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Abstract

The map-seeking circuit (MSC) is an explicit biologically-motivated computational mechanism which
provides practical solution of problems in object recognition, image registration and stabilization, limb
inverse-kinematics and other inverse problems which involve transformation discovery. We formulate this
algorithm as discrete dynamical system on a set ∆ = ΠL

`=1∆
(`), where each ∆(`) is a compact subset

of a nonnegative orthant of IRn, and show that for an open and dense set of initial conditions in ∆ the
corresponding solutions converge to either a vector with unique nonzero element in each ∆(`) or to a
zero vector. The first result implies that the circuit finds a unique best mapping which relates reference
pattern to a target pattern; the second result is interpreted as ”no match found”. These results verify
numerically observed behaviour in numerous practical applications.

Key words: Map seeking circuits, computer vision, dynamical systems, Lyapunov function.

1 Introduction

This paper studies the behavior of an algorithm using ideas and methods from dynamical systems theory.
The algorithm, called a Map-Seeking Circuit (MSC), was developed by D.Arathorn [1] and has been applied
by him to a variety of theoretical and practical problems in biological vision [2, 3, 4] and machine vision [5, 6],
inverse kinematics and route planning [2, 7], and in cooperation with other investigators to dynamic image
processing [12, 13], and high degree-of-freedom robotic motion control [14]. The MSC algorithm is applicable
to a variety of inverse problems that can be posed as transformation-discovery problems, where the goal is
to find the best transformation that maps a reference pattern to a target pattern.

The MSC algorithm was motivated by the structure and function of the cortical visual processing streams.
A number of visual tasks such as stereo vision, determining shape from motion and recognition of rigid and
articulated objects can be posed as transformation-discovery problems and can be readily solved by the
MSC algorithm. The solution of more complex problems like object recognition involves a decomposition of
an aggregate transformation into a sequence of component transformations. For example, the recognition
of a known 3D object in an image which contains other objects (see Figure 1), involves discovering the
transformations involved in image formation: the location of the projection of the object in the scene, the
magnification of that projection and the orientation angles which produced the particular 2D projection of
physical 3D object. For objects whose recognition requires determining interior surface shape rather than just
occluding contour, lighting direction becomes an additional factor in the image formation transformations.
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For objects which are not rigid, physical articulation or morphing transformations are composed with the
image formation transformations and must be discovered in the process of recognition [4, 6].

The composition of transformations applies readily to inverse kinematics, in which the unknown transfor-
mations consist of a sequence of projections from the limb root via each limb segment to the target location
for the end effector [2, 7, 14]. Similarly, for route finding and/or motion planning, the transformations to be
discovered are the sequence of movements which will take the animal or robot from its current location and
velocity to the target location and velocity [7, 14].

We illustrate the algorithm on a problem of recognition of a rigid 3D object in Figure 1. The problem,
often referred to in machine and biological vision circles as the correspondence problem, is to identify the
transformation which maps the model to the projection of the object in the scene, ignoring all the distracting
objects in the scene. The model, or a target pattern, in this case is a 3D model of the surface of the pig defined
by normal vectors located in space, Figure 1c. The 2D projection of the pig (reference pattern) appears in
the input image Figure 1a. The MSC algorithm solves the inverse problem of finding the transformation that
takes 2D image to the 3D model. It seeks the unknown transformation as a composition of (1) translation in
the image plane, (2) rotation in the image plane, (3) scaling in the image plane, and (4) projections between
2D and 3D parameterized by azimuth and elevation. MSC arrives at a solution by a process of convergence
which involves competitive culling of linear combinations (superpositions) of all the possible transformations.
A graphical presentation of this process on the inverse of 3D-2D projections is seen in Figure 1d-f. This
example ignores occlusion, background noise and image degradation, all of which are dealt with in [4, 5, 6].

The behavior of the convergence of MSC in discovering these transformations, regardless of the applica-
tion, is the subject of this paper.

2 Results

We now describe the problem in more detail where we follow the exposition in [9]. Denote the reference
(input) pattern by I , denote the target (memory) pattern by M , and let I, M lie in IRp. In order to simplify
the exposition we consider I and M of the same dimension, but our results extend to the case where I and
M have different dimensions. For a particular transformation T in a given class of transformations T we
define the correspondence associated with T to be

c(T ) = 〈T (I), M〉, (1)

where 〈·, ·〉 denotes the inner product on IRp.
We assume that each T ∈ T is a composition of L maps

T = T
(L)
iL

◦ . . . ◦ T
(2)
i2

◦ T
(1)
i1

. (2)

For each index ` between 1 and L, the maps T
(`)
i`

, i` = 1, . . . , n`, are taken from a collection of transformation
termed a layer. The layer terminology reflects the data flow organization of the algorithm and is not in-
tended as an analogy of anatomical ”layers” in the visual cortex, but is more likely to correspond to cortical
anatomical areas (e.g. V1, V2, etc) in which are believed to implement stages of transformation to the visual

signal. We also require each component transformation for layer `, T
(`)
i`

, to be linear and to be discretely
indexed so that 1 ≤ i` ≤ n`. While linearity may seem to be a severe restriction, it holds in many important
applications. For example, the component transformations in visual pattern recognition—translations, rota-
tions, and rescalings—are each linear. The number of layers L and the number of transformations n` in each
layer are problem specific and are determined by the user of the algorithm. Large number of transformations
will potentially provide a better solution, but the computational cost will increase.

The task of maximizing the correspondence then reduces to selecting a particular transformation of
the form (2) to maximize (1). Equivalently, one can select the indices (i∗1, i

∗
2, . . . , i

∗
L) which maximize the

correspondence array,

c(i1, i2, . . . , iL) := 〈T
(L)
iL

◦ . . . ◦ T
(2)
i2

◦ T
(1)
i1

(I), M〉. (3)

Hence one can solve the correspondence problem simply by constructing the N := n1 ·n2 · . . . ·nL components
of the L-dimensional array in (3) and then finding its maximum entry. For most of the interesting applications
the number of components N is extremely large, so this approach is impractical.
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Figure 1: MSC algorithm in image recognition. (a) input image; (b) edge filtered signal into layer 1 forward;
(c) 3D surface normal model in memory; (d - f) convergence of superpositions of transformations, iterations
1, 8, and 25. (Figure taken from [3];3D models courtesy www.3DCafe.com).

A key idea in [2], which Arathorn refers to as ordering property of superpositions, allows the MSC
algorithm to perform correspondence maximization iteratively with a cost per iteration that is proportional
to the

∑L
`=1 n`. The idea is to embed the discretely parameterized linear transformations (2) in a family of

continuously parameterized transformations. For each layer `, take

T
(`)

x
(`) =

n
∑̀

i`=1

x
(`)
i`

T
(`)
i , (4)

where x
(`)
i`

≤ 1 are gain coefficients. If we replace the individual maps T
(`)
i`

in the right hand side of (3) by
the linear combinations (4) we obtain the correspondence function

f(x(1),x(2), . . . ,x(L)) := 〈T
(L)

x
(L) ◦ . . . ◦ T

(2)

x
(2) ◦ T

(1)

x
(1)(I), M〉 (5)

=

n1
∑

i1=1

· · ·
nL
∑

iL=1

c(i1, . . . , iL)x
(1)
i1

. . . x
(L)
iL

.

