to Good Nitrogen Source. Now we consider the
case when at t � 0, the system switches from a poor to a good
nitrogen source (N : 1 3 0). In this case, we get the following
nonautonomous system of delay differential equations:

ẋ � Kimp�	� t � ��� � Kexp�x� t�� � �x� t�

	̇ � T�X�t � ��� � �	�t� � kf	�t�
�t�

� Kexp�x� t � ��� � K imp�	� t�� [6]


̇ � T�U�t � �2�� � �
�t� � kf	�t�
�t�,

where X(t) and U(t) are as in 2.
System 6 is again an asymptotically periodic system of differ-

ential delay equations. As t 3 �, this system asymptotically
approaches a system
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ẋ � Kimp�	� t � ��� � Kexp�x� t�� � �x� t�

	̇ � T�X� �t � ��� � �	�t� � kf	�t�
�t�
[7]

� Kexp�x� t � ��� � K imp�	� t��


̇ � T�U� �t � �2�� � �
�t� � kf	�t�
�t�,

where X� (t) and U� (t) are periodic functions as defined above. In
this situation, the 
 equation is coupled to the first two equations
and cannot be solved independently. However, we can still use
the same approach as before. System 7 admits a positively
invariant positive cone C�

0 of the Banach space of continuous
functions from the interval [��, 0] to R3, denoted C([��, 0], R3),
which is the relevant phase space for 7. Let U(t, t0, w0) denote
the solution of System 7, consider the time r solution map of
System 7 mapping C�

0 into C�
0 . We have the following analogous

results.

Theorem 3. Assume that the length of the period of the cell cycle is
at least three times as long as the transport delay associated with
nuclear import. Then, typically the solution to 5 will converge to a
periodic orbit with period equal to a multiple of the cell-cycle period.
More concisely, if r  3�, then there is an open and dense set of
initial conditions w0 � C�

0 such that U(t, t0, w0) converges to a single
periodic orbit with period equal to a multiple of r.

Theorem 4. Consider the full System 6 and assume that all of the
invariant sets of System 7 are hyperbolic. Then the set of points (t0,
w0) � R � C�

0 , such that U(t, t0, w0) converges to a single periodic
orbit with period equal to some multiple of r, contains an open and
dense set.

Simulation and Experiment. A simple model for the full NCR
circuit, which is a natural extension of System 1, is presented in
Supporting Appendix. Given the specific choices of functional
forms and parameter values described in the previous section
and additional reaction terms for the action of the DAL80,
GAT1, and DEH1 promoters that are described in Supporting
Appendix, we have performed numerical simulations of the full
system.

Fig. 2 describes the system after having been subjected to a
change from a good to a poor nitrogen source at time t � 0. The
units of time are minutes, and concentrations are in micromoles.
Fig. 2 Left depicts the simulation of our model equations (see
Supporting Appendix), and Fig. 2 Right shows the results of the
experiment. Briefly, yeast strain BY4743 was grown in glucose–
glutamine medium and switched to glucose–proline medium.
Aliquots were taken every 5 min, and total RNA was isolated.
mRNA levels of the five NCR genes plus ACT1 were measured
by RNase protection assays. Gels were quantitated by phospho-
rimaging, and the data are reported as actin-normalized ratios.
(Complete materials and methods appear in Supporting Appen-
dix). Our simulation results compare very favorably with an
experimentally measured mRNA expression profile, with regard
to several key features: the rapid rise of DAL80, the crossing of
the DAL80 and GAT1 curves inside of 5 min, and the near
constancy of the remaining three species.

Discussion and Conclusion
Understanding the dynamics of genetic circuits, and in general
understanding how nature engineers robustness in the face of
complexity, is a central interdisciplinary challenge. We have
proposed a conceptually simple, experimentally motivated math-
ematical model for the NCR circuit, in the yeast S. cerevisiae. We
have been able to analyze the behavior of an important inde-
pendent subcircuit that governs the switching behavior of the
circuit as a whole. Our results predict that the behavior of the

subcircuit will be oscillation of both mRNA and protein species
that is in synchrony with the cell cycle. This oscillation will be
harmonic or subharmonic to the cell-cycle oscillation. These
results are based on very general, qualitative assumptions about
the monotonicity of certain reaction terms and do not depend on
particular parameter values nor on the specific functional forms
used in the model. As such, this finding is a significant extension
to earlier work by Mahaffy and coworkers (30, 34). Furthermore,
simulations of the full system model agree well with mRNA
expression data.

There are two immediate observations concerning the math-
ematical results. First, in a mammalian cell without cell division,
the function S(t) would be constant. Under these conditions, our
results show generic convergence to equilibria, which highlights
an obvious distinction between constitutive gene expression in
bacteria and yeast vs. mammalian tissue. Second, if the genes for
the different species in the circuit are replicated at different
times in the cell cycle, then the corresponding function S(t) for
the different loci will still have the same period but will differ in
phase. This modification also does not affect our results.

