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Topological Horseshoes of Traveling Waves for a
Fast–Slow Predator–Prey System
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We show the existence of a set of periodic traveling waves in a system of
two scalar reaction diffusion equations, which is in one-to-one correspon-
dence with a full shift on two symbols. We use a novel combination of rig-
orous numerical computations and the topological techniques of the Conley
index theory. This approach is quite general, and this paper is intended as a
demonstration of its usefulness and applicability.
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1. INTRODUCTION

Nonlinear problems with two different time scales are often modeled
by singularly perturbed ODEs called fast–slow systems, which can dis-
play interesting phenomena including periodic, heteroclinic or chaotic
dynamics. Analytic and geometric methods have been successfully applied
to study dynamics in fast–slow systems, provided certain properties are
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known, such as the basic structure of the fast and slow subsystems,
hyperbolicity, and transversality of relevant invariant manifolds, etc (see
[6] for a survey of geometric singular perturbation theory). In practice,
however, it is not always possible to verify these crucial properties by ana-
lytical methods.

In [5] a purely topological approach to fast–slow systems was
developed. These techniques allow for the proof of existence of periodic, het-
eroclinic, and chaotic solutions. Unfortunately the level of abstraction easily
obscures the essential topological ideas underlying the method. Therefore in
this paper, we formulate concrete geometric hypotheses, which can be rig-
orously verified using existing numerical methods. Although in Section 2 a
brief review is provided, the expectation is that the reader is familiar with
concepts developed in [5].

The particular example considered in this paper is motivated by the
work of Gardner and Smoller [4] on the existence of periodic traveling
waves for a system of reaction diffusion equations of the form

εut = ε2uxx +uf (u, v),
vt = vxx +vg(u, v), (1.1)

where u and v are population densities of a prey and a predator spe-
cies and ε > 0 is small. They also assume that ∂f /∂v < 0, ∂g/∂u> 0, and
that the zero sets of f and g are as indicated in Figure 1. Choosing the
traveling wave coordinate ξ = (x − θt)/ε, the system (1.1) reduces to the
fast–slow system

(a) (b)

Figure 1. (a) General shape of the zero sets for the functions f and g in [4]. (b) Zero sets
for the particular problem (1.3) considered in this paper. The v-axis and the right branch of
f =0 are branches of the slow manifolds M1 and M2, respectively.
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u̇ = w,

ẇ = −θw−uf (u, v),
v̇ = εz,

ż = −ε(θz+vg(u, v)),
(1.2)

where the derivatives are taken with respect to ξ .
Under the above, fairly general hypotheses on f and g and using

the Conley index, Gardner and Smoller proved the existence of a periodic
solution to (1.2) for ε>0, but sufficiently small. In this paper, we consider
a simplification of this problem, but using more sophisticated index tech-
niques developed in [5] we prove the existence of not only periodic orbits
but also a set of infinitely many bounded trajectories, which are encoded
by symbolic sequences. In particular, we define

f (u, v) := (1−u)(u−v),
g(u, v) := au−b−v (1.3)

and set θ =±0.25, a=1.65, and b=0.25. Our justification for considering
this simplified set of equations is that it provides us with an easily under-
stood system in which to demonstrate that these new index techniques can
be combined in a straightforward manner with computational techniques
to provide rigorous results about the dynamics of systems with two time
scales. With regard to the methods, to a large extent the particular choices
of θ , a, and b are arbitrary, though obviously the particular form of the
dynamics depends on these parameters.

Theorem 1.1. Consider (1.1) for the particular choice of nonlineari-
ties (1.3), where a = 1.65, and b= 0.25. For ε > 0 sufficiently small there
exist two periodic traveling wave solutions with wave speed θ=−0.25 whose
profiles with respect to the v-variable are indicated in Figure 2.

Theorem 1.2. Consider (1.1) for the particular choice of nonlinearities
(1.3), where a= 1.65, and b= 0.25. For ε > 0 sufficiently small there exist
two periodic traveling wave solutions with wave speed θ=0.25 whose profiles
with respect to the v-variable are indicated in Figure 3.

In what follows, we only discuss the case θ = −0.25. All the com-
putations for θ = 0.25 have been performed and show that this case can
be treated in a similar manner. The proof of Theorem 1.1 is provided in
Sections 3 and 4. In particular, in Section 3 we consider the fast system,
which is obtained by setting ε=0,

u̇=w,
ẇ=−θw−u(1−u)(u−v). (1.4)
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Figure 2. (Color online) Plot of the two primitive periodic solutions to (1.2) for the partic-
ular choice of nonlinearities (1.3) with θ =−0.25, a=1.65, and b=0.25.
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Figure 3. (Color online) Plot of the two primitive periodic solutions to (1.2) for the partic-
ular choice of nonlinearities (1.3) with θ =0.25, a=1.65, and b=0.25.

We use numerical methods to find an isolating block for this sys-
tem and to obtain bounds on the unstable manifolds of an equilibrium at
different values of v.7 As Theorem 3.1 indicates this is sufficient informa-
tion to compute the associated topological transition matrix.

In Section 4, we consider the slow system, which is obtained by rescal-
ing time and restricting to the slow manifolds defined by u=0 or u=1,

v′ = z,
z′ =−θz−v(au−b−v), u∈{0,1}. (1.5)

7In principle, for this particular problem this set could be obtained analytically. However
an important goal of this paper is to demonstrate that currently available numerical meth-
ods can be combined with the topological tools of Gedeon et al. [5] to prove results for
these two-time scale problems.
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In this case, we use numerics to obtain bounds for finite time trajectories
for several points and check that they satisfy certain geometric constraints.
In combination with the results of Section 3, Theorem 1.1 follows from [5,
Theorem 1.6].

In Section 5, we prove Theorem 5.1 that allows us to extend
Theorem 1.1 to the following result.