The goal is to maximize the function f on the set where x
(`)
i ≤ 1 for all `.
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We now describe the Map Seeking Circuit (MSC) algorithm [2]. We set

I(0) := I and I(`) := T
(`)

x
(`)(I

(`−1)) :=

n
∑̀

i=1

x
(`)
i T

(`)
i`

(I(`−1)),

where I(`) is a linear combination (superposition) of maps T
(`)
i`

applied to the input to the `-th layer I (`−1).
Similarly, we set

M (L) := M and M (`−1) := T
(`)∗

x
(`) (M (`)) :=

n
∑̀

i=1

x
(`)
i T

(`)∗
i`

(M (`)),

where M (`) is the backward input to the `-th layer and T
(`)∗
i`

are Hermitian conjugates of maps T
(`)
i`

. Therefore

I(`) := T
(`)

x
(`) · · ·T

(1)

x
(1)(I), ` = 1, 2, . . . , L, (6)

M (`−1) := T
(`)∗

x
(`) · · ·T

(L)∗

x
(L) (M), ` = L, ..., 2, 1. (7)

Using (6) and (7), the objective function (5) can be expressed for any ` = 1, . . . , L, as

f(x(1), . . . ,x(L)) = 〈I(`), M (`)〉 =

n
∑̀

i=1

x`
i 〈T

`
i (I(`−1)), M (`)〉. (8)

The first equality follows by taking adjoints in (5) and substituting (6) and (7). The second equality follows
from (4) and the bilinearity of the inner product. Since (8) holds for at every layer ` we can dynamically

update the coefficients x
(`)
i synchronously on all layers. First a vector of matches

L(`) :=
(

〈T
(`)
1 (I(`−1)), M (`)〉, 〈T

(`)
2 (I(`−1)), M (`)〉, . . . , 〈T (`)

n`
(I(`−1)), M (`)〉

)

(9)

is computed, where 〈·, ·〉 is a dot product. The greatest entry in this vector represents the best match

between transformed input and the transformed memory. The weight x
(`)
i`

of the map T
(`)
i`

that produced the
best match should be retained while other weights should be suppressed. Therefore we update the vector of
gating coefficients x(`) using a competition function C(·)

x(`)(n + 1) = C(`)(x(`)(n), L(`)),

where the i-th component of C(`) is defined by

C
(`)
i (u,v) :=

{

max(0,ui − κ(`)(1 − vi

max(v))) if max(v) ≥ ε(`)

0 if max(v) < ε(`)
(10)

and max(v) is the maximal component of the vector v, see Figure 2. The functions C (`) for different ` may
differ in the choice of the constants κ(`) and ε(`). However, the different choices of ε(`) do not significantly
affect our argument and thus we simplify our bookkeeping by assuming ε = ε(`) for all ` = 1, . . . , L. Observe,

that the function C(`) preserves the value of the maximal weight x
(`)
i`

and lowers other weights x
(`)
j`

, j(`) 6= i(`)
towards zero. If these weights are driven below the threshold ε without convergence, they are all set to zero.

With the updated gating constants x(`)(n + 1) we compute updated values of I (`) and M (`) in (6) and

(7) and iterate the whole process. We take the initial gating constants x
(`)
i`

to be equal to a small random
perturbation of the value 1.

We now formulate the updates of the algorithm as iterations of a map on a space of all feasible weights

x
(`)
i`

. Let ∆(`) := {x(`) ∈ IRn`+ |
∑

x
(`)
i`

≤ n`} and let

∆ = ∆(1) × . . . × ∆(L).

The dynamics of each layer is described by

x(`)(k + 1) := C(`)(x(`)(n), L(`)(x(1)(k),x(2)(k), . . . ,x(L)(k))), (11)
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PSfrag replacements

C
(`)
i (u, ·)

ui

max(v)vi

ui < κ(`)

ui > κ(`)

Figure 2: The function C
(`)
i (u,v) for a fixed value of ui. The function is linear and intersects the positive v

axis when ui < κ(`).

where k denotes the iteration number and where L(`) : IRn+ → IRn`+ is the `-th layer transfer function (see
(9)), defined by

L
(`)
i (x(1), . . . ,x(L)) = 〈T

(`)
i (I`−1), M `〉. (12)

Let x = (x(1), . . . ,x(L)) be the concatenation of vectors x(`) ∈ IRn`+, let C be a concatenation of functions
C(`) and let L(x) denote the collection of layer transfer functions L(`)(x). The dynamics of the whole circuit
can be then expressed as

x(k + 1) := C(x(k), L(x(k))) = C(x(k)), (13)

where C, L : IRn+ → IRn+ and n :=
∑L

`=1 n` is the total number of linear transformations in all L layers..
Let ei`

∈ IRn`+ be a vector whose i(`)-th coordinate is 1 and other coordinates are zero. We formulate our
main result.

Theorem 2.1 Consider a discrete dynamical system generated on ∆ by (13). Assume that c(i1, . . . , iL) ≥ 0
and set cmin := minc(·)6=0 c(i1, . . . , iL), cmax := max c(i1, . . . , iL). Fix a set of constants κ(1), . . . , κ(L) in

competition functions C(1), . . . , C(L) with the property κ(`) ≤ ( cmin

cmax
)2 for all `.

Then for a generic correspondence array {c(i1, . . . , iL)} there is an open and dense set G ⊂ ∆ with the
following property. If initial condition x(0) ∈ G then iterations x(n) of (13) converge either to the zero

vector or to a vector (a1e
(1)
i1

, a2e
(2)
i2

, . . . , aLe
(L)
iL

), for some positive numbers a1, . . . , aL.

The expression “generic correspondence array c(i1, . . . , iL)” means that there is an open and dense set in the
space of all collections for which our results are true. The necessary condition for being in the generic set is
that all elements of the collections are distinct, see Lemma 3.8 and Lemma 3.9, but it may not be sufficient
(Lemma 3.10).

The assumptions for the main result are mild and are satisfied in all (known to us) implementations. The
condition c(i1, . . . , in) ≥ 0 is not very restrictive. Starting with an arbitrary set of coefficients c(i1, . . . , iL)
we can satisfy the positivity condition by adding a constant to the nonzero coefficients.

The condition κ(`) ≤ ( cmin

cmax
)2 is relates the step size of the algorithm κ(`) to the set of coefficients

c(i1, . . . , iL).
Note that the set ∆ is a closed subset of IRn+ with a non-empty boundary. As the algorithm eliminates

weights x
(`)
i by setting them to zero, it enters the boundary of ∆. We can strengthen the result of Theorem 2.1

to state that the set G is actually open and dense in majority of the boundary subsets of ∆. Since the
formulation of this results requires an additional notation, we have delegated its formulation to the section 3
(see Theorem 3.1).

