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Abstract Bio-polymerization processes like transcription and translation are
central to proper function of a cell. The speed at which the bio-polymer grows
is affected both by the number of pauses of elongation machinery, as well the
number of bio-polymers due to crowding effects. In order to quantify these
effects in fast transcribing ribosome genes, we rigorously show that a classical
traffic flow model is the limit of a mean occupancy ODE model. We compare
the simulation of this model to a stochastic model and evaluate the combined
effect of the polymerase density and the existence of pauses on the instanta-
neous transcription rate of ribosomal genes.
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1 Introduction

Transcription of DNA to mRNA and translation of mRNA to protein are
two key cellular process. Even with the discovery of the regulatory role of
microRNA, the control of transcription and translation is crucial in cellular
response to changing environment. On a very basic level these processes con-
sist of the motion of a complex machine along a one-dimensional strand. Both
transcription (where a polymerase moves along the DNA, producing mRNA)
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and translation (where ribosomes translocate along the mRNA producing pro-
teins) involve polymerization of new macromolecules. Cellular transport along
the actin filaments and microtubules, which does not involve polymerization,
also fits into this category. A bio-polymerization process has roughly four parts:
assembly of the machinery at the start of the strand, movement initiation,
elongation and termination. In our description below we will concentrate on
polymerase (RNAP) motion along the DNA, but the main modeling ideas
apply to all the cases above.

The motion of RNAP is not uniform. Single molecule observation using
optical traps indicate that the elongating polymerase frequently pauses, and
the duration of the pauses is roughly bi-modal (Neuman et al. 2003) with
means 1.2± 0.1 sec with amplitude 60% and 6± 0.4 sec with amplitude 40%.
There are two types of transcriptional pauses of RNAP (Landick 2009): 1)
backtracking pauses, where RNAP slides backwards and nascent mRNA slips
past the active polymerization site, and 2) non-backtracking pauses, described
in Kireeva and Kashlev (2009), which involve mis-folding of the active site. The
first type of pauses is affected by force applied on the RNAP, while the second
type is not. As described by Klumpp and Hwa (2008) (see also Klumpp (2011)),
the existence of pauses brings up the possibility that at high transcription
initiation rates a paused polymerase can prevent the forward motion of those
following it, thus creating traffic jams. While the density of polymerases on
most genes is probably not sufficient to produce traffic jams, there are special
genes, where the density is very high. In the exponentially growing populations
of Escherichia coli, the number of ribosomes per cell increase from 6700 at 0.6
doublings per hour to 71, 000 at 2.5 doublings per hour, and 80% of those
ribosomes are engaged in protein production, while the rest are involved in
the process of assembling (Bremer and Dennis 1996). Transcription of the
ribosomal rRNA accounts for over half of the total transcriptional activity in E.
coli (Bremer and Dennis 1996), even though rRNA (rrn) operons only account
for 0.5 % of the total genome. Thus, under favorable environmental conditions,
most of the cell’s metabolic capacity is devoted to making ribosomes (Condon
et al. 1993). To sustain the high cellular demand on ribosomal RNA synthesis,
the density of polymerases on the rrn operon is very high. The goal of this paper
is to quantify the combined effect of high polymerase density and ubiquitous
pauses on the transcription rate of ribosomal RNA using a computationally
efficient continuum model.

Elongation models fall into three broad categories. The most detailed treat
the polymerase motion as a stochastic ratchet with detailed energy balance at
each step along the DNA (von Hippel 1998, Bai et al. 2004, Tadigotla et al.
2006). A simplified class of models have a long tradition in the physics commu-
nity under the TASEP label (Totally Asymmetric Simple Elongation Process)
(Spitzer 1970, Janowsky and Lebowitz 1992, Derrida et al. 1993, Schutz and
Domany 1993, Kolomeisky 1998, Zia et al. 2011 and the references therein).
TASEP enjoyed this attention since it is perhaps the simplest example of
non-equilibrium statistical mechanics and its equilibrium distribution can be
found analytically (Kolomeisky 1998). In the last 15 years this model has been
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applied to biological systems including the translation process (Tripathy and
Barma 1998, Harris and Stinchcombe 2004, Shaw et al. 2003, Zia et al. 2011).
The TASEP model consists of particles that stochastically advance along a
one-dimensional collection of discrete sites, in a preferred direction and under
the exclusion constraint that no two particles can occupy the same position. It
is important to note that in the translation process the advancement rates do
depend on the position, but not on time. This is a consequence of tRNA avail-
ability which may be codon dependent, but this availability does not change
appreciably on the time scale of a translation event. The randomness in ad-
vancement rate which is only space dependent is referred to as quenched ran-
domness. A stationary distribution of such a process is well defined and has
been studied by the TASEP community (Tripathy and Barma 1998, Harris
and Stinchcombe 2004, Klumpp and Lipowsky 2004, Shaw et al. 2003, Zia
et al. 2011).

This paper moves beyond the stationary distribution description and seeks
to model time-dependent behavior of the bio-polymerization processes. Within
the transcription process, the pauses change the advancement propensities
in both time and space; therefore, our model is well-suited to describe the
transcription process under these conditions.

The second class of elongation models are ordinary differential equation
(ODE) models. The pioneering work in this area had been done by MacDon-
ald, Gibbs and Pipkin (MacDonald et al. 1968, MacDonald and Gibbs 1969).
Their model consists of n ODEs where n is the length of the template strand.
The state variables xi are the probabilities that the i-th position is occupied
by the front of the elongating machine. This description allows modeling of
spatially extended particles, which are appropriate for both transcription and
translation processes.

The third class of models are those where both time and the template
strand is assumed to be continuous. In the physics community continuum
models have been used to gain insight into stationary distributions of TASEP
for many years (Zia et al. 2011). Under simplified assumptions of a constant
elongation speed and a termination speed equal to that of elongation speed,
Heinrich and Rapoport (1980) introduced a simple delay model for initiation
rate η(t) and the concentration of the bound ribosomes rB(t). A recent pa-
per by Mier-y-Teran-R et al. (2010) revisits and considerably improves the
Heinrich and Rapoport model. Starting with the same system of ODEs for
occupancy probabilities they explicitly derive a linear hyperbolic partial dif-
ferential equation model, and from it a delay equation. Their main assumption
is that the elongation rates change very little in both time and space.

The primary mathematical goal of this paper is to show that the classical
nonlinear traffic model introduced in the 50’s (Lighthill and Whitham 1955)
can be rigorously linked to the ordinary differential models (MacDonald et al.
1968, MacDonald and Gibbs 1969, Heinrich and Rapoport 1980, Mier-y-Teran-
R et al. 2010) for the motion of the polymerase on DNA. The nonlinear PDE
model can be used to investigate transcription at high polymerase density, and
in the presence of pauses, both of which lead to development of traffic jams.
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In the traffic flow literature (for a recent review, Bellamo and Dogbe 2011),
the macroscopic models examine the overall (average) behavior of the system.
Variables considered in such models are the density of cars on the roadway
and the flow of traffic over a prescribed length of roadway, see Rascle 2002.
It is assumed that these models provide a good approximation when there
are many cars on a single lane roadway, when the roadway is very long and
when the measurements are taken over a long time scale (Gazis et al. 1961).
Motivated by work undertaken in Newell (1961), Aw et al. (2002) establish a
rigorous relationship between a PDE model and a follow-the-leader microscopic
model consisting of a system of first order ODEs. The arguments lead to a
comparison of discretizations of the microscopic and macroscopic models, and
the PDE model is shown to be the limit of the time discretized ODE model,
with appropriate variable transformations and scaling issues in both time and
space resolved. That discussion, as well as others of a similar flavor of model
development and analysis, see Argall et al. (2002), Daganzo (1995) and Aw
and Rascle (2000), is given in the context of a traffic flow model.

In the spirit of Aw et al. (2002), we show that the difference equation
formed by a time discretization of a particular ODE model is identical to the
equation formed by the finite volume numerical method solving a nonlinear
hyperbolic partial differential equation (PDE). Using this observation we de-
scribe how the solution of the ODE converges to the set of weak solutions of
the PDE.

Before we apply the PDE traffic flow model to transcription of the riboso-
mal rrn operon, we compare the solution of the PDE to the solutions of the
original continuous time Markov process in the presence of a single pause. We
note that we do not expect a perfect agreement between these two solutions.
The discrepancy is related to a fundamental problem of a microscopic struc-
ture of macroscopic shocks, that has been studied vigorously in the statistical
physics community (Wick 1985, Ferrari et al. 1991, Derrida et al. 1993, Der-
rida et al. 1997). It has been shown that in an asymmetric exclusion processes,
of which TASEP is a special case, and starting from an initial condition where
density is piecewise constant with a unique shock, there exists a stationary
continuous density profile which bridges the two initial densities as the spatial
variable converges to ±∞ (Derrida et al. 1997). This behavior is absent in the
PDE approximation. Since we are interested in finite time behavior on a finite
spatial domain, the stationary density estimates cannot be used to estimate
the discrepancy. However, our numerical simulation of biologically relevant ex-
amples show that the PDE based estimate of the induced delay is about 85%
of the stochastic model estimate.