Theorem 1.3. Consider (1.1) for the particular choice of nonlinearities
(1.3), where a=1.65, and b=0.25. For ε>0 sufficiently small there exists a
full two-shift of traveling wave solutions with wave speed θ=−0.25. The pro-
files with respect to the v-variable of these solutions are well approximated
by arbitrary concatenations of the profiles indicated in Figure 2.

As we mentioned above, a similar extension of Theorem 1.2 applies
to the case of θ =0.25.

In the context of fast–slow systems, the existence of various types of
dynamics including chaotic solutions has already been proven and/or dis-
cussed by different approaches (see [7] and references therein).

Although the results of this paper are obtained by a careful inter-
weaving of numerical and topological methods, for the sake of clarity
in Sections 3 and 4 we treat the numerical results as if they had been
obtained by rigorous analytical methods. The justification for the use of
the numerical results is postponed in Section 6.

2. PRELIMINARIES

In this section, we recall some of the basic terminology of the Conley
index theory and summarize the main results of Gedeon et al. [5].

Consider, for the moment, an arbitrary flow γ : R ×X→X defined
on X, a locally compact metric space. A compact set N ⊂X is called an
isolating neighborhood if

Inv(N, γ ) :={x ∈X |γ (R, x)⊂N}⊂ int(N),

where int(N) denotes the interior of N . If S = Inv(N, γ ) for some
isolating neighborhood N , then S is referred to as an isolated invari-
ant set. The cohomological Conley index of S is defined as the relative
Alexander–Spanier cohomology

CH∗(S) := H̄ ∗(N,L)

of a pair of topological spaces (N,L), called an index pair, where N is an
isolating neighborhood of S and L is referred to as an exit set of N (see
[15] for a precise definition).
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Now consider a family of differential equations on R
n=R

k×R
� given

by

ẋ = f (x, y), ẏ = εg(x, y), (2.1)

where f : R
k × R

�→ R
k and g: R

k × R
�→ R

� are C1 and ε�0. For fixed
ε�0, the solutions to system (2.1) generate a flow

ϕε : R×R
n→R

n.

In the special case ε = 0, (2.1) has a simpler form, since y becomes a
constant, and hence, can be viewed as a parameter for the flows on R

k.
Namely, for each y ∈R

�, there exists a flow ψy : R×R
k →R

k given by

(ψy(t, x), y)=ϕ0(t, x, y). (2.2)

For a fixed bounded region Y ⊂R
�, the parameterized flow

ψY : R×R
k ×Y →R

k ×Y
is defined by ψY (t, x, y) := (ψy(t, x), y) for y ∈Y .

Another way to simplify (2.1) is to first rescale time by τ = εt and
then in the new equations let ε=0:

0 = f (x, y), ẏ = g(x, y). (2.3)

The set of points (x, y)∈R
k+� with f (x, y)=0 is called a slow manifold of

the problem (2.1). If ∂f/∂x is invertible for y in some bounded set Y , then
by the Implicit Function Theorem, there is a function x=m(y) such that
f (m(y), y)=0. The set M :={(x, y)∈R

k+� |x=m(y), y ∈Y } is a branch of
the slow manifold over Y . Solutions of

ẏ=g(m(y), y)
determine the slow flow ϕslow

M : R×M→M. If the branch M is clear from
the context, the slow flow is denoted by ϕslow(y, t).

In general, an isolating neighborhood and, hence, an index pair can-
not be obtained for the singular flow ϕ0. Conley [3] resolved the first
part of this problem by providing a characterization of a singular isolat-
ing neighborhood; that is, a compact neighborhood, which is an isolating
neighborhood for ϕε for all sufficiently small ε > 0. The latter issue was
addressed by Mrozek, Reineck and the fifth author with a description [13,
Theorem 1.15] of a singular index pair; that is, a pair of sets (N,L) such
that

CH∗(Inv(cl(N \L)), ϕε)∼=H ∗(N,L)



Traveling Waves for a Fast–Slow Predator–Prey System

for all sufficiently small ε >0.8

To apply the theory to a fast–slow system, we choose a singular orbit
made up of parts that lie in the slow manifold and parts that are hetero-
clinic orbits of the fast–flow. Along the singular orbit, the following two
ingredients are required as follows:

(1) we need to be able to construct the sets N and L, and
(2) we need to be able to identify the Conley indices of the elements

on different branches of the slow manifold that are connected by
heteroclinic orbits of the fast dynamics.

The construction of N over a branch of the slow manifold M is in
some sense the easiest. Let 
 be an (�− 1)-dimensional disc, which is a
local section for a slow flow ϕslow on a slow manifold M. A slow sheet is
a normally hyperbolic subset E⊂M defined by

E :=
⋃

z∈

ϕslow([0, T (z)], z),

where T : 
→ (0,∞) is a bounded continuous function. The requirement
that the slow manifold be normally hyperbolic simplifies the construction
of a singular isolating neighborhood.

In practice, each slow sheet contains a segment of the singular orbit
that lies on a branch of the slow manifold. For technical reasons, the slow
sheets may be too large and thus for each, we must choose a subdomain
U ⊂E. To produce a neighborhood in R

k ×R
� a tube

U := [−r, r]k ×U
is defined where 0<r� 1. In the region containing the segments of sin-
gular solutions on the slow manifold, sets of this form define N. The
choice of the corresponding exit set restricted to U is more subtle; it
depends on how the individual tubes are related to each other. For the
precise expression, the reader is referred to the definition of †V

−
i in

[5, Proposition 5.12].
The construction of N also involves neighborhoods that contain the

heteroclinic orbits of the fast flow that join the singular segments in the
slow flow. However, the existence of the heteroclinic orbits is not in itself
sufficient. It is necessary that these fast orbits carry the index information
from one tube to the next. This additional information is encoded in the
topological transition matrix described below (see [11] for more details).