The role of thermal fluctuations and noise has received
considerable attention (35–37). Some of the dispersion in ex-
pression that is commonly attributed to random fluctuations can
in fact be explained by the inhomogeneous distribution of
variables such as cell cycle or age (38). Nevertheless, it is clear
that any structure theorems approach based on deterministic
differential equations must be augmented with an analysis of the
perturbing effects of random thermal fluctuations. However,
because our results concern the behavior for a generic set of
initial conditions, it is expected that these results will persist
when subjected to small amounts of noise (39).

It is postulated (17) that after the switch to a poor nitrogen
source, the NCR system quickly reaches an equilibrium. How
rapidly the yeast nitrogen system can or should respond to
fluctuations in nitrogen source is not understood, and, to our
knowledge, no measurements have been reported. There are
additional aspects of the NCR circuit that have proven to be
difficult to measure, and a quantitative model such as ours may
contribute new biological insight. For instance, it is not known
whether Gln3p is degraded in the nucleus and�or whether it
cycles into and out of the nucleus. Also, it is not clear whether
and how GAT1 is gated by URE2. An analysis of experimental
mRNA expression profiles (see Fig. 2) indicate that GAT1 and
DAL80 mRNA rapidly increase to near-maximal levels within a
few minutes of shifting from glutamine to proline medium.
Under the same conditions, the mRNA levels of the remaining
three genes remain nearly constant. It is interesting to look at
data in Fig. 2 from the point of view of computational biology
and ask whether it would be possible to algorithmically (40)
reconstruct the graph of Fig. 1 from the data. Because the levels
of GLN3 mRNA remain relatively constant, whereas the DAL80
and GAT1 levels rapidly rise, the answer is probably not. Even
with proteomics data implicating a Ure2p–Gln3p interaction, it
would be difficult to distinguish between the many different
network structures that are compatible with Fig. 2B. This
observation indicates the importance of both the detailed ex-
perimental investigation of the physiological process of NCR as
well as the importance of quantitative modeling of the NCR
circuit. These observations, coupled with the fact that large-scale
network elucidations like those performed in ref. 1 have failed
to find the NCR circuit diagram, indicate that the NCR circuit
provides a demanding benchmark for those pursuing cellular
network inference.

The full NCR circuit is not monotone and thus not currently
amenable to the same sort of analysis as was successfully applied
to the URE2–GLN3 subcircuit. However, numerical and bio-
logical observations indicate a lack of complicated dynamics.
This conclusion is precisely what one expects for cyclic feedback
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systems. Although we cannot claim to understand the full system,
several observations can be made that suggest promising direc-
tions of ongoing research.

The first observation is that both GLN3-GAT1 and GLN3-
DAL80 subcircuits are monotone cyclic feedback systems,
either positive (GAT1) or negative (DAL80). Existing math-
ematical results (7) imply the existence of an integer-valued
Lyapunov function for the period map. In a system with
constant S(t), this result implies that all solutions converge to
either a periodic solution or a set of equilibria. The extension
of this result to time periodic S(t) is an important question for
mathematical research. A second observation concerns the
GLN3-GAT1-DAL80 subcircuit. If we remove the autoregu-
latory interactions from the graph, then this system forms a
single loop feedback system. The same results about the
dynamics now apply to this negative monotone feedback
system, and interesting questions arise as to the behavior of
this subcircuit with weak autoregulatory interactions.

The perturbation provided by DEH1 is also both biologically
and mathematically intriguing. It is known experimentally (17)
that the interaction of DEH1 with the other components of the
NCR circuit are an order of magnitude weaker and thus can be
interpreted to represent a perturbation. We do not understand
the biological or the mathematical reason for the inclusion of this
particular interaction in the circuit. Speculating, one might
suggest a noise-filtering mechanism; however, simulations of the
full circuit vs. simulations of a DEH1-deleted circuit with and

without Gaussian white noise are virtually indistinguishable.
One of the intriguing postulates put forward in ref. 2 is that
(auto)repression allows an organism to speed transcriptional
response times by allowing the organism to couple a strong
promoter with a mechanism to prevent overexpression. There-
fore, it is interesting to observe that DEH1 down-regulates only
DAL80 and that from our experimental measurements (Fig. 2B)
it is clear that DAL80 has the fastest and largest transcriptional
response in the circuit. Thus, it is possible that the introduction
of additional DAL80-independent repression at the DAL80
locus has allowed that promoter strength to increase and in-
crease the NCR response time. Because DEH1 is larger than
DAL80, a final possibility that is not mutually exclusive of those
above is that DEH1 provides additional combinatorial control.
Because of the spacing requirements for DAl80 cis-acting ele-
ments, it is quite likely that the three distinct dimer species have
different optima, which allows for finer control of downstream
expression.

We believe that evolution has selected gene circuit structure
so that the response of the circuit is predictable for a wide range
of inputs and parameters. Therefore, an interplay between
biological experiment and mathematical theory may lead to new
network geometries to which monotone cyclic feedback results
can be extended. In this very real sense, biology can provide the
intuition that leads to the creation or discovery of new structure
theorems, and we contend that the field of mathematics has as
much to gain as the fields of biology and medicine from the study
of genetic networks.
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