Finally, we apply our model to the ribosomal RNA operon. Note that
elongation speeds have been observed experimentally in cells with mutated
operons (Condon et al. 1993). In that setting, an average crossing time of ap-
proximately 60 seconds is measured for a strand of length 5450 nucleotides,
and a corresponding elongation rate of 91 nt/s is estimated. This is based
on the assumption that the velocity of an individual RNAP is approximately
constant during the transcription process, not taking into account the poly-
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merase pause mechanism that is known to occur. This estimate also assumes
that the elongation rate is unaffected by the density of polymerases on the
strand. We use the assumptions and analysis of the nonlinear PDE model
to refine that estimate of the elongation rate under more realistic biological
assumptions. First, assuming there are no polymerase pauses and using an
experimentally reported estimate of the density of polymerases, we show that
in order to achieve an observed crossing time of 60 seconds, the elongation rate
of the individual polymerases must be approximately 132 nt/s. The difference
between our estimate and that of the original estimate of 91nt/s by Condon
et al. (1993) is attributed to the crowding effects of the polymerases that is
accounted for in the PDE model. If we then assume that pauses in the rrn
operon occur with the same frequency and are of the same duration as those
in regular genes, we find that the total crossing time of a polymerase stays over
4 minutes for a range of biologically realistic values of elongation rates of indi-
vidual polymerases. Since this is significantly larger than the observed average
crossing time of 60 s, we conclude that an anti-termination complex, which is
known to help rescue polymerases from termination sites (Albrechtsen et al.
1990, Dennis et al. 2009, Klumpp and Hwa 2008), must also assist in short-
ening of ubiquitous short pauses. Our results indirectly support conclusions
of Klumpp and Hwa (2008) who have shown, using a stochastic model, that
even a few non antiterminated paused polymerases can significantly reduce
the average transcription rate. We hope that our model will be used to answer
other important questions concerning the biology of cellular polymerization
processes.

2 Background

Since we are not interested in the biological mechanism of RNAP pausing,
we will not consider detailed stochastic models that take into account DNA
information. Our starting point will be a TASEP model where DNA is a 1-D
homogenous ribbon.

2.1 TASEP Process

A Totally Asymmetric Simple Exclusion Process (TASEP) is a lattice model
of particles hopping stochastically along a 1-dimensional discrete lattice. This
model was introduced in Spitzer 1970, and studied in various contexts (Janowsky
and Lebowitz 1992, Derrida et al. 1993, Schutz and Domany 1993, Barkema
et al. 1994, Kandel and Mukamel 1992, Kolomeisky 1998, Zia et al. 2011, Chou
et al. 2011). We consider a TASEP with open boundaries (Kolomeisky 1998),
whose exact stationary solutions are known (Derrida et al. 1993, Schutz and
Domany 1993). Each RNAP is represented as a particle that can occupy ex-
actly one position along the DNA. While the spatial extent of the polymerase
has been studied from the modeling standpoint in the 1960s (MacDonald et al.
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1968, MacDonald and Gibbs 1969) and may change the shape of the flux func-
tion (Zia et al. 2011), in this paper we concentrate on a particle of length
corresponding to one nucleotide. There are three continuous time Markov pro-
cesses that characterize the system. At the first position along the chain, a
free RNAP has a probability αdt to start a new transcription, provided this
position is empty. At all other positions the RNAP has probability βdt to ad-
vance to the next position, provided that it is empty, and at the last position
RNAP moves off of DNA with probability γdt. The exact equilibrium solution
depends on the relative size of the parameters α, β and γ (Kolomeisky 1998).
When α < γ and α < β/2 we are in the low density phase with equilibrium
flux βα(1 − α); when α > γ and γ < β/2 we are in high density phase with
equilibrium flux βγ(1 − γ); and finally, when both α > β/2 and γ > β/2 we
are in the maximal flux case with flux β/4. These cases differ by which rate
dominates the motion: in the first case it is inflow rate α, second case outflow
rate γ and in the third case the elongation rate β. The literature on TASEP
models is quite extensive. The best recent reviews of this work are Chou et al.
(2011) and Zia et al. (2011).

2.2 ODE models

A classical model of MacDonald and Gibbs (MacDonald et al. 1968, MacDon-
ald and Gibbs 1969) models mean occupancy at each position of the strand
and therefore consists of k ordinary differential equations where k is the length
of the template strand (see also Heinrich and Rapoport 1980). The state vari-
ables zj are the probabilities that the j-th position is occupied by the front
of the elongating machine. In terms of the underlying stochastic process zj(t)
can be thought of as a mean of the ensemble of random realizations of the
stochastic process at a position j and time t. The state of zj is determined by
the balance of the rate of elongation vj of the front from position j to j + 1
and the rate of elongation zj−1 from position j − 1 forward to j

dzj
dt

= vj−1 − vj . (1)

The elongation rate for most of the codons takes the form of a nonlinear
expression that accounts for conditional probability that the i + 1st codon is
empty given that the ith codon is occupied. If we assume that the polymerase
occupies one position along the strand, the elongation rate vj takes the form

vj := βjzj(1− zj+1). (2)

Here βj is the rate at which a polymerase moves between the position j and
j+ 1, zj is the probability that the position j is occupied and (1− zj+1) is the
probability that the position j + 1 is empty. There are two special equations,
which model the influx of the polymerases at position 1 and the efflux at the
last position k. For the influx equation we will assume that there is a large
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reservoir of available polymerases and therefore the equation for z1 includes
the initiation rate

v0 := αr. (3)

If the polymerase pool is limited (Mier-y-Teran-R et al. 2010), then

v0 := α(r −
k∑
i=1

zi)(1− z1)

where α is the initiation rate, r is the total pool of polymerases and therefore
r −

∑k
i=1 zi are the polymerases available for binding the DNA. Finally, the

equation for zk has the term vk = γzk where γ is the termination rate.

2.3 Continuum models

Mier-y-Teran-R et al. (2010) use an ODE model similar to (1) to derive a
hyperbolic linear partial differential equation model

∂t(z(s, t)) + ∂s(β(s, t)z(s, t)) = 0 for 0 < s < L, t > 0 (4)

with a specified initial condition z(s, 0) and a nonlinear boundary condition
z(0, t), which reflects the global availability of polymerases for transcription
initiation. This model replaces discrete binding sites along the template strand
by a continuous position variable s ∈ [0, n], where n is the number of binding
sites in the discrete model of the template strand. The key parameter is the
function β(s, t) which characterizes the speed at which RNAP passes through
position s along the template at time t: the higher the β, the greater the
RNAP speed. The main assumptions necessary to derive a linear PDE are
that the parameters of the system, including the β(s, t), vary on a slower time
scale than the time of RNAP transition between neighboring sites; that β(s, t)
varies slowly with s; and that the distribution of the RNAP along the template
is slowly varying.

Since we are interested in studying the effect of pauses on the transcription
dynamics, we do not wish to impose the assumption that β(s, t) slowly varies
with s. Motivated by the form of the flux in the ODE model (2) we consider
a nonlinear macroscopic traffic flow model

∂tz + ∂x [β(x, t) z(1− z)] = 0, 0 < x < L, t > 0, (5a)

z(x, 0) = z0(x), 0 ≤ x ≤ L (5b)

Similarly to the ODE model, the influx boundary condition may reflect total
availability of the polymerase

z(0, t) =
α

β(0, t)
(r −

∫ L

0

z(x, t)dx) t > 0, (5c)
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or assume large available pool of polymerases

z(0, t) =
α

β(0, t)
r.

The function z(x, t) represents a density, and we define

f(z) = β z (1− z), (6)

which is referred to as the flux function. The solution of equations (5), z(x, t),
represents a density of polymerases in space and time. As the choice of flux
function in (6) is motivated by the ODE model where spatial extent of the
RNAP is assumed to be one nucleotide, it should be noted here that if one
considers the case where the spatial extent covers several nucleotides, then the
function f will have a more complicated algebraic expression. This has been
studied using the nomenclature “extended particles” in the TASEP literature,
but we do not address the issue as it applies to the PDE model in the current
work.

3 Discretization of ODE and PDE models

In this section we describe how the time discretization of the ODE system (1)
can be used to design a convergent finite volume approximation for the PDE
model (5). In the ODE model, equation (3), as well as the PDE model, (5c), the
initiation rate is described in terms of an assumed total pool of polymerases
available for initiation. Since the focus of this paper is to quantify effects of
RNAP pausing on the transcription process, we assume that the initiation
rate is constant for the following derivation (Kolomeisky 1998, Zia et al. 2011,
Chou et al. 2011).

