A class of convergent neural network dynamics

Bernold Fiedler
Institut fiir Mathematik I,
Freie Universtat Berlin
Arnimallee 2-6, D-14195 Berlin, Germany
fiedler@math.fu-berlin.de

Tomés Gedeon*
Department of Mathematical Sciences
Montana State University
Bozeman, MT 59717-0240, USA
gedeon@poincare.math.montana.edu

July 1, 1997

Abstract

We consider a class of systems of differential equations in R"™ which exhibits conver-
gent dynamics. We find a Lyapunov function and show that every bounded trajectory
converges to the set of equilibria. Our result generalizes the results of Cohen and
Grossberg [1] for convergent neural networks. It replaces the symmetry assumption
on the matrix of weights by the assumption on the structure of the connections in the
neural network.

We prove the convergence result also for a large class of Lotka-Volterra systems.
These are naturally defined on the closed positive orthant. We show that there are
no heteroclinic cycles on the boundary of the positive orthant for the systems in this
class.
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1 Results

In this paper we shall prove a convergence theorem for a class of n -dimensional systems of
differential equations of the form

@y = ai(x) (vizi) = D By fi(x;)) (1)
j=1
where x = (z1,...,x,). Without loss of generality we put 3; = 0. Before we spell out

assumptions which we put on the system, we mention several applications.

Systems of type (1) can be considered as a model neural network consisting of n neurons.
Each x; represents an activation level of the corresponding neuron. The stable equilibria of
the system (1) represent stored memory. The trajectories, starting sufficiently close to an
asymptotically stable equilibrium of (1), will converge to that equilibrium. From the point of
view of a neural networks this models retrieval of a stored memory pattern upon presentation
of a partial, corrupted pattern and preservation of this pattern in short term memory. This
interpretation then leads to applications of systems (1) to parallel memory storage, content-
addressable memory and global pattern formation. Models of short term memory and global
pattern formation using systems of type (1) goes back to work of Grossberg [5, 7]. These
papers focus on proving general convergence theorems for certain classes of additive neural
networks. Indeed, when trying to design a system which could serve as a memory storage,
the fundamental question is whether the dynamics of the system is convergent or at least
quasi-convergent (Hirsch [8]). The system is convergent, if every trajectory of the system
converges to an equilibrium. The system is quasi-convergent, if every trajectory of the system
converges at least to the set of equilibria. Only after this question has been resolved one
can actually try to design the system so that the equilibria are at the desired places, or,
using again neural networks terminology, to design a system, which stores desired memory
patterns.

Convergence theorems were proved for various generalizations of additive neural networks
by Grossberg [2, 3, 4] and for a system analogous to system (1) by Cohen and Grossberg [1].
Since we want to compare their assumptions with ours we list their assumptions below. They
have assumed that

e the function a;(x) is a function of z; only, and a;(z;) > 0 for z; > 0
e the matrix B = [fJ;;] is symmetric and nonnegative

of; ,
° %]%ZOforallj.

Under these assumptions they constructed a Lyapunov function for the system (1) in
the positive orthant R™" and proved quasi-convergence; each trajectory starting in R™"
converges to the set of equilibria in R"™.

Systems of type (1) also arise in the context of mathematical biology. There z; represents
population size of a certain species. In this context, we say that the system (1) is cooperative
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if for any @ # j, B;; > 0 and competitive if for all ¢ # j, 3;; < 0. We note that the generalized
Lotka-Volterra equations,

& = wi(ci = 3 Big f(5)) (2)
j=1
where ¢; and (3;; are constants, fall within the class of systems (1).

We now state the assumptions and our main result. We assume that the functions f;(z;)
are strictly monotone

g_g; > 0 for all j. (H1)

and the functions a; are nonnegative,
a;(x) >0 for all x € R™ and all s. (H2)

The third assumption will address the structure of the neural network described by (1).
Observe that if 3;; = 0 then the neuron j does not effect the activity of the neuron 7. Thus
there is no connection from the neuron j to the neuron 7. Let T be the undirected graph
with n vertices, where the vertex j is joined to the vertex ¢ by the edge e;; if, and only if,
Bij # 0. We assume that

BiiBji > 0 (H3)

for every edge e;;. Therefore the definition of the graph T makes sense. Note that to every
edge e;; of the graph T there are two associated numbers, 3;; and 8;;. A cycle C in the graph

T is a collection of edges €;,4,, €iyis, - - - » €ipi; With & > 3. Observe, that a pair e;,;,, €;,;, does
not form a cycle. We assume that along every cycle C
HeBi; = e Bji, (H4)

where II denotes the product.
The main Theorem of this paper is

Theorem 1.1 Consider system (1) with assumptions (H1-Hj). Then there exists a Lya-
punov function V : R"™ — R, non-increasing along the trajectories and strictly decreasing
along all non-equilibrium trajectories of (1).