8The bold face script is introduced at this point to be consistent with the notation appear-
ing in Section 5.
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Let S be an isolated invariant set. Recall that a Morse decomposition

M(S)={M(p) |p∈ (P,>)}
of an isolated invariant set S is a finite collection of disjoint compact
invariant subsets M(p), called Morse sets, indexed by a partially ordered
set (P,>), with the property that; if x ∈ S \⋃p∈P M(p), then there exist
p,q ∈P with q >p such that the alpha limit set of x is contained in M(q)
and the omega limit set of x is contained in M(p). In particular, a Morse
decomposition consisting of only two Morse sets (M(1),M(2)) with 1<2
is called an attractor repeller pair decomposition of S. In the context of a
parameterized flow ψY : R×R

k×Y →R
k×Y , a Morse decomposition con-

tinues over Y , if there is an isolated invariant set S = Inv(N,ψY ) with a
Morse decomposition {M(p)}. Observe that if one defines

Sy :=S∩ (Rk ×{y})
then Sy is an isolated invariant set for ψy . Similarly, {My(p)} is a Morse
decomposition for Sy .

Since S is an isolated invariant set for ψY , there exists an index
pair (N,L) and CH∗(S)= H̄ ∗(N,L). It can be checked that (Ny,Ly) is
an index pair for Sy . Furthermore, the continuation theory of the Con-
ley index guarantees that for all y ∈ Y the inclusion map jy : (Ny,Ly)→
(N,L) induces an isomorphism j∗

y : H ∗(N,L)→ H ∗(Ny,Ly). The same
result applies to attractors and repellers.

We codify this discussion into the context of the fast–slow systems via
the following definition (see Figure 4).

Definition 2.1. A set B⊂R
k×R

� is a box, if the following conditions
are satisfied as folows:

(1) B is an isolating neighborhood for the parameterized flow ψB
defined by

ψB : R×R
k ×B → R

k ×B
(t, x, y) 
→ (ψy(t, x), y),

where B :=�(B).
(2) Let S(B) := Inv(B,ψB). There exists an attractor–repeller decompo-

sition

M(S(B)) :={M(p,B) |p=1,2 (2>1)}.
(3) There are isolating neighborhoods V (p,B) for M(p,B), p = 1,2,

such that
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Figure 4. Construction of boxes. A box is formed in part by the intersection of tubes con-
tained in a shaft. A shaft is a two-dimensional rectangle with no heteroclinic orbits for the
fast flow associated with the slow variable on the two vertical boundaries (for a precise defi-
nition see [5, Definition 5.1]). Boxes for the slow system (1.5) are constructed in Figure 9,
with close-ups in Figure 10.

V (p,B)⊂ int B and V (1,B)∩V (2,B)=∅.
(4) Let By = B ∩ (Rk × {y}), Sy(B) := Inv(By,ψy) and let {My(p,B) |

p= 1,2} be the corresponding attractor–repeller decomposition of
Sy(B). There are subsets B0 and B1 open relative to the subset
topology on B such that for fixed i= 0,1 the invariant sets Sy(B)
are related by continuation for all y ∈Bi .

(5) For each y ∈B, the set By is a k-dimensional disc.

Notice that Definition 2.1 (4) implies that there are no heteroclinic
orbits between the Morse sets at the parameter values y ∈B0 ∪B1. By the
construction, the sets Sy0(B), y0 ∈ B0 and Sy1(B), y1 ∈ B1 are related by
continuation. It follows that a topological transition matrix

T ∗
y0,y1

: CH∗(My1(1,B))⊕CH∗(My1(2,B))

→CH∗(My0(1,B))⊕CH∗(My0(2,B))

is defined for every y0 ∈ B0 and y1 ∈ B1. We note that by the continua-
tion argument, topological transition matrices between y0 and y′

0 ∈ B0 or
between y1 and y′

1 ∈B1 are identity maps, therefore, T ∗
y0,y1

does not depend
on the choice of y0 ∈B0 and y1 ∈B1, and hence may be denoted by T ∗

B .
In this way, given a particular singular orbit we can construct a finite

collection of tubes and boxes. A compatible collection of these objects is
called a periodic corridor. As one might expect the precise description of
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these compatibility conditions is fairly technical and the reader is referred
to Gedeon et al. [5, Definition 5.3]. We conclude with the statement of one
of the main results of Gedeon et al. [5].

Theorem 2.2. Consider the fast–slow system (2.1) and a periodic cor-
ridor containing boxes {Bi}i=1,...,I . If T ∗

Bi
(2,1) is an isomorphism for all

i=1, . . . , I , then for sufficiently small ε >0, there exists a periodic solution
to (2.1).

3. FAST DYNAMICS

In this section, we discuss constructions involving the fast system
(1.4). All these constructions have been performed numerically and the
details of these computations are described in Section 6. For relevant defi-
nitions of these constructions, we refer the reader to Gedeon et al. [5]. We
have two basic goals in this section. The first is to construct a box, or
rather a series of boxes, which are the sets possibly containing a hetero-
clinic solution between equilibrium points. Such a heteroclinic solution in
the fast system, if it exists, corresponds to an inner layer of the periodic
solutions of the entire fast–slow system. The second goal is to compute a
particular entry in the topological transition matrix which, when nontriv-
ial, indicates that such a heteroclinic solution does exist in the box. It will
be more convenient to reverse the order and compute first the topological
transition matrix.

Our general setting is a family of differential equations

ẋ=h(x, λ), x ∈R
2, λ∈, (3.1)

which generates a flow ψλ: R × R
2 → R

2, where ⊂ R
2. In our case the

fast system (1.4) nominally generates such a two-parameter family of flows
ψ(v,z), where v, z are parameters corresponding to the slow variables. How-
ever, it is clear from the form of the equations that ψ depends only on the
parameter v and thus, in an abuse, but simplification of notation, in what
follows, we will often make the identification λ=v.

Given a compact set X ⊂ R
2, the immediate exit set and immediate

entrance set of X under the flow ψλ are defined, respectively, as

X−
λ := {x ∈ ∂X |ψλ((0, t), x) �⊂X ∀t >0} and

X+
λ := {x ∈ ∂X |ψλ((t,0), x) �⊂X ∀t <0} .