We now outline the argument of the proof. We first characterize the fixed points of the map C and then
show that for each ` the function

∑n`

i`=1 xi`
is a Lyapunov function for the map C(`) (Lemma 3.6). Hence the

function
∑L

`=1

∑n`

i`=1 xi`
is a Lyapunov function for the map C. By LaSalle invariance principle [11] existence
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of a Lyapunov function in a continuous time dynamical system (i.e a set ordinary differential equations) has
strong implications for the character of the omega limit sets of a system. With mild regularity assumptions
on the Lyapunov function the omega limit set of each point is in the set of equilibria. For discrete dynamical
system, such as studied in this paper, the existence of the Lyapunov function does not apriori rule out
periodic points as omega limit sets, provided that the value of the Lyapunov function is constant along such
periodic orbit. However, as we show in Corollary 3.7 in our system all omega limit sets lie in the set of

fixed points of the map C. Furthermore, each fixed point is either of the form (a1e
(1)
i1

, . . . , aLe
(L)
iL

) for some
collection a` > 0, or it is a zero solution, or it is an internal fixed point. Next we show that for a generic
c(i1, . . . , iL) the set of initial conditions that converge to internal fixed points is nowhere dense. The primary
mathematical difficulties in proving the last result stem from two facts. The first is that the correspondence
function (5) is multi-linear and thus the fixed points of the map are not isolated, but form L dimensional
families. Further, the map itself is not invertible. The key results addressing these issues are Lemma 3.10
and Theorem 3.14, respectively.

Finally we comment on the relationship of the nonzero solution to which MSC algorithm converges and
solution of the maximization problem (5). By Theorem 4.1 [9] all the local maxima of (5) on the smaller

space
∑n`

i`=1 x
(`)
i = 1 for all `, are solutions of the form (e

(1)
i1

, . . . , e
(L)
iL

) where e
(j)
ij

is a unit vector in direction

ij in the j-th layer. In other words, in each layer there is precisely one weight x
(j)
ij

= 1 and the others are

zero. The MSC algorithm generically converges to a point (a1e
(1)
i1

, . . . , aLe
(L)
iL

) for some collection a` > 0,
or to a zero solution. There is an obvious one-to-one correspondence between the vectors of this form and

vectors (e
(1)
i1

, . . . , e
(L)
iL

). The advantage of setting up the problem on a space
∑

i`
xl

i`
≤ 1 for all i rather then

on
∑

i`
x

(`)
i`

= 1 for all `, is the possibility of the “no match found” outcome.
We close this section by providing details about the application of the map-seeking circuit algorithm

illustrated in Figure 1. The memory in this test consists of a 3 dimensional surface normal model of one
of the objects presented in the image. The implementation uses L = 4 layers. These layers, in sequential
order along the forward pathway, comprise a full set (120 × 120) of translations in increments of one pixel
(n1 = 14, 400), a set of scalings spanning ratios from 0.7 to 1.4 times the linear dimensions of the input
image in steps of factor 1.025 (n2 = 29), rotations in the viewing plane from −30◦ to 30◦ by increments
of 1 degree (n3 = 61). In the fourth layer the forward transformations are line-of-view projections of the
2D space into the 3D space of the model and in the backward pathway orthographic 3D projections of the
model into 2D corresponding to all viewpoints from −90◦ to +90◦ in azimuth and 0◦ to 90◦ of elevation
in 5◦ degree increments (n4 = 703). The input image is converted into an edge filtered representation and
the data on the forward path remains in the 2D image domain until layer 4 where it is projected into the
3D model space in order to locate corresponding normals perpendicular to the projected line of view. On
the backward path the model normals perpendicular to each line of view are projected to form a collection
of edge rendered 2D views from different angles, and these form the superposition on the backward path.
Hidden edges are suppressed where normals are not perpendicular to the line of view. In this way, proximal
non-tangent surfaces suppress distal tangent surfaces which otherwise would have produced edges in the 2D
projection. The total number of transformations (n1 + n2 + n3 + n4) implemented are 15, 193. These in
composition (n1n2n3n4) comprise 1.79× 1010 possible aggregate transformations.

The circuit converges very quickly as can be seen in Figure 1, having found an approximate solution by
iteration 8 and fully converged by iteration 25.

3 Proof of the main result

The section is organized as follows. We first carefully define boundary subsets of ∆ and formulate a stronger
version of Theorem 2.1. In section 4.1 we characterize the fixed points of the map C and in section 4.2 we
find a Lyapunov function for the system. The key result of this section is Corollary 3.7, which shows that

all solutions either converge to a point (a1e
(1)
i1

, . . . , aLe
(L)
iL

) for some collection a` > 0, to a zero solution, or
to an internal fixed point. The sections 4.3 and 4.4 are devoted to an argument showing that for a generic
MSC the set of initial conditions that converge to internal fixed points is nowhere dense.

The set ∆ is a closed subset of IRn+ with a non-empty boundary. As the algorithm eliminates weights

x
(`)
i by setting them to zero, it enters the boundary of ∆, which we now describe. We define for each layer
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` a non-empty collection of integers ω(`) = (i1, . . . , iq(`)), q(`) ≥ 1, ij ∈ {1, . . . , n`}. For any such ω(`) we

denote by IRn`+
ω , the boundary part of IRn`+ consisting of vectors of the form (0, u1, 0, . . . , uq(`), 0), where

the nonzero elements are in positions i1, . . . , iq(`). We set

∆(`)
ω := IRn`+

ω ∩ ∆(`).

Similarly, for Ω = (ω(1), . . . , ω(L)) we denote IRn+
Ω the boundary part of IRn+ consisting of vectors of the form

(u(1), . . . ,u(L)) such that u(`) = (0, u
(`)
1 , 0, . . . , u

(`)
q(`), 0), where the nonzero elements of u(`) are in positions

specified by ω(`) = (i
(`)
1 , . . . , i

(`)
q(`)). We set

∆Ω := IRn+
Ω ∩ ∆ = ΠL

`=1∆
(`)
ω .

Let q =
∑L

`=1 q(`) be the total sum of nonzero components in IRn+
Ω . We define the set

Ξ := {Ω = (ω(1), . . . , ω(L)) | there are at least two layers `, r with |ω(`)| ≥ 2, |ω(r)| ≥ 2}. (14)

Note that the space IRn+
Ω with Ω 6∈ Ξ is a product of half-lines and at most one set isomorphic to the positive

cone of IR2. We now formulate an extension of Theorem 2.1

Theorem 3.1 Assume all assumptions of Theorem 2.1.
Then for a generic correspondence array {c(i1, . . . , iL)} there is an open and dense set G ⊂ ∆, which

is also open and dense in every boundary set ∆Ω for all Ω ∈ Ξ, with the following property. If ini-
tial condition x(0) ∈ G then iterations x(n) of (13) converge either to the zero vector or to a vector

(a1e
(1)
i1

, a2e
(2)
i2

, . . . , aLe
(L)
iL

), for some positive numbers a1, . . . , aL.

3.1 Fixed points of C

We start with a technical Lemma that provides the bridge between the MSC algorithm and the correspon-
dence function f in (5). Fix Ω ∈ Ξ and let LΩ and fΩ be restrictions of the functions L and f to the set
IRn+

Ω(q).

Lemma 3.2 ([9, 8]) The function LΩ is the gradient of the cost function fΩ

[L
(`)
Ω ]i(x

(1), . . . ,x(L)) = [∇(`)fΩ]i (15)

=
∑

i1∈ω1

. . .
∑

i`−1∈ω`−1

∑

i`+1∈ω`+1

. . .
∑

iL∈ωL

c(i1, . . . , i`−1, i, i`+1 . . . iL)x
(1)
i1

. . . x
(`−1)
i`−1

x
(`+1)
i`+1

. . . x
(L)
L

Further,
[

L
(`)
Ω (x)

]

i
> 0 if i ∈ ω(`) and

[

L
(`)
Ω (x)

]

i
= 0 if i 6∈ ω(`).