Observe that our assumption (H2) relaxes the first assumption of Cohen and Gross-
berg. We do not need to assume that the functions f; are positive and we do not need the
competitiveness assumption 3;; > 0.

The crucial difference in our approaches is the replacement of the symmetry hypothesis
on the matrix of weights B. This hypothesis has its roots in the paper of Cohen and
Grossberg [1] (see also Hopfield [9, 10]), and considerable effort was spent trying to remove
or weaken this hypothesis. That this hypothesis cannot be removed completely is known for
some time. Consider the May and Leonard [11] model of the voting paradox

ii?l = .Il(l — 1 — ATy — b.’L‘g)
j?z = .Tg(l — b.Tg — T9 — a.’L'g)
j?g = .T3(1 — ary — b.TQ - .1‘3). (3)
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Grossberg [6] and Schuster et al [12] considered the case b > 1 > a and a +b > 0. They
proved that all positive trajectories, except the uniform trajectories z1(0) = z5(0) = x3(0),
persistently oscillate as t — co. Observe that the matrix of coefficients

1 b
b a
a 1

SN =R

can be chosen arbitrarily close to a symmetric matrix and still exhibits persistent oscillations.
Therefore a Lyapunov function in the sense of Theorem 1.1 cannot exist for this system.

We replace the symmetry assumption by assumptions (H3) and (H4). These two are
obviously satisfied if the matrix B is symmetric. Observe that in the system (3) the condition
(H4) is not satisfied; along the cycle ejs, €23, €31 we have

Br2B23 031 = a® e b = 21832813

Observe that the assumption (H4) is always satisfied in the absence of cycles, i.e. when
the graph T is a tree.

Corollary 1.2 Consider system (1) where the graph of connections Y is a tree. Assume
(H1), (H2) and (H3). Then the conclusion of Theorem 1.1 holds.

In order to show that the system is quasi-convergent we need to show that forward
trajectories are bounded. To this end, a natural assumption is the dissipativeness assumption

all trajectories eventually enter a positively invariant bounded set B. (D)

Remark 1.3 Dissipativness is guaranteed, for example, by the following set of assumptions:
Assume that all f; are bounded, a;(x) > 0 for sufficiently large |x| and ~;(z;)z; = —o0
for |z;| — oo. It is easy to see that under these assumptions #;z; < 0, for every i, if |z;| is
sufficiently large.
We also remark that in the context of neural networks it is customary to assume that
the functions f; are bounded.

Corollary 1.4 Consider system (1) with (H1-H4) and (D). Then the system (1) is quasi-
convergent: every trajectory converges to the set of equilibria. If the set of equilibria is finite,
then the system is convergent.

This result has an interesting consequence for Lotka-Volterra systems. Since in this case
the physically meaningful region of the phase space is the nonnegative orthant O := {x €
R™ | z; > 0} the assumption (H2) is automatically satisfied in O.

Corollary 1.5 Consider Lotka-Volterra system (2) on the closed positive orthant O with the
graph L of interactions being a tree. Assume (H1) and (H3). Then all bounded trajectories

converge to the set of equilibria. Moreover, heteroclinic cycles are excluded, even on the
boundary of O.



Remark 1.6 Observe, that every boundary face of the positive orthant O is invariant under
the flow of (2), and the system, restricted to this face, splits into subsystems of type (2).
This idea can be used to show that if there are no nontrivial recurrent sets in the interior of
the first orthant, then there are no nontrivial recurrent sets in the interior of any face and
subface of the boundary 9dO. This, however, does not preclude the existence of heteroclinic
cycles on the boundary. Freedman and Smith [13] studied this problem in a more general
setting of tridiagonal systems of differential equations. Using a discrete Lyapunov function
there were able to show that there is no nontrivial reccurent set in the interior of the positive
orthant and, consequently, in the interior of any face and subface of its boundary. However,
they could not exclude heteroclinic cycles on the boundary. Although Corollary 1.5 does not
cover all tridiagonal systems, we can prove (see Fiedler and Gedeon [14]), using a different
Lyapunov function, that heteroclinic cycles on the boundary cannot exist in tridiagonal
systems.