In what follows we refer to a compact set X, which is a simply-connected
region in the (u,w) plane. This region is a result of a numerical compu-
tation and is identified as a list of edges (i.e. pairs of points) in R

2 and
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the two-dimensional polygon they bound. The important property of X is
that it allows one to compute the topological transition matrix. Therefore,
we formulate a set of assumptions on the set X, which allows us to con-
clude that an off-diagonal entry, namely the (2,1) entry, of the topologi-
cal transition matrix is an isomorphism. This is the key to the existence of
heteroclinic solutions, namely inner layers, as shown in [5].

A1 X is homeomorphic to the closed unit disk.
A2 The immediate exit and immediate entrance sets of X are indepen-

dent of λ for λ∈, that is, there are sets X− =X−
λ and X+ =X+

λ for
all λ∈, and it holds that ∂X=X− ∪X+. Furthermore,

X− =X−
1 ∪X−

2 ,

where each of X−
i (i = 1,2) is a single or a union of compact con-

nected components of X− such that X−
1 ∩X−

2 =∅.
A3 There exists a continuous Lyapunov function V : X×→R with the

property that

V (ψλ(t, x), λ)�V (x, λ)

for every t > 0 with equality if and only if x is an equilibrium point
for (3.1).

A4 For each λ∈ there exist exactly three hyperbolic equilibria Mλ(i)∈
X, i = 1,2,3, of (3.1), which vary continuously as a function of
λ. With regard to the Lyapunov function of A3, i > j implies
V (Mλ(i), λ)>V (Mλ(j), λ). Furthermore, Mλ(3) is a source and Mλ(2)
and Mλ(1) are saddles.

The final assumption involves measuring the difference in the dynam-
ics at λ0 and λ1 (see Figure 5). Let Wu(Mλ(2)) denote the unstable man-
ifold of Mλ(2) under the flow ψλ. Let Wu

loc(Mλ(2)) denote the connected
component of Wu(Mλ(2))∩X, which contains Mλ(2).

A5 Wu
loc(Mλi (2))∩X− =

{
xaλi , x

b
λi

}
for i = 0,1. Furthermore

{
xaλ0
, xbλ0

}
⊂

X−
1 , while xaλ1

∈X−
1 and xbλ1

∈X−
2 .

Theorem 3.1. Given assumptions A1–A5, let Sλ=Inv(X,ψλ). A Morse
decomposition for Sλ is given by

M(Sλ) :={Mλ(i) | i=1,2,3}
with admissible ordering 3>2>1. Furthermore, Sλ and the Morse decompo-
sition M(Sλ) continue over . Let

Tλ1,λ0 : CH∗(Mλ0(1);Z2)⊕CH∗(Mλ0(2);Z2)→CH∗(Mλ1(1);Z2)⊕CH∗(Mλ1(2);Z2)
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(a) (b)

Figure 5. Illustration of assumption A5. The dynamics for λ0 is depicted in (a) and for λ1 in
(b). In both cases the rectangle represents the set X, the solid portion of the boundary repre-
sents X+ and the dashed portion represents X−. The sets X−

i are as labeled. The correspond-
ing figures for the fast system (1.4) are Figures 7 and 8.

be the topological transition matrix defined over the interval . Then,

Tλ1,λ0(2,1): CH∗(Mλ0(1);Z2)→CH∗(Mλ1(2);Z2)

is an isomorphism.

Proof. Assumptions A3 and A4 guarantee that M(Sλ) :={Mλ(i) | i=
1,2,3} is a Morse decomposition for Sλ with admissible ordering 3>2>1.
Thus, {2,1} is an interval in the admissible ordering for all λ ∈ . By
Assumption A5,

Mλi (2,1)=Mλi (2)∪Mλi (1)

for i = 0,1. Thus, the topological transition matrix Tλ1,λ0 is defined
(cf. [11]).

It follows directly from assumptions A2 and A5 that Wu
loc(Mλ0(2))

and Wu
loc(Mλ1(2)) lie in different homotopy classes of the pointed topolog-

ical space (X/X−, [X−]), which is the homotopy Conley index of Sλ. This
implies that the connecting orbit structure changes between the parame-
ter values λ0 and λ1, or more formally, the connected simple systems at
λ0 and λ1 differ (see [11] for a precise treatment). Thus, by McCord and
Mischaikow [11, Proposition 3.5] Tλ1,λ0 is not the identity map. Since it
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must be lower triangular and we are using Z2 coefficients, the only option
is Tλ1,λ0(2,1)=1. Hence, Tλ1,λ0(2,1) is an isomorphism.

We now show that Assumptions A1–A5 are satisfied for Eq. (1.4).
Recall that we identify λ=v here, as in the remark after Eq. (3.1).

Lemma 3.2. Let X be the simply connected region defined in Figure 6.
Then, Assumptions A1 and A2 are satisfied for the fast system (1.4) for v∈
[0.275,0.7], that is = [0.275,0.7]×R.

Proof. Using interval arithmetic it was shown that the vector field
associated with (1.4) is transverse to the boundary edges for all val-
ues of v ∈ [0.275,0.7] and there are no internal tangencies at a vertex.
This implies that each boundary edge is either an element of X− or of
X+. Those boundary edges, which belong to X− are indicated in black
(dashed) and those boundary edges, which belong to X+ are indicated in
red (solid). Clearly X− consists of two connected components, and this is
confirmed in the numerical construction of X. The list of edges forming
∂X is shown in Table I.

A straightforward calculation implies the following two lemmas.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

u

w

Figure 6. (Color online) Isolating block X for (1.4) for all v ∈ [0.275,0.7]. The exact list of
vertices forming ∂X is in Table I. The black (dashed) portion of ∂X is the immediate exit set,
X−, and red (solid) portion is the immediate entrance set, X+.
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Lemma 3.3. The function V : R
2 ×→R defined by

V (u,w, v, z)=−w
2

2
+u2

(
u2

4
− (1+v)u

3
+ v

2

)

satisfies A3 for = [0.323,0.326]×R and = [0.674,0.677]×R.