Proof. Differentiating (8) we obtain the components of the gradient:

∂f

∂x
(`)
i

= 〈T
(`)
i (I(`−1)), M (`)〉 = [L(`)]i(x

(1), . . . ,x(L)). (16)

Restriction to the subset Ω finishes the first result. To show the second part we observe that the right hand

side of (15) is positive since all x
(`)
i`

> 0 and the coefficients c(i1, . . . , iL) > 0. The result follows. �

Lemma 3.3 A point x ∈ IRn+
Ω , x 6= 0 is a fixed point of the map (13), if, and only if,

L(x) = (a11
(1)
ω , . . . , (a`1

(`)
ω , . . . , aL1(L)

ω ),

where 1
(`)
ω := e

(`)
i1

+ e
(`)
i2

+ . . . + e
(`)
iq

ij ∈ ω(`), be the vector of 1’s in all directions in ω(`).

In particular, every point of the form e = (a1e
(1)
i1

, a2e
(2)
i2

, . . . , aLe
(L)
iL

) for any positive constants ai, is a
fixed point of the map C.
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Proof. Take x ∈ IRn+
Ω with x 6= 0. Then x is a fixed point if it satisfies x = C(x, L(x)). From the form

of the competition functions C(`) follows that for all ` we must have L
(`)
i (x) = maxL(`)(x) =: K(`) for all i

where L
(`)
i (x) > 0. Thus L(`)(x) has the form above with a` = K(`).

To show the second part take Ω = (ω(1), . . . , ω(L)) and each ω(`) = {m`} contains exactly one element.

Then a nonzero x ∈ IRΩ has the form e = (a1e
(1)
i1

, . . . , aLe
(L)
iL

). Applying (15) to such e we get

[L
(`)
Ω ]i(e) = (Πi6=`ai)c(m1, . . . , mL) for i = m` and [L

(`)
Ω ]i(e) = 0 if i 6= m`.

Since for each ` the vector L
(`)
Ω has a single non-zero element, its maximum is achieved at such element and

K(`) = (Πi6=`ai)c(m1, . . . , mL). By the part one of this Lemma e is a fixed point of C. �

Lemma 3.4 Let u = C(x). Let ζ(`)(x) := {i |x
(`)
i 6= 0} be the set of indices of nonzero elements of x(`) and

let η(`)(x) := {i |C
(`)
i (x) 6= 0} be the set of indices of nonzero elements of C (`)(x). Then for all ` = 1, . . . , L

η(`)(x) ⊂ ζ(`)(x)

.

Proof. We will consider each part of the function C separately. Recall that K (`) = max L(`)(x). Fix `

and rewrite the i-th component of the function C(`) as

C
(`)
i (x(`), L(`)(x))) = max(0, x

(`)
i − κ(`)(1 −

[L(`)(x)]i
K(`)

))

=

{

0 if x
(`)
i ≤ κ(`)(1 − [L(`)(x)]i

K(`) )

x
(`)
i − κ(`)(1 − [L(`)(x)]i

K(`) ) if x
(`)
i ≥ κ(`)(1 − [L(`)(x)]i

K(`) )
. (17)

Assume that x
(`)
i = 0. Then κ(`)(1 − [L(`)(x)]i

K(`) ) ≥ 0, since K(`) = maxL(`)(x). Since x
(`)
i = 0, this implies

x
(`)
i ≤ κ(`)(1 − [L(`)(x)]i

K(`) ). Therefore by (17) we have u
(`)
i = C

(`)
i (x) = 0. �

We can rewrite the previous result as ζ(`)(Cx) ⊂ ζ(`)(x) which is equivalent to the statement x
(`)
i = 0

implies C
(`)
i (x) = 0 for all ` = 1, . . . , L. This yields the following Corollary.

Corollary 3.5 For any Ω the boundary set IRn+
Ω is positively invariant under the map C.

3.2 The Lyapunov function

The key result is a construction of a Lyapunov function [10, 11]. The following Lemma establishes that the

l1 norm |x| :=
∑n

`=1

∑n`

i`=1 x
(`)
i` of the vector x is a Lyapunov function for the map C.

Lemma 3.6 If u = (u(1), . . . ,u(L)) ∈ IRn+ then

1. |C(u, L(u))| ≤ |u|, where |v| =
∑

i vi denotes the sum of the elements of the vector v;

2. The previous inequality is strict, unless u is a fixed point of C.

Proof. Observe that by (17) the set η(`)(x) is the set of indices where x
(`)
i ≥ κ(`)(1 − [L(`)(x)]i

K(`) ).

We compute the sum of elements of the vector C(`)(x):

|C(`)(x(`), L(`)(x))| =
∑

i∈η(`)(x)

x
(`)
i − κ(`)(1 −

[L(`)(x)]i
K(`)

)

≤
∑

i∈η(`)(x)

x
(`)
i

≤
∑

i∈ζ(`)(x)

x
(`)
i

= |x(`)|.

8



Here the first inequality holds because the maximum of rescaled vector L(`)(x)
K(`) is 1. The second inequality

follows from Lemma 3.4. Since x is a concatenation of vectors x(`) and |x| = |x(1)|+. . . |x(`)| by the definition
of | · |, this proves the first part of the Lemma.

The equality |C(x, L(x)| = |x| happens when for all ` = 1, . . . , L, both of the inequalities above are in
fact equalities. For a fixed ` the equality |C(`)(x, L(`)(x))| = |x(`)| implies that, first, for all i ∈ η(`)(x(`)) we
have [L(`)(x)]i = K(`), and, second, that

ζ(`)(x) = η(`)(x).

Since this holds for every ` = 1, . . . , L, x is a fixed point of C by Lemma 3.3. �

Corollary 3.7 1. For all Ω the set ∆Ω is positively invariant (i.e. C(∆Ω) ⊂ ∆Ω) under the map (13).

2. There is an integer N such that for any initial condition x(0) ∈ ∆, the N -th iterate x(N) is either

(a) x(N) = 0; or

(b) x(N) = e = (a1e
(1)
i1

, . . . , aLe
(L)
iL

) for some collection of ai > 0; or

(c) the trajectory {x(k)}∞k=1 → u where L(u) = (a11
(1)
ω , . . . , aL1

(1)
ω ) is a fixed point with at least one

` with |ω(`)| ≥ 2.

Proof. The first statement is a corollary of Lemma 3.6 and Corollary 3.5.
To show the second part, observe that the number of nonzero components ζ (`)(x(k)) is a non-increasing

function of the iteration number k by Corollary 3.5. Since this function has also discrete set of values, it must
be eventually constant. Let N(x) be such that for all k ≥ N the number of nonzero components ζ (`)(x(k))
of x(k) is constant. Since N(x) depends continuously on x and ∆ is compact, there exists a uniform N valid
for all x ∈ ∆. If ζ(`)(x(N)) has a single component for all ` then by Corollary 3.5 x(N) = e, which satisfies
(b). It follows from the form of f (see 5) and Lemma 3.2 that if there is an ` such that |ζ (`)(x(N))| = 0 then
x(N) = 0.