3.1 The PDE Model and its Finite Volume Method Approximation

In this section, we apply an elementary Godunov scheme to the PDE model in
(5). Techniques from the theory of finite volume methods are used to analyze
the numerical scheme, and convergence in the appropriate sense is addressed
(LeVeque 2002). In order to develop a finite volume scheme for (5) over a
finite interval of time [0, T ], we discretize the domain [0, L] × [0, T ] using a
collection of space-time mesh cells defined as (xi−1/2, xi+1/2) × [tn, tn+1), for
i = 1, 2, . . .K and n = 0, 1, 2, . . . , N , with ∆x = xi+1/2 − xi−1/2 and ∆t =
tn+1 − tn. Denote the ith grid cell by C i = (xi−1/2, xi+1/2), and recall that
the integral form of the conservation law over Ci is

d

dt

∫
Ci

z(x, t) dx = f(z(xi−1/2, t))− f(z(xi+1/2, t)).
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Integrating this expression from tn to tn+1, dividing by ∆x and rearranging
terms leads to

1
∆x

∫
Ci

z(x, tn+1) dx =
1
∆x

∫
Ci

z(x, tn) dx

− 1
∆x

[∫ tn+1

tn

f(z(xi+1/2, t)) dt−
∫ tn+1

tn

f(z(xi−1/2, t)) dt
]

Finite Volume Methods (FVMs) seek to design a numerical method of the
form

Zn+1
i = Zni −

∆t

∆x

[
Fni+1/2 − F

n
i−1/2

]
, (7)

where the quantities Zni approximate the averages 1
∆x

∫
Ci
z(x, tn) dx. Nota-

tionally, we associate a grid function with the discrete values Zni and define
the piecewise constant function Z(∆t)(x, t) which takes on the values

Z(∆t)(x, t) = Zni for (x, t) ∈ [xi−1/2, xi+1/2)× [tn, tn+1). (8)

Methods are constructed so that the quantities ∆t and ∆x satisfy some
suitable fixed relationship for all calculations. This relationship will be given
for the specific problem considered here in a later section. FVMs also aim to
design the flux function Fni−1/2 in such a way that the grid function converges
in L1 to a weak solution of the PDE on any finite interval of time.

Applying these ideas to the traffic flow model in (5), we construct a discrete
set of coefficients β̂ni which represent average values of the original function
β(x, t) over each grid cell

β̂ni :=
1
∆x

∫
Ci

β(x, tn) dx, (9)

and the flux function

Fni−1/2(Zni−1, Z
n
i ) = β̂ni−1Z

n
i−1(1− Zni ) (10)

for all i.
With these choices the finite volume approximation equation (7) takes the

form

Zn+1
i = Zni −

∆t

∆x

[
β̂ni Z

n
i (1− Zni+1)− β̂ni−1Z

n
i−1(1− Zni )

]
, (11)

and under appropriate conditions, the theory shows that Zni is an accurate
approximation to the average value of z(x, t) in the sense that

Zni ≈
1
∆x

∫
Ci

z(x, tn) dx, (12)

for all relevant i and n. Prior to the analysis of the scheme defined above,
we first show that this scheme is identical with the time discretization of the
ODEs in (1)-(2).
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3.2 Discretization of the ODE

We consider a numerical discretization of (1)-(2) using an Euler scheme. The
time domain is partitioned into a discrete set of equally spaced nodes 0 = t0 <
t1 < . . . < tN with ti − ti−1 = ∆t for all i = 1, 2, . . . N . Using the notation
znj := zj(tn), we obtain a discrete system of the form

zn+1
j = znj −∆t

[
βj(tn)znj (1− znj+1)− βj−1(tn)znj−1(1− znj )

]
. (13)

Therefore if we identify

Znj = znj and β̂nj ∆x = βj(tn) (14)

then the discretization of the ODE equation (13) has the same form as finite
volume approximation of the PDE (11).

By definition of β̂nj in (9) we observe that the rates {βj(t)}kj=1 for the ODE
are spatial accumulation (or the magnitude) of the continuous elongation rate
β(x, t) over the corresponding grid cell Ci

βj(tn) =
∫
Cj

β(x, tn) dx =
∫ xj+1/2

xj−1/2

β(x, tn) dx. (15)

Now we are ready to state the main result.

4 Main result

For the statement of the following theorem, the notation Z(∆t)(x, t) represents
the grid function introduced in the previous section: it is a piecewise constant
function that takes the value Zni on the space-time mesh cell (xi−1/2, xi+1/2)×
[tn, tn+1) ⊂ [0, L]× [0, T ]. When discussing convergence of a numerical method
for a nonlinear conservation law, we must remember that a weak solution to
the PDE may not be unique; hence, we define the set W to be the set of all
weak solutions,

W = {z : z(x, t) is a weak solution to (5)}

Then the global error for a given grid function, Z(∆t), is defined by

distT (Z(∆t),W) = inf
z∈W
||Z(∆t) − z||1,T .

The convergence result in this paper is proved in the sense that dist(Z(∆t),W)→
0 as the mesh size goes to zero.

More precisely, we fix T > 0 for any given sequence of mesh sizes ∆x→ 0
we chose a corresponding sequence of ∆t→ 0. For this choice of grid we define
a grid function Z(∆t)(x, t) and denote by ∆t→ 0 the fact that the grid size in
both x and t converges to zero in this fashion.



A traffic flow model for bio-polymerization processes 11

Theorem 41 We fix a domain [0, L]× [0, T ], assume that the function β(x, t)
has finite total variation and let B := ‖β(x, t)‖1,T . For any ∆x, let ∆t < ∆t0,
where

∆t0 = min{2∆x, ∆x
2B
}.

Let Z(∆t)(x, t) be a grid function defined by (8). Then

distT (Z∆t,W)→ 0 as ∆t→ 0

where W is a set of weak solutions of the hyperbolic PDE traffic model (5).

Since each grid function encodes a time discretization of ODE, this shows the
relationship between the solutions of the discretized version of the PDE model
(5) and that of the ODE model (1)-(2).

4.1 The main result

In this section we prove our main result, and we begin with some terminology
that is essential for the analysis that follows; the most relevant definition is
that of a total variation of a function. For an arbitrary function Z(x), the total
variation of Z can be defined as

TV (Z) = sup
N∑
j=1

|Z(ξj)− Z(ξj−1)|,

where the supremum is taken over all possible subdivisions of the real line
−∞ = ξ0 < ξ1 < . . . < ξN = ∞. For the particular case where Z is assumed
to be a grid function, one can define the total variation of Z as

TV (Z) =
∞∑

i=−∞
|Zi − Zi−1|,

and we note that Z(x) must approach constant values z± as x→ ±∞ in order
for TV (Z) to be finite.

Definition 42 A numerical method is total-variation-stable, or TV-stable, if
all the approximations Z(∆t) for ∆t < ∆t0 lie in some fixed, compact set.

The definition given above does not explicitly describe the form of the com-
pact set; however, the following theorem from LeVeque (2002) shows that a
uniform bound on the total variation is sufficient for a containment in the
aforementioned compact subset of L1.

Theorem 43 Consider a conservative method with a Lipschitz-continuous
numerical flux and suppose that for each initial data Z0, there exist some
∆t0, R > 0 such that

TV (Z∆t) ≤ R ∀ n,∆t with ∆t < ∆t0, n∆t ≤ T.

Then the numerical method is TV-stable.
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With the previous machinery at hand, we will use the following convergence
result to prove the main result (41)

Theorem 44 (LeVeque 2002) Suppose Z(∆t) is generated by a numerical
method in conservation form with a Lipschitz-continuous numerical flux, con-
sistent with some scalar conservation law. If the numerical method is TV-
stable, then the method is convergent in the sense that distT (Z∆t,W)→ 0 as
∆t→ 0.

4.2 Outline of the proof of Theorem 41

With the definition of the flux function as given in equation (10), the ex-
pression in (7) represents a discretization that is said to be in conservation
form LeVeque (2002). Therefore, in view of Theorem 44 and Theorem 43, to
prove Theorem 41 it is sufficient to establish a uniform bound on TV (Z∆t) as
∆t→ 0. This is the content of the following Theorem.

Theorem 45 Assume β(x, t) is a function of bounded total variation. Then
for any 0 ≤ t ≤ T we have

TV (Z(∆t))(t) ≤ R,

where the constant R is independent of ∆t. In other words, the total variation
is uniformly bounded as ∆t→ 0.

4.3 Proof of Theorem 45

Before we start the estimates of the total variation we will need the following
technical result.

Lemma 46 Assume that a collection of initial values for the grid function
{Z0

i } satisfies the inequality
0 ≤ Z0

i ≤ 1.

Then if ∆t < ∆x
2B , the collection 0 ≤ Zni ≤ 1 for all i and n. That is, the

numerical approximation of density, generated via (11), is bounded 0 ≤ Zni ≤ 1
for all relevant i, n.

Proof We proceed by induction. Assume that 0 ≤ Zni−1, Z
n
i , Z

n
i+1 ≤ 1. We will

show that with the choice of ∆t above, we have 0 ≤ Zn+1
i ≤ 1. We write

Zn+1
i = Zni −

∆t

∆x
[βiZni (1− Zni+1)− βi−1Z

n
i−1(1− Zni )]

= Zni −
∆t

∆x
βiZ

n
i (1− Zni+1) +

∆t

∆x
βi−1Z

n
i−1(1− Zni )

If Zni = 1 then the last equation reads

Zn+1
i = 1− ∆t

∆x
βi(1− Zni+1) ≤ 1− ∆t

∆x
βi < 1.
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Now we assume that Zni = 1− ε. Then the equation above reads

Zn+1
i = 1− ε− ∆t

∆x
βi(1− ε)(1− Zni+1) +

∆t

∆x
βi−1Z

n
i−1ε

≤ 1− ε+
∆t

∆x
βi−1Z

n
i−1ε

≤ 1− ε+ ε
∆t

∆x
B.