Lemma 3.4. For v ∈ [0.323,0.326] ∪ [0.674,0.677] the equilibria of
(1.4) are {(0,0), (v,0), (1,0)}. For v∈ [0.323,0.326],

M(3)= (v,0), M(2)= (0,0), M(1)= (1,0).
For v∈ [0.674,0.677],

M(3)= (v,0), M(2)= (1,0), M(1)= (0,0).
In both cases, A4 is satisfied.

Lemma 3.5. Let [v0, v1]= [0.323,0.326] and for i=0,1 let

Wu
loc(Mvi (2))∩X− =

{
xavi , x

b
vi

}
.

Then
{
xav0
, xbv0

}
⊂X−

1

and

xav1
∈X−

1 and xbv1
∈X−

2 .

Proof. The lemma follows directly from Figure 7. The unstable man-
ifolds in Figure 7 are rigorously computed. A detailed discussion of how
these computations were performed can be found in Section 6.

In a similar manner the proof of the following lemma follows from
Figure 8.

Lemma 3.6. Let [v0, v1] = [0.674,0.677] and for i = 0,1 let Wu
loc

(Mvi (2))∩X− ={xavi , xbvi }. Then

xav0
∈X−

1 and xbv0
∈X−

2

and
{
xav1
, xbv1

}
⊂X−

1 .
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Figure 7. (Color online) Unstable manifolds of the fixed point (0,0) for (1.4). The red (bot-
tom) curve correspond to v=0.323 and the blue (top) curve to v=0.326.
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Figure 8. (Color online) Unstable manifolds of the fixed point (1,0) for (1.4). The red (bot-
tom) curve correspond to v=0.674 and the blue (top) curve to v=0.677.
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We now turn to the construction of boxes. Let

Yl : =(R×(−∞,−δ))∪((δ,1−δ)×(−∞,0)
)∪((0.323−δ,0.326+δ)× [0,δ)

)

and

Yr : = (R× (δ,∞)
)∪ ((δ,1− δ)× (0,∞)

)∪ ((0.674− δ,0.677+ δ)× (−δ,0]
)
.

Define Xl as the connected component of X \Yl that contains the saddle
equilibrium points, and similarly Xr as the connected component of X \Yr
containing the saddle equilibria. Observe that the sets X \ Yl and X \ Yr
may not be connected but cannot have “holes” in any connected compo-
nent, since X is homeomorphic to the unit disk by its construction and
since Yl and Yr are simply connected unbounded domains. Thus, if δ is
sufficiently small, Xl and Xr are well-defined and homeomorphic to the
unit disk.

Let ϕu: R×R
2 →R

2 be the slow flow on the associated slow manifold
defined by (1.5) and u∈ {0,1}. For appropriate choice of z, let Z(1, z)⊂
[0.323,0.326]×R denote the unique orbit segment of ϕ1 that connects the
point (0.323, z) to the line 0.326×R.

Proposition 3.7. Choose −∞< z∗ < z∗� − 0.1 and define B ⊂ R
2 to

be the region bounded by the curves 0.323 × R, 0.326 × R, Z(1, z∗), and
Z(1, z∗). Then, B :=Xl ×B ⊂R

4 is a box.

Proof. The first step is to check that Xl is well defined. From the
form of the vector field it is sufficient to check that Z(1,−0.1) is defined.
However, this follows from the Mean Value Theorem. It remains to check
conditions (1)–(5) of Gedeon et al. [5, Definition 1.5].

(1) We need to show that B is an isolating neighborhood for ψ(v,z)
for all (v, z) ∈ B. Observe that by Lemmas 3.3 and 3.4, for fixed
(v, z)∈ B, Inv(Xl,ψ(v,z)) consists of the equilibria (0,0) and (1,0)
and possibly a connecting orbit from (0,0) to (1,0). Also, notice
that for fixed (v, z) the vector field associated with the fast dynam-
ics (1.4) is transverse to the boundary of Xl except near the equilib-
ria (0,0), (1,0), and (v,0). For δ>0, but sufficiently small, we can
use the unstable manifold theorem to conclude that there are no
internal tangencies of a connecting orbit from (0,0) to (1,0) near
(0,0) and (1,0). Furthermore, given (u,w) in a sufficiently small
neighborhood of (v,0) for v ∈ [0.323,0.326], V (u,w, v)>V (0,0, v)
precluding the possibility of a (0,0)–(1,0) connecting orbit passing
near [0.323− δ,0.326+ δ]× [0, δ].

(2) This follows from Lemma 3.4 where M(2)= (0,0) and M(1)= (1,0).
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(3) This is a triviality since M(2) and M(1) remain constant for all
values of (v, z)∈B.

(4) For µ> 0 but sufficiently small, let B0 = [0.323,0.323 +µ)× R ∩ B
and B0 = (0.326 − µ,0.326] × R ∩ B. The result now follows from
Lemma 3.6.

(5) By construction Xl is homeomorphic to a two-dimensional disk.

The proofs of the following two propositions are similar.

Proposition 3.8. Choose 0.1�z∗<z∗<∞ and define B ⊂R
2 to be the

region bounded by the curves 0.323 × R, 0.326 × R, Z(1, z∗), and Z(1, z∗).
Then, B :=Xl ×B ⊂R

4 is a box.

For appropriate choice of z, let Z(0, z)⊂ [0.674,0.677]×R denote the
unique orbit segment of ϕ0 that connects the point (0.674, z) to the line
0.677×R.

Proposition 3.9. Choose −∞< z∗ < z∗� − 0.1 and define B ⊂ R
2 to

be the region bounded by the curves 0.674 × R, 0.677 × R, Z(0, z∗), and
Z(0, z∗). Then, B :=Xr ×B ⊂R

4 is a box.