Finally, assume there is an ` such that |ζ(`)(x(N))| = s ≥ 2 and |ζ(i)(x(N))| ≥ 1 for i 6= `. Then
by construction of the number N we have |ζ(`)(x(k))| = s for all k ≥ N . Since the Lyapunov function is
bounded below by zero, we must have that x(k) → u and |C(u, L(u)| = |u|. Further, by continuity we have
|ζ(`)(u)| = s ≥ 2. By Lemma 3.6.2 x(n) converges to a fixed point which by Lemma 3.3 has the advertised
form. �

3.3 The outline of the argument

In this brief section we outline the rest of the argument.
As a first step we precisely characterize the set of the internal fixed points Fix (see (21) below). Because

the correspondence function is multi-linear internal fixed points are not isolated. However we show in
Lemma 3.9) that set Fix is nowhere dense in each IRn+

Ω with Ω ∈ Ξ.
The next step is to show that the set of all points that converge to Fix is also nowhere dense. The main

obstacle is that the map C is not one-to-one: in the neighbourhood of the boundary it maps multiple points
to the same point on the boundary, see (17). Therefore we divide the argument into two parts, see Figure 3.
We first define the set WΩ which is the set of all points in a particular IRn+

Ω that converge to the internal
fixed points in the same IRn+

Ω . Restriction of C to such IRn+
Ω is invertible and we show that generically there

is an eigenvalue of the linearization at every internal fixed point with modulus larger then 1. Using the
stable manifold theory we conclude that WΩ is nowhere dense in IRn+

Ω (Lemma 3.10).
To start the second part of the argument we set

W :=
⋃

Ω∈Ξ

WΩ, (18)

be the collection of all stable manifolds WΩ of all internal fixed points u ∈ ∆Ω, and define for k = 1, 2, . . .

Xk := {x ∈ IRn+ | Ck(x) ∈ W} (19)

9



be the set of points which map after k iterates to some stable manifold of an internal fixed point. Here we
have to face the non-uniqueness of the map C since it collapses entire intervals in X1 onto points in W . In
spite of this we show in Theorem 3.14 that given an arbitrary nowhere dense set D in IRn+ the (generalized)
inverse C−1(D) is also nowhere dense IRn+.

In the final section 3.6 we use the Theorem 3.14 inductively to show that Xk is a nowhere dense set for
each k and thus the set

Uk := IRn+ \ Xk

is open and dense for each k. Therefore for N specified by Lemma 3.7 the set

G :=

N
⋂

k=1

UN ∩ ∆

is an open and dense set of initial conditions, which converge to either to 0 or to a vector e. This will
conclude the proof of Theorem 3.1

PSfrag replacements

WΩ

IRn+
Ω

X1

Figure 3: The function C is invertible on IRn+
Ω and the stable manifold WΩ can be constructed. On the

other hand C maps the dashed set onto WΩ in one iteration. This set is part of X1.

3.4 Internal fixed points and their stable sets

As a consequence of Corollary 3.7, to prove Theorem 2.1 we need to show that there is an open and dense
set W of initial conditions x(0), such that the iterations x(n) do not converge to a fixed point x satisfying
(c) of the Corollary 3.7. Then the proof of Theorem 2.1 will follow from Lemma 3.6 and Corollary 3.7.

The fixed points u of C which satisfy condition (c) above will be called internal fixed points, since there
must be at least one layer ` where u(`) is in the interior of ∆ω(`) . We now look more closely at these internal
fixed points. Recall that ω(`) = (i1, . . . , iq(`)), ij ∈ {1, . . . , n`} is a non-empty collection of integers and

Ω = (ω(1), . . . , ω(L)) is a collection of ω(`). Let

ZΩ := {x ∈ IRn+
Ω | x = (a11ω(1) , a21ω(2) , . . . , aL1ω(L)), a1, . . . , aL > 0}

and
BΩ = {x ∈ IRn+ | L(x) ∈ ZΩ}.

In view of Lemma 3.3, BΩ is the set of fixed points of C. The next Lemma justifies the definition of the
class Ξ of Ω’s (see 14), since only the boundary sets ∆Ω with Ω ∈ Ξ may contain internal fixed points.

Lemma 3.8 Assume that the collection c(i1, . . . , iL) has distinct elements. If Ω = (ω(1), . . . , ω(L)) has a
unique ω` such that |ω(`)| = 2 and |ω(i)| = 1 for all i 6= `, then BΩ = ∅.

10



Proof. By assumption there is a unique layer ` such that |ω(`)| = 2. Assume without loss that ω(`) =

{1, 2}. Since L(x) ∈ ZΩ implies L
(`)
1 (x) = a` = L

(`)
2 (x), by (15) we get

L
(`)
1 (x) = c(m1, m2, . . . , 1, . . . , mL)x(1)

m1
x(2)

m2
. . . x̂(`) . . . x(L)

mL

= c(m1, m2, . . . , 2, . . . , mL)x(1)
m1

x(2)
m2

. . . x̂(`) . . . x(L)
mL

= L
(`)
2 (x)

where notation x̂(`) indicates that there are no x
(`)
i in the expression. This implies c(m1, m2, . . . , 1, . . . , mL) =

c(m1, m2, . . . , 2, . . . , mL), contradicting our assumption. �

Let
Z :=

⋃

Ω∈Ξ

ZΩ, (20)

where the union is over the collection of all Ω ∈ Ξ. By Lemma 3.3 and Corollary 3.7 the set

Fix := {x ∈ IRn+ | L(x) ∈ Z} (21)

is the set of internal fixed points of the map C.

Lemma 3.9 If the collection c(i1, . . . , iL) has distinct elements, then the set Fix is closed and nowhere
dense in IRn+ and the intersection Fix ∩ IRn+

Ω is closed, nowhere dense subset of IRn+
Ω , for every Ω ∈ Ξ.

Proof. We first observe that since the function L is continuous and Z and IRn+
Ω are closed, the set

Fix ∩ IRn+
Ω is closed for each Ω.

We now prove the density of the complement of Fix in every IRn+
Ω with Ω ∈ Ξ . Fix Ω and assume,

contrary to our assertion, that there is an open set D ⊂ IRn+
Ω such that L(D) ⊂ Z. By definition of Z this

means that there exists Ω′ with Ω′ ∈ Ξ such that L(D) ⊂ ZΩ′ , that is, for all ` = 1, . . . , L,

L(`)(D) ⊂ Z
(`)

ω(`)′ .

Choose ` with |ω(`)′ | ≥ 2. Then there must exist two coordinates i, j ∈ {1, . . . , n`} such that

L
(`)
i (D) = L

(`)
j (D).