With the choice of time step ∆t < ∆x
2B we get Zn+1

i < 1. The proof of Zn+1
i ≥ 0

proceeds similarly.

Now we begin to estimate the total variation of the grid function Z(∆t).
We rewrite equation (7) as

Zn+1
i = Zni −

∆t

∆x
(Fi+1/2 − Fi−i/2)

= Zni −
∆t

∆x
(Fi+1/2 − f(Zi) + f(Zi)− Fi−i/2)

= Zni −
∆t

∆x

f(Zni )− Fi−1/2

Zni − Zni−1

(Zni − Zni−1) +
∆t

∆x

f(Zni )− Fi+1/2

Zni+1 − Zni
(Zni+1 − Zni )

=: Zni − Cni−1(Zni − Zni−1) +Dn
i (Zni+1 − Zni ) (16)

where

Cni−1 :=
∆t

∆x

f(Zni )− Fi−1/2

Zni − Zni−1

, Dn
i :=

∆t

∆x

f(Zni )− Fi+1/2

Zni+1 − Zni
.

Our estimate below follows closely the argument in Harten’s Theorem
(LeVeque 2002). However, that result is not directly applicable since the con-
ductivity βni in the flux function F may vary in both i and n. We use the form
(16) and estimate the total variation of this scheme by carefully bounding the
terms Cni−1 and Dn

i . To obtain an estimate for Dn
i , we add and subtract the

term βiZ
n
i (1− Zni ) between the first and second lines below

Dn
i =

∆t

∆x

β(xi)Zni (1− Zni )− βiZni (1− Zni+1)
Zni+1 − Zni

=
∆t

∆x
[βi
Zni (1− Zni )− Zni (1− Zni+1)

Zni+1 − Zni
+
β(xi)− βi
Zni+1 − Zni

Zni (1− Zni )]

=
∆t

∆x
[βiZni +

β(xi)− βi
Zni+1 − Zni

Zni (1− Zni )]

= D̄n
i +Qni ,

where by Lemma 46

D̄n
i :=

∆t

∆x
βiZ

n
i ≥ 0 and Qni :=

∆t

∆x

β(xi)− βi
Zni+1 − Zni

Zni (1− Zni ).
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Estimating Cni−1, we will have an extra term after adding and subtracting
the term βi−1Z

n
i (1− Zni ) between the first and second lines below

Cni−1 =
∆t

∆x

β(xi)Zni (1− Zni )− βi−1Z
n
i−1(1− Zni )

Zni − Zni−1

=
∆t

∆x
[βi−1

Zni (1− Zni )− Zni−1(1− Zni )
Zni − Zni−1

+
β(xi)− βi−1

Zni − Zni−1

Zni (1− Zni )]

=
∆t

∆x
[βi−1(1− Zni ) +

β(xi)− βi−1

Zni − Zni−1

Zni (1− Zni )]

= C̄ni−1 +Rni−1,

where by Lemma 46

C̄ni−1 :=
∆t

∆x
βi−1(1− Zni ) ≥ 0 and Rni−1 :=

∆t

∆x

β(xi)− βi−1

Zni − Zni−1

Zni (1− Zni ).

Note that both D̄n
i ≤ 1 and C̄ni ≤ 1 when ∆t < ∆x

B . Furthermore, since
∆t < ∆x

2B we have

D̄n
i + C̄ni =

∆t

∆x
βi+1[1− Zni+1 + Zni ] < 1.

Using (16) and the expressions for Cni and Dn
i we estimate the total vari-

ation at step n+ 1 as follows:

TV (Zn+1) =
∑
i

|Zn+1
i+1 − Z

n+1
i |

=
∑
i

|(Zni+1 − Zni )(1− C̄ni − D̄n
i −Rni −Qni ) + (D̄n

i+1 +Qni+1)(Zni+2 − Zni+1)

+(C̄ni−1 +Rni−1)(Zni − Zni−1)|

≤
∑
i

|Zni+1 − Zni ||1− C̄ni − D̄n
i |+ |D̄n

i+1||Zni+2 − Zni+1|+ |C̄ni−1||Zni − Zni−1|

+
∑
i

|(Zni+1 − Zni )(−Rni −Qni ) +Qni+1(Zni+2 − Zni+1) +Rni−1(Zni − Zni−1)|

≤
∑
i

[|Zni+1 − Zni |(1− C̄ni − D̄n
i ) + D̄n

i+1|Zni+2 − Zni+1|+ C̄ni−1|Zni − Zni−1|]

+
∆t

∆x

∑
i

|(βi − β(xi+1)Zni+1(1− Zni+1) + (βi − β(xi)Zni (1− Zni )

+(β(xi+1)− βi+1)Zni+1(1− Zni+1) + (β(xi)− βi−1)Zni (1− Zni )|

=
∑
i

[|Zni+1 − Zni |(1− C̄ni − D̄n
i ) + D̄n

i+1|Zni+2 − Zni+1|+ C̄ni−1|Zni − Zni−1|]

+
∆t

∆x

∑
i

|Zni+1(1− Zni+1)[−(βi+1 − βi)] + Zni (1− Zni )[βi − βi−1]|
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≤
∑
i

|Zni+1 − Zni |+ 2
∆t

∆x

∑
i

|Zni+1(1− Zni+1)||(βi+1 − βi)|

≤ TV (Zn) +
1
2
∆t

∆x

∑
i

|(βi+1 − βi)|

where we handled the first term by shifting the counting index down by one
in terms multiplying D̄n

i+1 and up by one in terms multiplying C̄ni−1. In the
last equation we have used that x(1− x) < 1/4 for 0 ≤ x ≤ 1.

We finish by relating the last sum to the total variation of the function
β(x, t). Recall from (15) that for a fixed time t there is the following relation-
ship between the function β(x, t) and the collection of functions {βi(t)}L/∆xi=1

used in the ODE model

βi(t) =
∫ xi+1/2

xi−1/2

β(s, t)ds.

By the mean value Theorem

βi = β(ξi)∆x

where xi−1/2 ≤ ξi ≤ xi+1/2 for all i. This yields

1
∆x

∑
i

|βi+1 − βi| ≤
∑
i

|(β(ξi+1)− β(ξi)| ≤ TV (β) (17)

and therefore we have

TV (Zn+1) ≤ TV (Zn) +
∆t

2
TV (β). (18)

As we refine our grid with ∆t → 0 the grid function at the end of the time
interval Z(∆t)(T ) = Zn where n is an integer related to the step size ∆t by
n = b T∆tc. It follows that (n + 1)∆t ≤ 2T for ∆t ≤ T . Using this and the
estimate (18) recursively we get

TV (Zn+1) ≤ TV (Z0) + (n+ 1)∆t
TV (β)

2
≤ TV (Z0) + TV (β)T.

This uniform bound depends on the initial condition Z(0), the total variation
of conductivity β(x, t) contained within the flux function f and the final time
T but is independent of ∆t.

This completes the proof of Theorem 45. Since Theorem 45 provides the
remaining key estimate in the proof of Theorem 41, this finishes the proof of
the main result.

Remark 1 If we assume that β is constant with respect to both space and time
a simplified argument can be used to prove a stronger result. In particular, in
that case there exists ∆t sufficiently small such that the time ∆t-discretization
of the ODE system in equation (1) satisfies Harten’s Theorem and therefore
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is a total variation diminishing (TVD) method for solving the PDE model
(5). Furthermore, the discretization of the ODE in (1)-(2) is an E-scheme for
solving the PDE model (5); therefore, it is convergent to an entropy-satisfying
weak solution of the PDE.

5 Applications

The previous analysis shows that if one uses a standard Godunov scheme to
generate a numerical approximation to a solution of the nonlinear PDE given
in (5), the resulting discrete system of equations defined by (7) and (10) is
exactly the same as those that one derives when applying a standard Euler
method to the system of ODEs described in (1)-(2). Therefore, we invoke a
numerical study of the behavior of solutions of the nonlinear conservation law
as a means to analyzing the underlying biological questions related to the
transcription process. An advantage of using this particular nonlinear PDE is
that closed form solutions can be written for several model problems of interest;
while the system of nonlinear ODEs in (1)-(2) cannot be solved analytically.
Polymerase pauses at bottleneck nucleotide locations along the DNA strand
can be modeled in a very simple manner using this PDE. In order to gain
insight into the effects these pauses have on total throughput of polymerases,
we first present a basic model problem that is used to construct a closed form
analytical solution for the simplest case of one pause location. The analytical
solutions and the numerical computations demonstrate excellent agreement for
the simple model. Once the proof-of-concept is demonstrated for that model, a
more realistic case is included and predictions are made based on the numerical
results.