4. SLOW DYNAMICS

In this section, we study the slow flows ϕ0 and ϕ1 given by (1.5) with
u=0 and u=1, respectively. In order to compare these two flows we pro-
ject them to flows ψ0 and ψ1 on the (v, z) space. The main data we use
as input is depicted in Figure 9 with close-ups of regions of interest in
Figure 10. All curves in these figures have been computed numerically and
details of these computations can be found in Section 6. For the purposes,
of this section it is sufficient to assume that the red, green, and blue curves
are flow lines of one of the flows ψ0,ψ1.

In the following construction we refer to Figure 9. Let

RR := [0.323,0.326]× [0.1,0.2] and RB := [0.323,0.326]× [−0.1,−0.4]

be two regions between the two black lines given by v = 0.323 and v =
0.326. Let

R′ := [0.674,0.677]× [−0.4,−0.6]

be a region between the two black lines given by v=0.674 and v=0.677.
Further, we let

• EB be a ψ0 flow box starting at some section 
B ⊂{v= 0.677} and
ending at the black line {v=0.323};
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Figure 9. (Color online) Orbits of (1.5). The blue and red curves are for u=0 and the green
curves are for u=1. We refer to the regions between these curves as the blue, red, and green
regions. The vertical black lines are the lines v=0.323, v=0.326, v=0.674, and v=0.677.
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Figure 10. (Color online) Close-ups of Figure 9 near the regions where the orbits “con-
nect”.

• ER be a ψ0 flow box starting at some section 
R ⊂{v=0.677} and
ending at the black line {v=0.326};

• E ′
R be a ψ1 flow box starting at some section 
′

R ⊂{v=0.323} and
ending at the black line {v=0.674};

• E ′
B ⊂E ′

R be a ψ1 flow box starting at some section 
′
B ⊂{v=0.326}

and ending at the black line {v=0.674}.
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The sections 
B and 
R are selected so that they lie strictly between
the computed blue and red curves, respectively. Also the sections 
′

B and

′

R are selected so that they lie strictly between the computed green
curves. These curves are computed using interval arithmetic and they
enclose a true orbit of the system. We choose these orbits as the bound-
aries of our sets (see Figures 9 and 10).

The goal of this section is to verify conditions [5, (H1)–(H4)] and the
conditions of Gedeon et al. [5, Definition 5.3]. We show in Theorem 4.2
that the following conditions (B1)–(B6) are sufficient for this purpose.
These conditions relate to collections of the form {(ψi,Ei ,Ri )}Ii=0, where
ψi : R×R

2 →R
2 is a flow on Ei and indices are cyclic, i.e I +1=0.

B1 The sets Ri are homeomorphic to Ji × [ai, bi ], where Ji is an interval.
B2 For all i, the flow ψi is transverse to interval Ji+1 ×{ti+1} for all ti+1 ∈

[ai+1, bi+1], as well as to the interval Ji ×{ti} for all ti ∈ [ai, bi ].
B3 The flow ψi enters the set Rj through Jj ×{aj } and leaves Rj through

the set Jj ×{bj }, for j = i, i+1.
B4 The set Ei has the form

Ei =
⋃

z∈
i
ϕi([0, T (z)], z),

where 
i⊂Ji+1 ×{ai+1} is an interval and T (z) is given by ϕ(T (z), z)∈
Ji ×{ai}.

B5 (Ei ∩Ri−1)� (Ei−1 ∩Ri−1) for all i.
B6 Flows ψi+1 and ψi are transverse to each other in Ri for all i.

We consider two regions: the union of the red and green regions and
the union of the blue region with part of the green region in Figure 9.
Note that these regions contain the primitive periodic orbits in Figure 2.

Theorem 4.1. The collections

{(ψ0,ER,RR), (ψ1,E ′
R,R′)} and {(ψ0,EB,RB), (ψ1,E ′

B,R′)}

satisfy (B1)–(B6).

Proof. For the first collection we set

E1 :=E ′
R, R1 :=R′, E0 :=ER, R0 :=RR.

For the second collection let

E1 :=E ′
B, R1 :=R′, E0 :=EB, R0 :=RB.
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We will provide a detailed argument for the first collection and leave
the analogous proof for the second collection for the reader. We set

a1 :=0.323, b1 :=0.326, a2 :=0.677 and b2 :=0.674.

With this identification (B1) and (B3) follow immediately. The assumption
(B4) follows from the construction of the sets Ei , since the side bound-
aries are flow lines of the flow ψi , i = 0,1. The assumption (B5) follows
by inspection from Figure 10.

To verify (B2) we take a dot product of the vector fields (1.5)

(z,−θz+v(b+v)−av) and (z,−θz+v(b+v)),

corresponding to ψ1 and ψ0, respectively, with the normal (1,0) to the
curves defined by constant v. In both cases this dot product is z, which
is nonzero in Ri with i=0,1.

To verify the transversality condition (B6) we take the dot product of
the first vector field (z,−θz+v(b+v)) and the normal of the second vec-
tor field (θz−v(b+v)+av, z). This dot product is

(z,−θz+v(b+v)) · (θz−v(b+v)+av, z)=avz,

which is nonzero in Ri with i=0,1, since v �=0 in Ri .

Let � be the projection onto slow variables (u,w, v, z)→ (v, z). We
have the following general theorem.

Theorem 4.2. Consider a collection {(ψi,Ei ,Ri )}Ii=0 satisfying (B1)–
(B6). For any i, let

Bi :=Ei ∩Ri ∩Ei−1. (4.1)

If Bi =�(Bi ), namely the projection of a box Bi , then the set
⋃I
i=1Ei ∪⋃I

i=1 Bi contains a periodic corridor. (Compare Propositions 3.7, 3.8 and
3.9.)

Proof. We need to verify [5, (H1)–(H4)] and the assumptions of
Gedeon et al. [5, Definition 5.3]. The assumption (H1) is the same as (4.1),
(H2) is (B1) and (H3) is (B3). Assumption (H4) follows from the transver-
sality assumption (B6).