By (15) this is equivalent to

∑

ω(k) 6=ω(`)

c(i1, . . . , i, . . . , iL)x
(1)
i1

. . . x
(L)
iL

=
∑

ω(k) 6=ω(`)

c(i1, . . . , j, . . . , iL)x
(1)
i1

. . . x
(L)
iL

for all x ∈ D. Since D is open, we have c(i1, . . . , i, . . . , iL) = c(i1, . . . , j, . . . , iL) for all ik ∈ ω(k) with
ω(k) 6= ω(`). This contradicts our assumption and finishes the proof of the Lemma. �

Now we show that every internal fixed point x ∈ Fix is unstable, i.e. it has at least one eigenvalue with
modulus greater then 1. Notice, that since the function L has the form described in (15), it has the following
scaling property. If x = (x(1), . . . ,x(L)) and y = (b1x

(1), . . . , bLx(L)) then

L(`)(y) = (Πj 6=`bj) L(`)(x)

for all `. We call λ := (b1, . . . , bL), where all bj > 0, a multi-scaling factor and write y = λx. With this
notation, if x is an internal fixed point that satisfies L(x) = (a11ω(1) , . . . , aL1ω(L)) then

L(λx) = (a1(Πj 6=1bj)1ω(1) , . . . , aL(Πj 6=Lbj)1ω(L))

and hence it is again an internal fixed point. Let

ū := {v ∈ ∆ | v = λu for some multi-scaling factor λ}
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be the set of all fixed points related to u by scaling. We see that each internal fixed point belongs to an
L dimensional cone-like space of fixed points. Therefore a linearization at each internal fixed point has
eigenvalue 1 with a multiplicity at least L. However, for any Ω ∈ Ξ the set ∆Ω ⊂ IRn+

Ω has dimension
q ≥ L + 2. Therefore for a generic c(i1, . . . , iL) the set Fix ∩ IRn+

Ω should have codimension 2. The proof
of the next Lemma is based on the fact that for a generic collection {c(i1, . . . , iL)} there is always at least
one eigenvalue of the linearization of C at an internal fixed point with the modulus greater then 1, and one
eigenvalue with the modulus smaller then 1.

Lemma 3.10 There exists an open and dense set of coefficients c(i1, . . . , iL) such that for all Ω ∈ Ξ and all
internal fixed points u ∈ Fix ∩ IRn+

Ω , satisfying L(u) = (a11ω(1) , . . . , aL1ω(L)) with Ω = (ω(1), . . . , ω(L)), the
set

WΩ(ū) := {x ∈ IRn+
Ω | lim

k→∞
Ck(x) = λu for some λ} (22)

is closed and nowhere dense in ∆Ω.

Proof. Take a point u ∈ Fix with L(u) = (a11ω(1) , . . . , aL1ω(L)), set Ω = (ω(1), . . . , ω(L)), and assume a
sequence of iterates {x(n)}∞n=1 ∈ IRn+

Ω , x(k + 1) = C(x(k)) = Ck(x), converges to u. We assume without
loss of generality that Ω = (ω(1), . . . , ω(L)) where ω(`) = (1, 2, 3, . . . , q(`)) for all ` = 1, . . . , L. To each point
x(k) we can assign a collection α(k) = (m1(k), m2(k), . . . , mL(k)), m`(k) ∈ ω(`), with the property that

L
(`)
i (x(n)) has the maximal element L

(`)
m`

(x(n)). Since the number of distinct collections α is finite, there is
a subsequence x(kn) with kn → ∞ such that α(x(kn)) is constant. We rename the subsequence to be again
{x(k)}.

By Corollary 3.5 the space IRn+
Ω is positively invariant. Let CΩ : IRn+

Ω → IRn+
Ω be the restriction of the

map C to IRn+
Ω defined by

u
(`)
i := C

(`)
Ω,i(x) = X

(`)
i + κ(`)(

[L(`)(X)]i
K(`)

− 1),

where X := (X(1), . . . , X(L)), X(`) = (x
(`)
1 , . . . , x

(`)
q(`), 0, 0, . . . , 0), and K(`) is the maximal element of the

vector L(`)(x). Similarly, we will denote by L
(`)
Ω the restriction of L to IRn+

Ω .
Since x(n) → u the sequence of unit vectors

v(n) :=
C(x(n + 1)) − C(x(n))

|C(x(n + 1)) − C(x(n))|

converges to an eigenvector v of the derivative matrix dCΩ

dx
(u) with the corresponding eigenvalue with the

modulus less or equal to 1. The derivative matrix dCΩ

dx
(u) is a q × q matrix of the form I + A, where I is the

q × q identity matrix and A is a block matrix with l× l blocks, where (`, s)-block, ` = 1, . . . , L, s = 1, . . . , L,
has the size q(`) × q(s). The (i, t) element of the (`, s) block of A is

[A(u)]
(`),(s)
i,t =

κ(`)

(L
(`)
m`

)2

(

∂L
(`)
i

∂xs
t

L(`)
m`

−
∂L

(`)
m`

∂xs
t

L
(`)
i

)

, (23)

for all 1 ≤ i ≤ q(`) and 1 ≤ t ≤ q(s). Notice that this is well defined since the sequence of vectors L(`)(x(n))

has the same maximal element L
(`)
m`

(x(n)) for all `. By (15) each (`, `) block of the matrix A is zero. The

trace of I + A is therefore q =
∑L

`=1 q`, which is the sum of all eigenvalues. Since there are q eigenvalues,
either all eigenvalues are equal to 1, or there is a pair of eigenvalues λ1, λ2 with |λ1| > 1 and |λ2| < 1. Thus
all we need to show is that for all Ω ∈ Ξ, not all eigenvalues of dCΩ

dx
(x) are equal to 1. Assume to the contrary,

that all eigenvalues of I + A are equal to 1. Then by the Jordan normal form it follows that A is nilpotent,
i.e. there exists a power N such that AN is the zero matrix. For any Ω ∈ Ξ consider the corresponding
matrix A = AΩ(u), where we emphasize the dependence of the matrix A on both Ω and the internal fixed
point u. The proof of the Lemma will be complete if we prove the following claim, since it implies that the
matrix AΩ(u) is not nilpotent and thus not all eigenvalues of I + A are on the unit circle.

Claim 3.11 For an open and dense set of coefficients c(i1, . . . , iL) there is a nonzero diagonal element aii
Ω(u)

of the matrix A2
Ω(u).
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Before we prove the claim, observe that

1. each diagonal (`, `) block of AΩ is zero; and

2. for each ` the m(`)-th row is zero by the formula (23).

This second fact implies that for each ` with |ω`| = 1, all corresponding blocks (`, s) for all s are zero.
Observe, that this implies that I + A has at least L eigenvalues 1. These correspond to the directions along
the family of internal fixed points related by a multi-factor scaling. This opens a real possibility that the
matrix AΩ may be nilpotent. Define ĀΩ to be the matrix which has 1 in each position of A, that is different
then positions forced to be zero by (1) and (2) above. The following result shows that the form of the matrix
AΩ for Ω ∈ Ξ is compatible with AΩ being not nilpotent.

Claim 3.12 For all Ω ∈ Ξ, there is a diagonal element of the matrix Ā2 that is non-zero.

Proof. Since Ω ∈ Ξ, there are ` and s such that ω` and ωs have at least two elements. Recall that m`

denotes the index of the maximal element of L(`), that is

L(`)
m`

= max
i

L
(`)
i .

Take i 6= m` and j 6= ms and consider [āii
Ω](`),(`) the (i, i)-th element of the matrix Ā2 in the (`, `) block. Since

both the (i, j) element of the (`, s) block and the (j, i) element of the (s, `) block of Ā are 1, [āii
Ω](`),(`) 6= 0.