5.1 Comparison of the PDE and Stochastic Models

5.1.1 PDE Model with One Pause Location

In this section, we examine the PDE model given in (5) with a discontinuous
function β(x, t) that allows us to model transcription behavior along a single
DNA strand where one of the nucleotides corresponds to a pause location.
This equation takes the form

zt + [β(x, t)(1− z)z]x = 0 x ∈ (−0.5, 0.5), t > 0 (19)
z(x, 0) = z0 (20)

z(−0.5, t) = z0 (21)

where the piecewise constant function

β(x, t) =
{

0, if x = 0 and 0 < t < τ
1, otherwise
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represents a raw elongation velocity function which assumes a maximum value
of 1 except at the site of the pause x = 0 where it assumes the value of 0
for a duration of time length determined by the parameter τ . During this
time period, β(x, t) is set to 0 and no elongation is allowed to take place at
this spatial location. This formulation models the location of a bottleneck
nucleotide in the middle of the DNA strand (at x = 0), beginning at time
t = 0 and ending at time t = τ . Comparing this model to (5) we note that we
assume an unlimited reservoir of polymerases at density z0, which determines
both the initial condition and the boundary condition on the left. Note that
this PDE is well-posed with a boundary condition on the left end of the spatial
domain at x = −0.5, and it does not require a boundary condition on the
right. By choosing β(0.5, t) = 1, we are tacitly assuming that the termination
rate is the same as the elongation rate at the interior nucleotides. In order to
align the model more closely with the TASEP model or the ODE model, a
different choice of termination rate can be implemented by assigning β(0.5, t)
at an appropriate level. In the PDE model, the time variable t represents the
dimensionless time, and we assume that z0 < 0.5 so that the initial density
allows the background flow (flux) to be below its maximum possible value.

Using the method of characteristics, one can develop a closed-form solution
to (19)-(21), see Haberman (1998) for example. For 0 < t < τ , there are three
shocks emanating from x = 0. As we cross the spatial domain (from left
to right), to the left of the bottleneck, the density jumps from z0 to 1 as the
polymerases stack up behind the paused polymerase. At the spatial location of
the bottleneck, the density jumps from its maximum value of 1 to its minimum
value of 0, and then, further to the right, the density jumps from 0 to z0 as
the tail end of the polymerases not stopped at x = 0 continue their motion
across the DNA strand. Using these shocks, a closed-form representation of
the solution for 0 ≤ t < τ is given by

z(x, t) =


z0, x < −z0t
1, −z0t < x < 0
0, 0 < x < (1− z0)t
z0, (1− z0)t < x

This expression for z(x, t) describes the behavior of polymerase density during
the time that the pause occurs. One can also describe the solution for t ≥ τ .
At t = τ , the bottleneck nucleotide (at x = 0) releases the lead polymerase. At
this point, the paused polymerases begin to elongate, and a rarefaction wave is
created from the maximum density, z = 1, to the minimum density, z = 0. The
entire mass of stopped polymerases will dissipate in time after the bottleneck
release; the boundary of this region is a shock that passes each position at a
particular time, after which the density abruptly drops to z0. In the following
section, we extend the formulation of the problem and then give a graph of a
typical solution for a particular set of parameters, see Figure 1.
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5.1.2 PDE Model with One Pause in a Parameterized Interval of Time

One can also explicitly solve a more general problem, where the pause at
the bottleneck site does not occur at the initial time t = 0 but at some pa-
rameterized time interval denoted by ζ < t < ξ. As in the previous section,
this is accomplished by using a piecewise definition of the coefficient function
β. Hence we solve the PDE given by (19)-(21) where the piecewise constant
function β(x, t) is now taken to be

β(x, t) =
{

0 for x = 0 and ζ < t < ξ
1 otherwise. (22)

The solution to this PDE can be derived using the method of characteristics.
For brevity, we omit the details of this calculation. To describe the solution
we define specific times t1 and t2 in the following way: t1 is the time at which
the line of paused polymerases has completely dissipated after the paused
nucleotide has released and the density is returned to the uniform value of z0.
Further, t2 is the time required for the lead polymerase that is stopped at the
paused nucleotide to catch up with those polymerases that were unaffected by
the pause once it has ended; ie, the density at the front end returns to the
uniform value of z0. For visualizing these solutions, we give an example with
dt = ξ − ζ, t1 = dt

1−z0 and t2 = dt
z0

and z0 = 1
5 = 0.2 and ζ = 0, and the

closed-form solution to (19)-(21) using (22) is given by

z(x, t) =



0.2 x < −0.2t; t < t1
1 −0.2t < x < 0; t < ξ
1 −0.2t < x < −(t− ξ); ξ < t < t1
1
2
− x

2(t− ξ)
−(t− ξ) < x < 0; ξ < t < t1

0.2 x < [1− 2(0.2)] (t− ξ)− 2
[

0.2ξ(t−ξ)
1−0.2

]1/2
(1− 0.2) ; t ≥ t1

1
2
− x

2(t− ξ)
[1− 2(0.2)] (t− ξ)− 2

[
0.2ξ(t−ξ)

1−0.2

]1/2
(1− 0.2) < x < 0; t ≥ t1

0 0 < x < (1− 0.2)t; t < ξ
1
2
− x

2(t− ξ)
0 < x < (t− ξ); ξ < t < t2

0 (t− ξ) < x < (1− 0.2)t; τ < t < t2
0.2 (1− 0.2)t < x; t < t2
1
2
− x

2(t− ξ)
0 < x < [1− 2(0.2)] (t− ξ) + 2(0.2)

[(
1

0.2 − 1
)

(t− ξ)ξ
]1/2 ; t ≥ t2

0.2 [1− 2(0.2)] (t− ξ) + 2(0.2)
[(

1
0.2 − 1

)
(t− ξ)ξ

]1/2
< x; t ≥ t2

(23)
Figure 1 depicts a contour plot of the solution z(x, t) with parameters chosen
as in equation (23). One can clearly distinguish the time of the pause at x = 0
and its duration. One can also discern the “spreading out” of the RNAP traffic
once the pause has ended. In addition, the termination site is represented by
the vertical axis at x = 0.5, and one can see that the pause duration of 0.1 time
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units results in downstream effects in the RNAP density at the termination site
that are discernible for more than one full time unit (note the solution behavior
at x = 0.5 between time values of approximately t = 1.2 and t = 2.2). In the
sections that follow, we use this expression to validate numerical simulations of
the PDE and to study the delays experienced by polymerases in the presence
of a single pause nucleotide.

Fig. 1 A contour plot of the solution z(x, t) with z0 = 0.2 where β(x, t) incorporates a
pause at x = 0, ζ = 0.7 and ξ = 0.8 from equation (22).

5.1.3 Stochastic Model with One Pause Location

This section describes an algorithm used to simulate the type of TASEP pro-
cess described in Section 2.1. Stochastic simulation algorithms can be very
slow, since they need to simulate a DNA strand thousands of nucleotides long
(for the rrn gene it is 5450 nucleotides) with many polymerases on it at any
given time. Therefore in our implementation we have focused on the efficiency
of identifying the next event to be executed. There are two main constructs
in our algorithm: the array of positions along the DNA strand and a priority
queue for events. Each position in the array stores a set of pauses that occur
at that position at some time. Each pause is encoded as a pair of numbers
specifying the start and end times of the pause. An event has an associated
action and a time stamp, which indicates when the action will happen.

The basic function of the program is to identify the event with the lowest
time stamp and execute its function, which may include adding the event
back into the queue. There are two basic types of events—generator events
and polymerase events. The generator event corresponds to the start position
(initiation location) of the DNA strand. The associated generator action is
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to create new polymerase events. When a generator event occurs and the
first position in the array is empty, the polymerase event is assigned the first
position of the strand, and a time stamp is created. The time stamp encodes
the time at which the polymerase will attempt to move to the next position.
This time is computed in the following way. First, an exponentially distributed
time τ with constant β is generated. If there is no pause at the current position,
then τ is the time of the next move for the polymerase. If there is a pause,
then the time τ is added to the time when the pause expires. After assigning
the position and the time stamp, the polymerase event is added back onto the
priority queue.

When the generator attempts to produce a polymerase event, it produces
a time stamp which encodes the time at which the next polymerase will be
created. This time stamp is created by producing an exponentially distributed
time τ with constant α. After the time stamp is computed, the generator is
then put back into the priority queue.

When the generator event comes to the top of the priority stack, it produces
a polymerase event, a new time stamp and is put back into the queue. When
the polymerase event comes to the top of the priority stack, it moves to the
next position, computes its time stamp and is put back into the queue. When
a polymerase reaches the right end (the last position in the array) of the
DNA, it generates exponentially distributed exit time stamp with rate γ and
subsequently records its data into a database. This data consists of the time
of creation, the time of finish, and if there were intermediate checkpoints, the
time when it passed these checkpoints. All density and flux information can
be easily computed from this data. In our simulations of the rrn gene below
we set γ = β.

5.2 Numerical Simulations for the PDE and Stochastic Models

5.2.1 Discontinuous Galerkin Scheme for PDE Model Simulations

Although Section 3.1 applies a Godunov type of scheme to the model in (5)
in order to connect its full discretization with that of the system of ODEs
described in (1), a Discontinuous Galerkin Finite Element Method (DG) is
used to numerically approximate the solution of (19)-(22) and to numerically
estimate delays discussed in a later section. DG is well-suited to the task of
generating high order accuracy of solutions to a PDE with the discontinuity
in the velocity coefficient β(x, t) using a standard implementation. Prior to
discussing the results of the simulations, we give a very brief overview of the
DG approach. The interested reader is referred to a wealth of literature on the
topic for more details, see Cockburn and Shu 2001, Hesthaven and Warburton
2008, Arnold et al. 2001/02 and the references contained therein.