The first condition of Gedeon et al. [5, Definition 5.3] is the assump-
tion that Bi = �(Bi ) is a projection of a box. We set Bside

i := cl(∂Bi \
(Ri ×{ai, bi})). Further, let V−

i ⊂Ei be the collection of points z such that
ψi(t, z)∩Bi =∅, where we restrict the flow ψi to Ei . These points will not
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enter the next set Ei−1 and will exit the collection
⋃I
i=1 Ei . Let V −

i ⊂E−
i

with the property that V−
i =�(V −

i ). Notice that by assumption (B5)

E side
i ⊂V−

i , (4.2)

where E side
i :=⋃z∈∂
i ψi(T (z), z) is the side boundary of the set Ei .

The second condition of Gedeon et al. [5, Definition 5.3] is

Bside
i \U side

i ⊂V−
i−1.

To verify this condition it is enough to observe that by (4.1), (B3) and
(B5) we have Bside

i ⊂E side
i−1 . The result now follows from (4.2). Notice that

we did not have to define the set U side
i to obtain this result. For the defi-

nition of this set, the reader is referred to Gedeon et al. [5, after (5.2) and
after Remark 5.2].

The next condition of Gedeon et al. [5, Definition 5.3] is

U side
i ⊂ intUiV

+
i ∪ intUiV

−
i .

The set V +
i is the set of those points in Ei whose projections to Ei never

enter Ei−1. By (B5) V +
i =∅ for all i. The set

U side
i ⊂Eside

i ,

where E side
i =�(Eside

i ). Thus we get by (4.2) and (B5)

U side
i ⊂Eside

i ⊂V −
i ⊂ intUiV

−
i = intUiV

+
i ∪ intUiV

−
i .

This finishes verification of the second condition of Gedeon et al. [5, Defi-
nition 5.3].

The last two assumptions we need to verify is the existence of homot-
opy equivalences of pairs (see [5, Definition 5.3])

h0 : (Bin
i ,Bin

i ∩V−
i−1) ↪→ (Ũout

i , Ũout
i ∩V−

i ),

h1 : (Bout
i ,Bout

i ∩V−
i−1) ↪→ (Ũ in

i−1, Ũ in
i−1 ∩V−

i−1).

It follows immediately from the definition of these sets in [5] that in our
setting these are equivalent to

h0 : (Baii ,Baii ∩V−
i−1) ↪→ (Eaii ,Eaii ∩V−

i ),

h1 : (Bbii ,Bbii ∩V−
i−1) ↪→ (Ebi

i−1,Ebii−1 ∩V−
i−1),

(4.3)

where Yλ := Y ∩ (Ri × {λ}) for Y = Bi ,Ei ,Ei−1. Observe that by (4.2)
(Baii ,Baii ∩ V−

i−1)
∼= (Baii , ∂Baii ) and that Baii is an interval. The set Eaii is

an interval with Baii � Eaii and Eaii \Baii ⊂ V−
i . Thus a deformation retract
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of Eaii –Baii induces the desired homotopy equivalence h0. Similarly, a
deformation retract of the interval Ebi

i−1 onto its proper subinterval Bbii
induces the homotopy equivalence h1.

Corollary 4.3. Consider the collections

{(ψ0,EB,RB), (ψ1,E ′
B,R′)} and {(ψ0,ER,RR), (ψ1,E ′

R,R′)}.
For the first collection let

BB :=EB ∩RB ∩E ′
B, B′

B :=E ′
B ∩R′ ∩EB

and for the second collection let

BR :=ER ∩RR ∩E ′
R, B′

R :=E ′
R ∩R′ ∩ER.

Then there are periodic corridors

PCB ⊂EB ∪BB ∪E′
B ∪B′

B and PCR ⊂ER ∪BR ∪E′
R ∪B′

R,

where Bi and B′
i , i=R,B are boxes with �(Bi )=Bi and �(B′

i )=B′
i .

Proof. By Propositions 3.7, 3.8, and 3.9, the sets Bi ,B′
i with i=R,B

are projections of boxes. By Theorem 4.1 these collections satisfy (B1)–
(B6). The result now follows from Theorem 4.2.

Corollary 4.4. For all sufficiently small ε > 0 there are two periodic
solutions �B and �R of the system (1.2), whose projections to slow variables
lie in EB ∪E ′

B and ER ∪E ′
R, respectively.

Proof. Corollary 4.3 verifies the existence of a periodic corridor con-
taining boxes Bi ,B′

i with i = R,B, and Theorem 3.1 guarantees that the
relevant entries of the topological transition matrices are all isomorphisms.
Thus, [5, Theorem 1.6], there exist the desired periodic solutions for suffi-
ciently small ε>0.

5. TOPOLOGICAL HORSESHOES OF TRAVELING WAVES

Theorem 5.1. For a sufficiently small ε>0 and any symbolic sequence
σ ∈{R,B}Z, the system (1.2) has a solution

xσε (t)= (uσε (t), vσε (t),wσε (t), zσε (t)),
which satisfies the following condition: there exists a sequence of intervals
[t−i , t

+
i ] for i ∈Z such that, for all i ∈Z,

�(xσε ([t
−
i , t

+
i ]))⊂Eσi and �(xσε ([t

+
i , t

−
i+1]))⊂E′

σi
.
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Proof. Recall that we have constructed the sets ER, EB, and E′
R, E′

B,
as well as the boxes BR, BB, and B′

R, B′
B. Note E′

B ⊂E′
R. We have showed

in Corollary 4.3 that there are periodic corridors

PCR ⊂ER ∪BR ∪E′
R ∪B′

R

and

PCB ⊂EB ∪BB ∪E′
B ∪B′

B

that contain the basic periodic orbits �R and �B, respectively (Corollary 4.4).
Using the results in [5], we can then construct, for each PCa with a=R,B,
a singular isolating neighborhood Na ([5, Lemma 5.8]) and a singular index
pair (N̄a, L̄a) ([5, Proposition 5.12]). Moreover, from the construction of
these sets given in [5], we have that as follows:

(1) there exists ε̄>0 such that, for any 0<ε<ε̄, Na and cl(N̄a \ L̄a) are
isolating neighborhoods of (1.2) of the invariant set S=Inv(cl(Na));

(2) for any 0<ε < ε̄, the flows on NR and NB are identical on E′ :=
([−r, r]2 ×E′

B)∩ NB for a sufficiently small r > 0 (see [5, (5.7)] for
relevant definitions);

(3) for any 0<ε< ε̄,

H ∗(N̄a, L̄a)∼=CH∗(S, ϕε),

where ϕε is the flow of (1.2);
(4) by Theorem 3.1 the (2,1)-entry of the transition matrices associated

with the boxes BR, BB, B′
R, and B′

B are all isomorphisms;
(5) there are sets Na , and La such that pairs (Na,La) and (N̄a, L̄a) are

homotopically equivalent, and hence H ∗(Na,La) and H ∗(N̄a, L̄a)
are isomorphic.