�

Proof of Claim 3.11 We consider the term [aii
Ω](`),(`) at the same position as the non-zero term [āii

Ω](`),(`)

in the previous Claim. To simplify notation we will use aii
Ω to denote this term. We start with a formula for

aii
Ω which follows from (23):

aii
Ω(u) =

∑

s,t

κ(`)

(L
(`)
m`

)2

κ(s)

(L
(s)
ms)

2

(

∂L
(`)
i

∂xs
t

L(`)
m`

−
∂L

(`)
m`

∂xs
t

L
(`)
i

)(

∂L
(s)
t

∂x`
i

L(s)
ms

−
∂L

(s)
ms

∂x`
i

L
(s)
t

)

=
∑

s6=`,t

κ(`)κ(s)

L
(`)
m`L

(s)
ms

(

∂L
(`)
i

∂xs
t

−
∂L

(`)
m`

∂xs
t

)(

∂L
(s)
t

∂x`
i

−
∂L

(s)
ms

∂x`
i

)

(24)

where the second equality follows from the assumption that L(u) = (a11ω(1) , . . . , aL1ω(L)) and thus L
(`)
m` =

L
(`)
i and L

(s)
m`

= L
(s)
i , whenever these values are nonzero. We compute the functions in (24) using (15)

L(`)
m`

(x) =
∑

ω(j) 6=ω(`)

c(i1, . . . , i`−1, m`, i`+1 . . . iL)x
(1)
i1

. . . x̂(`) . . . x
(L)
iL

(25)

∂L
(`)
i

∂xs
t

(x) =
∑

ω(j) 6={ω(`),ω(s)}

c(i1, . . . , i`−1, i, i`+1, . . . , is−1, t, is+1, . . . , iL)x
(1)
i1

. . . x̂(`)x̂(s) . . . x
(L)
iL

,

L
(`)
i (x) =

∑

ω(j) 6=ω(`)

c(i1, . . . , i`−1, i, i`+1 . . . iL)x
(1)
i1

. . . x̂(`) . . . x
(L)
iL

,

∂L
(`)
m`

∂xs
t

(x) =
∑

ω(j) 6={ω(`),ω(s)}

c(i1, . . . , i`−1, m`, i`+1 . . . is−1, t, is+1 . . . iL)x
(1)
i1

. . . x̂(`)x̂(s) . . . x
(L)
iL

where we use notation x̂(`) to denote the fact that the variables x(`) are missing in a given expression.
We multiply all elements c(i1, . . . , c`, . . . , iL) with c` 6= m` by a constant b and observe how the function

aii
Ω(u, b) behaves under such scaling. Since aii

Ω(u, b) is an analytic function of b, it is either identically zero,
or, except for a finite number of exceptional values of b, we have aii

Ω(u, b) 6= 0. Observe that the functions
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L
(`)
m` and

∂L(`)
m`

∂x
s
t

do not contain c(i1, . . . , c`, . . . , iL) with c` 6= m`. On the other hand every summand in

functions L
(s)
ms ,

∂L
(s)
t

∂x
`
i

and
∂L(s)

ms

∂x
`
i

is being scaled by b. We write (24) as

aii
Ω(u, b) =

∑

s6=`,t

κ(`)κ(s)







∂L
(`)
i

∂xs
t

−
∂L(`)

m`

∂xs
t

L
(`)
m`













∂L
(s)
t

∂x`
i

−
∂L(s)

ms

∂x`
i

L
(s)
ms






.

Under the above scaling, the second term remains unchanged since both the numerator and the denominator
are scaled by b, while in the first term only one term in the numerator is scaled

b
∂L

(`)
i

∂xs
t

−
∂L

(`)

m`)

∂xs
t

L
(`)
m`

.

Since
∂L

(`)
i

∂xs
t

6= 0 by the same argument as in Lemma 3.2, for b >> 1 we get that aii
Ω(u, b) 6= 0. Therefore there

is an open and dense set of values of b for which for which aii
Ω(u, b) 6= 0. Since the function L is multi-linear,

we also have aii
Ω(λu, b) 6= 0 for any multi-scaling factor λ and the same b. Furthermore by continuity and

for a fixed b, there is an open set of y in a neighbourhood N(u) of u such that aii
Ω(y, b) 6= 0. Since ∆Ω is

compact, there is a finite cover by such neighbourhoods and thus there is an open and dense set VΩ of b such
that if b ∈ VΩ then aii

Ω(u, b) 6= 0 for all u internal fixed points in ∆Ω. If we repeat the same argument for all
Ω ∈ Ξ we get a set

V :=
⋂

Ω∈Ξ

VΩ

with the property that if {c(i1, . . . , iL)} ∈ V then aii
Ω(u, b) 6= 0 for all Ω ∈ Ξ and all internal fixed points

u ∈ ∆Ω. Since the collection Ξ is finite, the set V is open and dense. �

The Claim 3.11 implies that the matrix AΩ(u) is not nilpotent and thus not all eigenvalues of I + A are
equal to 1 for all c(i1, . . . , iL) in an open and dense set U . This finishes the proof of Lemma 3.10. �

3.5 The competition map C(x) and its inverse

As outlined in the section 3.3 the next step is to show that the sets Xk (see (19)) are nowhere dense. The
major problem is that the map C is not one-to-one: in the neighbourhood of the boundary it maps multiple
points to the same point on the boundary, see (17). Thus we need to closely investigate the map C(x) and
its inverse.

We first investigate the inverse of the map C on IRn+
Ω . We assume without loss of generality that

Ω = (ω(1), . . . , ω(L)) where ω(`) = (1, 2, 3, . . . , q(`)) for all ` = 1, . . . , L. We fix u = (u(1), . . . ,uL) ∈ IRn+
Ω ,

where u(`) = (u
(`)
1 , . . . , u

(`)
q(`), 0, . . . , 0) with u

(`)
i > 0. In order to solve for (the set of) x such that u = C(x)

we have to solve

u
(`)
i = x

(`)
i − κ(`)(1 −

[L(`)(x)]i
K(`)

) for i = 1, . . . , q(`)

0 ≥ x
(`)
i − κ(`)(1 −

[L(`)(x)]i
K(`)

) for i = q(`) + 1, . . . , n`

for all ` = 1, . . . , L. This can be rewritten

u
(`)
i + κ(`) = x

(`)
i +

κ(`)

K(`)
[L(`)(x)]i for i = 1, . . . , q(`) (26)

κ(`) ≥ x
(`)
i +

κ(`)

K(`)
[L(`)(x)]i for i = q(`) + 1, . . . , n`
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The second set of equations in (26) demonstrate clearly that the map C(x) is not one-to-one. If the first set
of the equations in (26) can be inverted by

x(`) = ϕ
(`)
Ω (u(`)) for all ` = 1, . . . , L,

then all solutions of (26) lie in the set

S(u) = {y ∈ IRn+ | y
(`)
i = ϕ

(`)
Ω (u(`)) for i ∈ ω(`),y

(`)
i ≤ κ(`) for i 6∈ ω(`)}. (27)

The key observation is that if u ∈ D, an arbitrary set that is nowhere dense in IRn+
Ω for all Ω ∈ Ξ, then the

set
S(D) :=

⋃

u∈D

S(u) (28)

is also nowhere dense in IRn+
Ω for all Ω ∈ Ξ.

To show this we first turn our attention to invertibility of the first set of equations in (26)

u
(`)
i + κ(`) = x

(`)
i +

κ(`)

K(`)
[L(`)(x)]i for i = 1, . . . , q(`), ` = 1, . . . , L. (29)

We note that in (29) the expression L(`)(x) involves x
(`)
q(`)+1, . . . , x

(L)
nL . If we restrict our search to x ∈ IRn+

Ω ,

i.e. to those x with x
(`)
i = 0 for all i > q(`), then the set of equations (29) defines a function

CΩ : IRn+
Ω → IRn+

Ω (30)

by

u
(`)
i := C

(`)
Ω,i(x) = X

(`)
i + κ(`)(

[L(`)(X)]i
K(`)

− 1),

where X := (X(1), . . . , X(L)) and X(`) = (x
(`)
1 , . . . , x

(`)
q(`), 0, 0, . . . , 0).