Let the function zh denote the DG approximation of the solution to equa-
tion (19)-(21) with (22). To obtain this approximation, one first discretizes the
spatial domain, [−0.5, 0.5], into K elements, Dk = [xkl , x

k
r ] for k = 1, 2, · · · ,K.
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On each element, choose a set of N interpolation points used to define a ba-
sis of Lagrange interpolating polynomials,

{
`ki (x)

}N
i=1

. The semi-discrete DG

formulation on the kth element is

Mk d

dt
zk
h + Skfk

h =
[
`k(x)(fkh − f∗)

]xk
r

xk
l

where the mass and stiffness matrices are

Mk
ij =

∫ xk
r

xk
l

`kj (x)`ki (x)dx, Skij =
∫ xk

r

xk
l

`ki (x)
d`kj
dx

dx

and f∗ is a numerical flux defined at the interface used to connect the local so-
lutions. Using a total variation diminishing Runge-Kutta method, this system
of ODEs in time is solved to find the approximation zh(x, t), see Hesthaven
and Warburton (2008) and references therein. Matlab code obtained from the
website associated with Hesthaven and Warburton (2008) provided the foun-
dational code used for the PDE simulations presented here. Note that similar
calculations for a particular instance of the model in (19) using DG have ap-
peared in print, see Zhang and Liu 2005. The results in this paper differ from
those in several ways. In Zhang and Liu 2005, various combinations of two nu-
merical flux functions and two flux limiters are applied for those calculations,
and for each of those cases, performance of the numerical computations on a
simple model is compared. In this paper, a nonlinear Lax-Friedrichs flux with
a minmod slope limiter is used for all of the numerical simulations presented,
and the current research effort focuses on the use of the numerical results ob-
tained through DG in order to estimate delays for the particular biological
application of polymerization.

(a) (b)

Fig. 2 (a) Three computations of density at the termination site of the DNA model using
a background density of z0 = 0.2. The blue graph represents the data from the stochastic
TASEP model. The solid red curve is the graph of zh(0.5, t), the result of the DG simulation
of the PDE model in (19). The dashed green curve represents the true solution as given in
(23). (b) Comparison of the flux at position x = 0.1 using a background density of z0 = 0.2.
Blue and red curves are as in (a).

Figure 2 presents an example of the numerical calculations of density ob-
tained using the DG calculations as well as the results of the simulation of the
TASEP model. The initial and background density of z0 = 0.2 is assumed for
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all of the calculations, see equations (20) and (21). The density at the right
boundary x = 0.5, representing the termination site, is plotted as a function
of the time t. The dimensionless time variable used in (19)-(21) has been con-
verted to dimensional time with units of seconds for the graphical comparison.
For completeness, the true solution to the PDE, as it is given in equation (23)
is plotted as well. In Figure 2, the DG calculation shows excellent agreement
with the true solution of the PDE. Both the DG and the TASEP calculations
exhibit the same overall trends, except within the region corresponding to
roughly the time interval of 1150 to 1180 seconds.

We note that the observed discrepancy is related to a fundamental problem
of a microscopic structure of macroscopic shocks, that has been studied vig-
orously in the statistical physics community (Wick 1985, Ferrari et al. 1991,
Derrida et al. 1993, Derrida et al. 1997). The stationary density of the par-
ticles in asymmetric exclusion processes, of which TASEP is a special case,
is described on suitable macroscopic spatial and temporal scales by the invis-
cid Burgers’ equation (Andjel and Kipnis 1984, Andjel and Vares 1986, Wick
1985); the latter has shock solutions with a discontinuous jump. One of the
main questions was whether the stationary density profile in the stochastic
model exhibited the same discontinuity (Ferrari et al. 1991, Derrida et al.
1993, Derrida et al. 1997). It has been shown that, starting from an initial
condition where density is piecewise constant with a unique shock (in other
words, a Riemann problem), there exists a stationary continuous density pro-
file which bridges the two initial densities as the spatial variable converges to
±∞ (Derrida et al. 1997). This profile exists only if one takes a view from the
position of a particle which is initially inserted at the spatial location of the
shock. This technical result and the corresponding recursive formulas for the
stationary density cannot be used to estimate the discrepancy between the
PDE and the stochastic exclusion process, since we are interested in the so-
lutions at a finite time after the pause site. Furthermore, the initial condition
after the pause has ended contains only a finite spatial interval at high density
corresponding to polymerases stopped at (and backed up behind) the pause
site.

With a series of numerical investigations, we have noted that the discrep-
ancy between the TASEP and the PDE model is smaller when we measure
flux at x = 0.1 rather than at x = 0.5, (that is, at a nucleotide location that is
much closer to the pause location) see Figure 2b. Since the experimental data
in the literature suggest that a pause is encountered on average every 100
nt, which in our scaling corresponds to a spatial scale of 0.1units, Figure 2b
captures this discrepancy on a more realistic spatial scale.

5.3 Delay Computations for the Model Problems

Here we use our PDE model to quantify the effect that a realistic distribution
of pauses has on the average time required for a polymerase to cross the DNA
strand. We begin by presenting the ideas in the setting of a single pause, placed
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in the middle of the DNA strand, as in the previous section. We also compare
our results with the stochastic computation using the TASEP model. In view
of Figure 2 we do not expect a perfect match in computed effect. Since the
PDE simulation is more efficient and avoids conceptual issues described below,
we seek an approximate fit and a quantifiable difference. We first outline our
approach to quantification of the effect of the pause on polymerase traffic. We
want to compare the average time required to cross the DNA strand with and
without the pause, and since each polymerase is affected by a pause differ-
ently, we would like to compute a pause-induced delay per affected polymerase.
However, there are some conceptual challenges with this notion.

In contrast to the PDE model where the density drops to the background
density z0 via a shock wave, in the stochastic model we cannot determine
which polymerases are affected by the pause and which are not. Therefore we
are forced to select arbitrary times T0 and T1 and compute the pause-induced
delay for all polymerases that arrive at the end of the strand between these two
times. We select these times so that they include the density disturbance seen
in Figure 2. Since we may include some polymerases that were not affected by
the pause, the delay per polymerase will depend on T0 and T1. The situation
is more straightforward for the PDE model where the affected polymerases
arrive at times that are clearly delineated. We use the same times T0 and T1

for both PDE and stochastic model, and since our main goal is to ensure that
the PDE computation does not stray too far from the stochastic model, we did
not try to address the dependence on T0 and T1 by averaging over periodically
occurring pauses.

5.3.1 Delay Computations Using the Stochastic Model

Let Ta(i) denote the total time required for the ith polymerase to cross the
DNA strand. Let µ denote the expected value of the time required for an arbi-
trary polymerase (that doesn’t experience a pause) to cross the DNA strand.
Choose T0 to be a time after the ramp-up phase of the stochastic model has
passed (so that the average density of polymerases on the DNA strand is ap-
proximately z0) but prior to the time at which the pause location along the
DNA has been activated. Similarly, choose T1 to be a time after all of the
polymerases affected by the pause location have reached the termination site.
Define the index Kb to be the integer index corresponding to the first poly-
merase that arrives at the termination site at a time on or after T0. Similarly,
the index Ke is the integer index corresponding to the last polymerase to ar-
rive at the termination site at a time at or prior to T1. The average pause
delay per affected polymerase is given by

DS(T0, T1) =
1

Ke −Kb

Ke∑
i=Kb

(Ta(i)− µ) (24)



24 Davis, Gedeon, Gedeon and Thorenson

5.3.2 Delay Computations Using the PDE Model

To compute the effect of the pause we compare the solution of (19)-(22) which
incorporates one pause in the middle of the DNA with the of the same PDE
model where the only change is that we set β(x, t) = 1 for all x and t. The
second model characterizes the ideal situation in which there is no pause,
and the initial and boundary conditions are specified with a certain constant
background density of z0. Note that the constant density z(x, t) = z0 is the
solution of such an equation; therefore, the flow function, fR, is also a constant
function

fR(x, t) = fR = (1− z0) z0

Since fR is constant, then the number of polymerases that have arrived at
the termination site, x = 0.5, in the time interval (T0, t) is

N(t) =
∫ t

T0

fRdy = (t− T0)fR

The explicit solution to equation (19)-(22) has been constructed in the previous
section. Denoting the flow function from (19) as f(z) = β(x, t)(1 − z)z, then
for the system governed by this model, the number of polymerases that have
crossed the termination site in the time measured from T0 to the time t is
given by

F (t) =
∫ t

T0

f(z(0.5, y))dy .

For any t > T0, we seek to calculate the amount of time required for the
polymerases that have been stopped by a pause to reach the right boundary
and compare that time with the amount of time that is required for the same
number of polymerases to arrive at the termination site under the condition
that the DNA chain has no pause. To achieve this goal, we define the function
s(t) so that for each t > T0, the function s(t) is the instant of time for which∫ s(t)

T0

f(z(0.5, y))dy = N(t). (25)

The average delay over an interval [T0, T1] is then calculated to be

DP (T0, T1) =
1∫ T1

T0

f(z(0.5, t))dt

∫ T1

T0

f(z(0.5, t))(s(t)− t)dt (26)

where T0 is an arbitrary time before the first of the delayed polymerases
reached the right boundary and T1 is an arbitrary time after the last of the
polymerases affected by the pause has reached the termination site.