To see that assumption (H3) is sharp, consider a two dimensional predator-prey Lotka-
Volterra model

.’tl = IL'1(]. — .’Eg)

Ty = xo(—1+ ).
This system satisfies (H1) and the graph of interactions is a tree. The condition (H3) is not
satisfied and, as is well known (see for instance Hale and Kocak [15]), all solutions starting
in the interior of the positive orthant are periodic. So, we must assume that the pairwise

interactions are not of the predator-prey type, if oscillations in Lotka-Volterra are to be
excluded.

2 Proofs

Proof of Theorem 1.1 We start with a preliminary construction.
Since (3;;6;; > 0, by assumption (H3), the ratio 3;;/0;; can be written as

Bij/ Bji = exp(vi — vj) (4)

for some v; and v;. In fact, we can choose v; arbitrarily and then use the equation (4) to
compute v;. For every pair (¢,j) with e;; € T we have one equation of the type (4). In
order to be able to solve the system of all such equations consistently we need a consistency
condition. It is easy to see that the only obstruction comes from compatibility along the
cycles in the graph Y. If C' is a cycle with vertices iy, ..., % then

exp(vi, — Vi,) exp(vi, — i) - .. exp(v;, — v4,) = 1.
In terms of 3;;, this condition reads
e/ B = 1,

which is assumption (H4). Thus, if (H4) is satisfied, then the system of equations (4) can
be solved for v;, 2 = 1,...,n, with one of the v; being chosen arbitrarily.



Having solved for v;, we define

si = exp(—v;) (5)
df;
b= s [ (GGG ©
1 1
qi; = isiﬂij: qji ‘= isjﬂji (7)

for every pair (i,7). Observe, that

Bij si
qA. q—< _—
’L]/ J ﬂji 8j
= exp(v; — v;)exp(—vi)exp(v;) = 1,
for i # j, and so ¢;; = ¢;; for all edges e;;. Therefore the matrix @ := [g¢;;] is symmetric.

However, there is no change of variables known to us which would change the system (1)
with weight matrix B into the system with the weight matrix () - thus in effect symmetrizing
the matrix B.

Finally, we define the function V : R® - R

V(x) = i(bmi) - 2 G (@) f3(27)). ®)

In order to prove that V' is a Lyapunov function we need to show that it is non-increasing
along all trajectories, and strictly decreasing along all non-equilibrium trajectories of system
(1).

We calculate the derivative of V, abbreviating f/ = g’;", to simplify notation.

dbi ) " , . y .
& — Y qii (fi fi(z5) @i + [ fiw)2;))
j=1

Vo= - Z.
1d$i

'MS

k3

(sifivits — Y (i fi f5(x5) T + qie fi f5(25)20)) = (%)

=1

|
M:

<.
Il
—

since, by rearranging the summations,

n n n n
ZZ zgf f] X xz"'%]f fz xz ZZQij f] €Z; Zz"‘q]zf f](xj)
i=1j=1 i=1j=1

We continue our computation

(1) = —z";(sz-f;ozi(%—iW%"‘fj(mj))

j=1 i

n

n 2 i
= —Yiflnti- 3 %fj(mj))

jlZ

= = sifiai(x)[y — Zﬂmfﬂ )
=1

j=1



where we used equations (1) and that ;; = 2¢;;/s;. To finish the computation we observe
that s; are positive constants, f; > 0 by the assumption (H1), and a@;(x) > 0 by assumption
(H2). Thus

vV <o.

Since s, f! is strictly positive, V = 0 if, and only if,

ai(x)[vi — Y Bijfi(z;)]? =0

JEN;

for every 7. This is equivalent to

ai(x)(vi — Y Bijfi(z;)) =0

JEN;

for every i and, consequently, #; = 0 for all i. Hence V(z) = 0 if, and only if, & is an
equilibrium. This finishes the proof of Theorem 1.1. O

Proof of Corollary 1.4 If we assume that the system is dissipative, which is the assumption
(D), then all trajectories eventually enter a positively invariant bounded set B. Hence all
forward trajectories are bounded.

By LaSalle’s invariance principle (see [15]), the omega limit set of the set of bounded
trajectories is a subset of the set {z € R”\V = 0}. Since the latter set is the set of equilibria
by Theorem 1.1, the Corollary is proved. O

Proof of Corollary 1.5 On the closed positive orthant O the assumption (H2) is satisfied
automatically. The graph of interactions Y is a tree and there is a Lyapunov function V on
the closed positive orthant by Corollary 1.2. Thus every bounded trajectory converges to the
set of equilibria. Since the Lyapunov function is defined also on the boundary of the positive
orthant we can exclude the existence of the heteroclinic cycles on the boundary. This proves
the Corollary. O
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