Lemma 3.13 If κ(`) ≤
c2

min

c2
max

for all `, then the maps CΩ(x) are invertible as functions from IRn+
Ω to IRn+

Ω

for all Ω ∈ Ξ.

Proof. We fix Ω ∈ Ξ. We have computed the derivative matrix dCΩ

dx
(x) in (23) and its components in

(25). Since all values of x
(`)
i`

≤ 1 we can estimate

[A(x)]`,si,t ≤ κ(`) c
2
max

c2
min

≤ 1.

Therefore

det(
dCΩ

dx
(x)) = det(I + A(x)) 6= 0.

�

Let ϕΩ : IRn+
Ω → IRn+

Ω denote the inverse of CΩ. The following Theorem addresses the non-uniqueness
of the inverse to C(x).

Theorem 3.14 Let D ⊂ IRn+ be a nowhere dense closed set in IRn+
Ω such that D ∩ IRn+

Ω is nowhere dense
and closed in IRn+

Ω for all Ω ∈ Ξ. Then the set

C−1(D) := {x ∈ IRn+ | C(x) ∈ D}

is nowhere dense and closed in IRn+ and C−1(D)∩ IRn+
Ω is nowhere dense and closed in IRn+

Ω for all Ω ∈ Ξ.
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Proof. Observe that the set C−1(D) =
⋃

u∈D S(u) (compare (28), where S(u) has the form (27). There-

fore C−1(D) is homotopic to ϕΩ(D) × ΠL
`=1[0, κ(`)]. Since ϕΩ is a continuous function and D is closed,

C−1(D) is closed. Now IRn+
Ω is closed for every Ω and so C−1(D) is closed in IRn+

Ω .
Now we show that the complement of C−1(D) in IRn+

Ω is dense in IRn+
Ω . Select an arbitrary point

x0 ∈ C−1(D) in IRn+
Ω for some Ω. We allow Ω = (ω1, . . . , ωl) with ω(`) = {1, . . . , n`} for all m, in which

case all components of x0 are nonzero. Take an ε-neighbourhood Nε ⊂ IRn+
Ω of x0. To show that C−1(D) is

nowhere dense in IRn+
Ω we need to find a point x ∈ Nε which does not belong to C−1(D). Since we restrict

to x ∈ IRn+
Ω we have

C−1(D) ∩ IRn+
Ω = ϕΩ(D).

Take y ∈ ϕΩ(D) ∩ Nε and choose δ such that a Nδ neighbourhood of y lies in Nε. Since ϕΩ is a C1

function with non-singular derivative at z := C(y) by the Inverse Mapping Theorem, ϕ−1
Ω (Nδ) is an open

neighbourhood of the point z := C(y), z ∈ D. Since D is nowhere dense in IRn+
Ω , there is a point w ∈ IRn+

Ω

in this image with w 6∈ D. Then there is x := ϕΩ(w) ∈ Nδ ⊂ Nε for which we have x 6∈ C−1
Ω (D)∩Nε. Since

ε was arbitrary, the complement of C−1
Ω (D) is dense in IRn+

Ω .
If Ω ⊂ Ω′ and C−1(D) is nowhere dense in IRn+

Ω then clearly C−1(D) is nowhere dense in IRn+
Ω′ .

�

3.6 Proof of Theorem 3.1.

Recall from (19) that
Xi := {x ∈ IRn+ | Ck(x) ∈ W}, k = 1, 2, . . .

and from (18) that W =
⋃

Ω∈Ξ WΩ is the set of points that converge to a set of internal fixed points Fix.

By Lemma 3.10 the set W is closed and nowhere dense in IRn+ and W ∩ IRn+
Ω is nowhere dense closed

in IRn+
Ω for all Ω ∈ Ξ.

By Theorem 3.14 with D := W the set X1 is also a closed and nowhere dense set in IRn+ such that
X1 ∩ IRn+

Ω is nowhere dense closed in IRn+
Ω for Ω ∈ Ξ.

We proceed by induction on iteration step k, where Theorem 3.14 provides the induction step. Assume
Xk is closed and nowhere dense set in IRn+ such that Xk ∩ IRn+

Ω is nowhere dense closed in IRn+
Ω for Ω ∈ Ξ.

Then by Theorem 3.14 Xk+1 is closed and nowhere dense in IRn+, and Xk+1 ∩ IRn+
Ω is closed and nowhere

dense for all Ω ∈ Ξ.
By induction we conclude that Xk is closed and nowhere dense in IRn+ and Xk ∩ IRn+

Ω is closed and
nowhere dense in IRn+

Ω for all Ω ∈ Ξ. Therefore the set Uk = IRn+ \ Xk is open and dense for all k. The

set G =
⋂N

k=1 UN ∩ ∆ where N is selected by Lemma 3.7 is an open and dense set in ∆ and G ∩ ∆Ω is
open and dense in in ∆Ω for any Ω ∈ Ξ. The set G represents a set of initial conditions whose iterations
will never enter the set W , and therefore do not converge to any fixed point in the set of internal fixed
points Fix. By Lemma 3.7 the corresponding trajectory then converges to either 0 vector or to a vector

e = (a1e
(1)
i1

, . . . , aLe
(L)
iL

) for some positive collection of ai and for some choice of vectors e
(`)
i`

.
�

4 Discussion

The main result of this paper shows that for a generic correspondence array c(i1, . . . , iL) there is an open

and dense set G of initial gating constants x
(`)
i`

such the map-seeking circuit always converge to a either a

zero solution (i.e. x
(`)
i`

= 0 for all layers ` and all mappings i`) or it converges to a solution where on each

layer ` there exists precisely one weight x
(`)
i`

which is nonzero and all other weights are equal to zero. The
first result is interpreted as ”no match found”, while the second implies that circuit finds unique composition
map

T = T
(L)
iL

◦ . . . ◦ T
(`)
i`

◦ . . . ◦ T
(1)
i1

.
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This confirms numerical observations of the behavior of the algorithm. Our result is independent of
the choice of mappings and of input and reference images or models. In practice thresholds or sigmoid-like
non-linearities are used to separate what is considered to be a useful match from what is not. This is a
problem encountered in all recognition problems and is independent of the algorithm used to discover the
transformations that map the input image to the model or memory template. In real vision problems part
of the target is often occluded so the matching threshold must be set to accommodate the fact that only
part of the template is matched. On the other hand, the threshold cannot be set so low that trivial matches
(e.g. random straight lines in the input image) will be judged a successful match. From the discussion
above it is apparent that the MSC algorithm will find the best match in the image, so that even with low
thresholds trivial matches will only be reported if a more substantial potential match is absent anywhere in
the image. In difficult problems which include high degrees of occlusion, either by solid or scattered (e.g.
foliage) occluders it is necessary to use sophisticated, non-linear criteria to distinguish between meaningful
and non-meaningful matches when the thresholds are low and low correlation matches are encountered [6].
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