The previous equations assume that we have the analytical solution to both
the reference model as well as the model problem in (19), which we indeed do
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possess. However, the purpose of the model is to verify that both the DG
simulations as well as the corresponding delay calculations agree with those
of the stochastic model. Hence, we introduce notation to explain how the DG
calculations can be used to approximate the delay calculations given above. A
comparison of the true delay derived using z(0.5, t) is then compared with the
delay computed using the DG approximations.

The DG calculation for zh is used to approximate s(t) as defined in (25).
The notation sh represents the approximation to s(t) calculated using zh(0.5, y)
in equation (25) and applying a numerical quadrature rule to approximate the
integral. The N(t) calculation is done using the true solution of equation (19)
with β(x, t) = 1 for all x and t and the initial and boundary conditions given
by z0 prescribed in equations (20) and (21).

Using the DG calculations, the approximation of the average delay is de-
fined as

DG(T0, T1) =
1∫ T1

T0

f(zh(0.5, t))dt

∫ T1

T0

f(zh(0.5, t))(sh(t)− t)dt, (27)

where a composite Trapezoidal rule is used to approximate the integrals. The
composite Trapezoidal rule is chosen because it uses a low order approximation
to the integrand. This is not necessary in the model problems that we investi-
gate. However, in the more biologically meaningful models, one finds that the
integrand is highly oscillatory and non-differentiable, and in such situations,
less error is introduced by using a low-order composite scheme.

5.3.3 Comparison of the Delay Calculations

For the example included here, we assume that the DNA strand is 1000 nu-
cleotides in length, and we compute the pause-induced delay per affected poly-
merase induced by a single pause. The pause is positioned in the middle of the
DNA strand (x = 0) and is active in the time interval [1000, 1020] seconds. We
compute the delay over the time interval [T0, T1] = [950, 1250] at a position
x = 0.1, which corresponds to 100 basepairs downstream from the pause, and
at the end of the DNA strand (x = 0.5). For the delay computed at x = 0.1
we have

DG(950, 1250) = 1.996 sec/RNAP, DS(950, 1250) = 1.716 sec/RNAP,
(28)

and for the delay computed at x = 0.5 we have

DG(950, 1250) = 4.318 sec/RNAP, DS(950, 1250) = 3.517 sec/RNAP.
(29)

First observe that the delay is larger further away from the pause (at x = 0.5),
since the aggregation of dense traffic continues to affect the new polymerases
that encounter it, and it continues to increase the delay of polymerases within
the group. We note that in spite of the difference in flux between the PDE
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and stochastic simulation along the shock in the PDE (Figure 2), the delay
computed from the stochastic model is 85% and 81% of the PDE computed
delay, at x = 0.1 and x = 0.5 respectively. This encourages us to use the more
efficient PDE solution to estimate the induced delay for a biologically realistic
number and distribution of pauses in the next section.

6 Delay Computations for a Ribosomal RNA Model

In this section, we focus on the quantitative aspects of the PDE model that
can be used to test hypotheses about a problem in cell biology. We examine
ribosomal RNA transcription for the rrn operon which is 5450 nt long and
has been studied experimentally in Bremer and Dennis 1996. According to
experimental data, this gene requires about 60 seconds to transcribe. If one
assumes that the elongation rate of each polymerase is constant and the poly-
merase experiences no crowding or pauses, then this results in the average
transcription speed of 91 nt/s. This speed is about twice the mRNA tran-
scription speed (Condon et al. 1993, Vogel and Jensen 1995, Vogel and Jensen
1997, Dennis et al. 2009). This difference stems from the rrn operon-specific
modifications of RNAP, which require both the presence of anti-termination
sequences near the rrn operon leader region and the presence of interacting
proteins. The data suggest that the RNAP modifications allow read-through of
Rho-dependent terminators (Albrechtsen et al. 1990, Vogel and Jensen 1995,
Vogel and Jensen 1997, Zellars and Squires1999), but these modifications may
also decrease polymerase ubiquitous shorter pauses (Vogel and Jensen 1995,
Yang and Roberts1989, Burns et al. 1998). The mechanism by which these
modifications can influence duration and/or frequency of ubiquitous pauses
is not completely understood (Neuman et al. 2003, Landick 2009, Galburt
et al. 2007). Using our model we test the hypothesis that the anti-termination
complex affects duration and/or frequency of ubiquitous pauses.

Taking into consideration observed density of polymerases on rrn we as-
sume that the polymerase reads through all Rho-dependent terminators. How-
ever, we assume that it encounters the density of ubiquitous pauses that has
been observed at other, non rrn sequences. We then simulate the PDE model
of transcription for a biologically relevant range of raw elongation velocities β
(ranging from β = 90 to β = 220 nt/second) and observe whether the mea-
sured average crossing time matches the observed crossing time of 60 seconds.

According to Condon et al. (1993), there are on average 53.4 RNAP on the
rrn operon. With a length of 32 nt for each RNAP (Krummel and Chamberlin
1989); this gives an estimate of the fraction of the DNA strand that is covered
to be approximately (53.4 × 32)/5450 = 0.31. That is, on average, approxi-
mately 31% of the DNA strand is occupied at any given time. We note that
the elongation speed on an empty rrn operon has not been measured; in the
previous paragraph, the estimated speed of 91 nt/s is based on an experimen-
tal observation at a full density of polymerases and in the presence of pauses.
Using the assumptions of the PDE model, one can compute the raw elongation
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velocity β, under the condition that no pauses are present and assuming that
the measured average elongation speed of 91 nt/s is a result of polymerase
crowding. Indeed the steady state velocity (at density z0 = 0.31) is equal to
raw elongation velocity multiplied by 1 − z0. This gives an estimate for the
raw elongation velocity as

β = 91/(1− 0.31) = 132 nt/s,

and this indicates that accounting for the phenomena of polymerase crowding
would decrease a raw elongation speed of 132 nt/s for a single RNAP to the
observed speed of 91 nt/s.

We now use the model to compute the effect of pauses on the observed tran-
scription speed. As far as we know, the number and frequency of pauses were
not measured for rRNA transcription, but they were measured for transcrip-
tion of other genes. There the frequency of pauses is 0.1s−1 (Dennis et al. 2009)
which means there are about 6 pauses encountered per minute of elongation.
To test the hypothesis that the association of an anti-termination complex
with the RNAP transcribing rrn operon is not only causing read-through of
the Rho-dependent terminators but is also supressing ubiquitous pauses, we
assume that the RNAP on rrn encounters 6 pauses per minute.

In order to account for polymerase crowding and the effect of pauses, we
consider the PDE model (19)-(21) and the incorporation of a large number
of pauses at randomly chosen nucleotide locations along the DNA strand.
The location and duration of each pause is then encoded into the PDE by
constructing β(x, t) to account for these pauses in the same way that the
one pause is incorporated into the model problem in equation (22). DG is
used for the numerical simulation of the PDE model, and the discretization
is constructed so that each mesh element represents one nucleotide location.
We simulate rrrn transcription for the gene mentioned above, which is 5450
nt long. The spatial domain [−0.5, 0.5] is partitioned into 5450 finite elements
of uniform length, and we consider the spatial-temporal product space when
determining the placement of the pauses. The spatial locations for the pauses
are chosen uniformly from the elements numbered from 1 to 5450, with the
exception that the algorithm is modified so that a pause location is not chosen
to be in the first or last element of the mesh. The pause durations are chosen so
that, on average, forty percent of the pauses are long pauses and sixty percent
of them are short pauses. The duration of time for each of these types of pauses
is chosen according to an exponential distribution. Using experimental data
from Neuman et al. 2003, the short pauses are exponentially distributed with
a mean of approximately 1.2 seconds, and the long pauses are exponentially
distributed with a mean of approximately 6 seconds. The mean length of a
pause is τ = 3.12 seconds.

The numerical simulations are constructed to be consistent with Dennis
et al. (2009) and Klumpp and Hwa (2008) where, on average, a polymerase
encounters 6 pauses per minute of elongation. In order to determine the total
number of pauses required in a given computational domain, we consider a
polymerase starting at an arbitrary time t ∈ [0, T ] transcribing a DNA of
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fixed length (with T measured in seconds). For this calculation we can assume
without loss that the elongation speed of the polymerase on a free DNA is 1.
Select a single pause of length τ uniformly from a region S := {(x, t) | x ≤
t ≤ x + T}, which represents all positions and times that are reachable by a
polymerase initiating at the start of the DNA strand at a time t ∈ [0, T ]. The
probability that a single polymerase starting at arbitrary time t ∈ [0, T ] will
experience the pause is τ/T . Therefore, if we select T

τ pauses of average length
τ uniformly from S, we expect that any given polymerase will experience a
pause. Since hitting two pauses consecutively are independent events, if we
want to simulate the situation where, on average, a polymerase encounters 6
pauses per minute, we must select a total number of 6Tτ pauses.

(a) (b)

Fig. 3 (a) Plot illustrating the pause location and durations (given in terms of the nu-
cleotide numbers and dimensional time in seconds) used in the PDE simulation. (b) The
DG approximation of flux at the termination site x = 0.5 as a function of time, using the ini-
tial density of z0 = 0.31. Note the oscillatory behavior in the flux function that is caused by
the randomness of pause locations and durations. Flux functions of this type are integrated
numerically in order to compute the pause-induced delay per polymerase.

With τ = 3.12 seconds, and our selection of the time scaling so that com-
putational domain where the delay is measured corresponds to a simulation of
approximately 5 minutes of the transcription process, a sample of the results
can be seen in Figure 3. Part (a) of Figure 3 gives a graphical representation of
the location and time duration of the pauses incorporated into the simulation.
Figure 3(b) is an illustrative sample of a DG simulation of the flux at the
termination site over the relevant time interval, that is, it gives a sample of
the type of function f(zh(0.5, t)) used for the delay calculation as described
in equation (27). For the calculations presented in this paper, we choose T0

and T1 for the delay calculation so that it represents an interval of time where
the integrals in (27) measure the output of the system once it has already
experienced a randomly-distributed number of pauses.

Employing a large number of simulations of the type described in the pre-
vious paragraphs, we test the hypothesis that increasing the raw elongation
speed in the presence of pauses can lower the average crossing time. The re-
sults are shown in Figure 4 and Table 1. Note that a coarser grid of 2725
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Fig. 4 Computation of an average crossing time (vertical axis) of a polymerase on the rrn
operon. For each value of raw elongation speed β we simulate 5 minutes of transcription for
5 random pause distributions (marked by crosses), which are consistent with the observed
pause density (see the text). The average value of the five trials is indicated by a circle.

elements was used for the data presented here. That is, the discretization is
constructed so that each mesh element represents two nucleotide locations.
We see that even at β = 220 the average crossing time per polymerase is
almost 4 minutes. The data in Figure 4 suggests that when the polymerase
experiences a number of ubiquitous short pauses, increasing elongation speed
is insufficient to lower total crossing times for each polymerase by a significant
amount. This suggests that in order to approach the experimentally observed
crossing time of approximately 60 seconds, the polymerase modifications must
suppress sequence-independent ubiquitous pauses. Furthermore, this supports
the hypothesis that the anti-termination complex can significantly increase the
transcription rate of rRNA, which is a key growth limiting factor in E. coli.

We also note that the crossing time does not monotonically decrease with
increasing β, and it seems to level off at high β, perhaps approaching an
asymptote that is much higher than 60 seconds. The asymptotic behavior is
perhaps expected, as the crossing time should be limited by the presence of a
critical number of pauses. However, the non-monotonicity of the crossing time
suggests that multiple factors may influence the resulting crossing time. In
particular, the pauses are located at a wide variety of spatial locations within
the domain, and we believe that interaction between RNAPs that encounter
multiple pauses at closely related spatial locations can affect the overall cross-
ing time in complex ways. As a first step at understanding this phenomena, the
following section includes a preliminary study of how the crossing time varies
with respect to parameters dictating pause location and pause duration.
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Table 1 Mean delay and mean overall crossing time per polymerase in the presence of
ubiquitous pauses and various values of β. DG simulation with a spatial grid of 2725 elements
was used.

Raw Mean Mean
Elongation Delay per Total Elong.
Velocity β polymerase (secs) Time (secs)

100 nt/s 198 s 253 s
110 nt/s 197 s 247 s
120 nt/s 211 s 257 s
130 nt/s 222 s 264 s
140 nt/s 231 s 270 s
150 nt/s 208 s 244 s
160 nt/s 196 s 230 s
170 nt/s 189 s 221 s
180 nt/s 207 s 238 s
190 nt/s 191 s 220 s
200 nt/s 186 s 213 s
210 nt/s 193 s 219 s
220 nt/s 196 s 221 s

7 Parameter Studies for Two Simple Models

To understand the source of non-monotonicity mentioned above, we summarize
results from two simple model problems.

7.1 One Pause Model

Returning to the one-pause model discussed in Section 5.1.2, we show that
the crossing times are predictably monotone as a function of pause location.
Using equations (19)-(21) with β parameterized as in (22) for the case where
ζ = 0.2 and ξ = 0.3, the spatial location of the single pause is varied across
most of the interior of the domain, see Figure 5. We see that the pause located
close to the beginning of the strand increases the average crossing time more
than a pause of the same duration positioned near the end of the strand. The
actual elongation speed here is somewhat irrelevant; however, we have used an
elongation speed that results in a crossing time that is biologically relevant to
the model analyzed in this paper. We have also confirmed the intuition that
longer pauses increase elongation time more than short pauses; we omit these
results for brevity.

7.2 Two Pause Model

The introduction of a second pause with a parametrized location is enough
to illustrate the complex behavior of the system in the presence of multiple
pauses. With two pauses of the same time duration positioned relatively close
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Fig. 5 Plot representing the monotone decrease in average crossing time as the spatial
location of one pause is varied from x = −0.4 to x = 0.49. Simulations were carried out
using the DG framework (described in previous sections) with a background density of
z0 = 0.31 with 1000 mesh elements.

together, numerical simulations indicate that the average crossing time ex-
hibits complex behavior that includes both local maxima and minima. The
first pause (the one occurring earlier in time) is fixed in the center of the do-
main at x = 0 (representing the middle of the DNA strand), begins at a time 6
seconds into the simulation and has a duration of approximately 3.2 seconds.
The second pause begins at a time of about 35.9 seconds. The spatial loca-
tion of this second pause is varied across the domain, and we plot the average
crossing time as a function of this spatial location.

We observe a non-monotone behavior in the crossing time for this situation,
as seen in Figure 6(a). Examining the contour plots in (b-d), it is visible that
the first local minimum crossing time happens for the parameter location where
the shock wave from the first pause tangentially intersects the spatial position
of the second pause at the time when the second pause begins, see Figure 6 (b).
This allows the rarefaction wave resulting from the release of the first pause
to spread into the area of low density created by the second pause; thereby
allowing the RNAPs that are not stopped by the second pause to speed up as
they continue to elongate across the DNA strand. In addition, there is a local
maximum observed in Figure 6(a) which corresponds to the situation shown
in the contour plot in Figure 6(c), where many of the RNAPs affected by the
first pause are also affected by the traffic jam created by the second pause.
This corresponds to the intersection of the characteristic created by the release
of the second pause with the shock emanating from the first pause, separating
polymerases affected by the first pause from those unaffected by it. Finally,
in Figure 6(d) we show the situation at the second local minimum. Here the
second pause is on the border of the shadow of the first pause and hence very
few polymerases are affected by it since the density of traffic in that region is
relatively low (because of the first pause).

The simulations of these simple models suggest that the complex inter-
action between polymerase density and multiple pauses may lead to non-
monotonicity in crossing times for any given choice of raw elongation speed β.
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(a) (b)

(c) (d)

Fig. 6 (a) Expresses average crossing time as a function of the spatial location of the second
pause (b) Contour plot of the PDE model simulation of density z(x, t) where the location
of the second pause corresponds to the first local minimum value of the crossing time. (c)
Density and location of the second pause at local maximum of the crossing time, (d) density
and location at the second local minimum.

While we cannot rule out that the non-monotonicity in Figure 4 results from
an insufficient number of samples, Figure 6 suggests that it is plausible that it
may arise from the interplay between number and position of pauses, density
of RNAPs and the speed β.

8 Conclusions

In this paper we rigorously derived a nonlinear conservation law that describes
the motion of a molecular polymerization machine on a one-dimensional rib-
bon. Our model has roots in a stochastic TASEP process, which gives rise to
an ODE model describing mean occupancy at each position along the ribbon.
Using the theory of convergence of finite volume methods for nonlinear conser-
vation laws, we show that a time discretization of this ODE model can be used
to build an approximate solution of a nonlinear conservation law. Increasing
the number of ODEs and refining the time discretization yields a sequence of
approximations that weakly converge to a solution of the conservation law.
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We apply our PDE model to the gene transcription process and numerically
investigate the effect of short ubiquitous pauses on transcription efficiency. We
compute average crossing time as well as pause-induced delay per elongating
polymerase and compare these estimates between the PDE model and the
stochastic TASEP model.

Finally, we address a biologically relevant question related to the transcrip-
tion of the rrn gene in E.coli. A transcript of this gene forms a core of each
ribosome. At times of rapid growth, demand for production of ribosomes re-
quires high transcription rate of the rrn gene. Multiple polymerases transcribe
the gene at the same time, and this high density in the presence of pauses
makes polymerase traffic jams likely. It is known that formation of a so called
anti-termination complex doubles the average transcription speed by primarily
allowing read-through of several terminator regions within the rrn gene. It is
not clear how much the formation of the anti-termination complex affects du-
ration and number of ubiquitous short pauses during the transcription. Using
our model we show that if we assume that the elongating polymerase encoun-
ters the same number of short pauses as were measured on regular genes,
then the crossing time remains well above the experimentally observed 60 sec
for a range of realistic raw elongation velocities. Our results suggest that the
anti-termination complex must act to shorten the duration or to decrease the
number (or both) of the short ubiquitous pauses.
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