Given a positive integer J , let σJ be a finite truncation σJ =
(σ−J , . . . , σJ ) of σ ∈{R,B}Z. We construct an index pair corresponding to
σJ as follows.

Let (Na(i),La(i)) and (N̄a(i), L̄a(i)) be 2J + 1 copies of these pairs
and the flows on them. Define

NJ =
J⋃

i=−J
Nσi (i)/∼

and

LJ =
J⋃

i=−J
Lσi (i)/∼,
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where ∼ is an equivalence relation generated by a natural identification of
the flows on Nσ−J (−J ) and NσJ (J ). Since the flows of the copies of NB
and NR are identical on the corresponding E′-part, this identification is
well-defined. More precisely, letting 
 be a cross-section for the flow on
E′ given by v=0.677 and 
(i) be the corresponding copies for Na(i), we
can identify the flows on E′

σJ
(J ) at 
(J ) and Bσ−J (−J ) at 
(−J ), hence

the flow on NJ is well-defined and it automatically satisfies the conditions
for an isolating neighborhood. Moreover, by the Mayer-Vietoris theorem,
we have

H ∗(NJ ,LJ )∼=H ∗(Na,La)∼=H ∗(N̄a, L̄a),

which is isomorphic to the Conley index of the basic periodic orbits.
Therefore, we can conclude that there exists a periodic orbit ψ̄Jε in NJ ,
whose projection goes through Eσi (i = −J, . . . , J ) with the prescribed
order by σJ . Observe that the projection of ψ̄Jε to the original (u, v,w, z)-
space is a true periodic orbit ψJε of (1.2).

Let ξJε be the projection of ψ̄J ∩ 
(−1), which is an initial point
of the periodic orbit ψJε . Since the collection of the points {ξJε | J =
1,2,3, . . . , } lies in a compact set 
∩Nσ0 , it contains a convergent subse-
quence, whose limit ξσε gives an initial point of the desired orbit satisfying
the condition of the theorem.

6. NUMERICS

In this section we describe the numerical computations used in this
paper. We performed essentially two kinds of numerical computations:
computation of isolating blocks and rigorous computation of trajectories.
These are discussed in the next two subsections.

6.1. Rigorous Computation of Trajectories

We compute rigorous approximations for the orbits of (1.5) using the
CAPD Library [1]. This library uses a Lohner algorithm [10] to compute
rigorous enclosures for the solutions of ODEs. Consider the initial value
problem

x′ =f (x),
x(0)=x0.

(6.1)

Given a rectangle containing the initial point x0 and a time step �t , the
basic idea of Lohner algorithm is to numerically integrate (6.1) and return
a new rectangle, which is guaranteed to contain the solution of (6.1) at
time �t .
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This process can then be repeated to obtain rigorous enclosures for
solutions of (6.1). At each step rigorous error bounds and interval arith-
metic are employed to guarantee that the returned rectangle contains the
true solution of (6.1). The main difference between the method described
above and the algorithms used in the CAPD Library is that the latter do
not compute a rectangle enclosure for the solution at each step, rather
they represent the solution by other types of set (called interval set, dou-
bleton, etc.). This guarantee tighter enclosures and reduces the so called
wrapping effect. The CAPD Library can also compute a rectangle contain-
ing the entire trajectory on the time interval [0, �t ] (see [16, 14] for fur-
ther details). The computed trajectories are thus given by a collection of
overlapping rectangles, as shown in Figure 11.

Using the CAPD Library we computed rigorous enclosures for solutions
of (1.5) as shown in Figures 9 and 10. We also computed the unstable
manifolds of (1.4) using the CAPD Library. To describe how the unstable
manifolds were computed, consider the unstable manifold of Figure 7 cor-
responding to v= 0.323 (red curve). We rigorously computed two trajec-
tories using the CAPD Library with initial conditions (0,w∗) and (u∗,0),
with w∗ = 4/10,000 and u∗ = 4/10,000, as shown in Figure 12. We then

–1 0 1 2 3 4 5
x 10–7

3.9998

4

4.0002

4.0004

4.0006

4.0008

4.001

4.0012
x 10–4

u

w

Figure 11. (Color online) The first ten rectangles representing one of the solutions in Fig-
ure 7, computed using the CAPD Library. It is worth mentioning that each solution curve in
Figure 7 consists of about 200,000 rectangles.
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Figure 12. (Color online) Close-up of Figure 7 near the point (0,0) showing the two com-
puted solutions which must enclose the unstable manifold for (1.4) with v=0.323.

use the fact that u̇ > 0 on the set {(0,w) |0<w�w∗} and ẇ > 0 on the set
{(u,0) |0<u�u∗} to conclude that the two red curves in Figure 12 provide
outer bounds for the unstable manifold. Therefore notice that the red curve
in Figure 7 is in fact formed by two red curves. The other unstable man-
ifolds were computed analogously. The total time for the computation of
the unstable manifolds and the trajectories in Figure 9 was 15.5 min on a
1.0 GHz P3 machine.

6.2. Computation of Isolating Blocks

In [2], we describe a theoretical foundation for algorithms to com-
pute global qualitative information about the dynamics of flows gener-
ated by a system of ordinary differential equations. The main idea is to
approximate the dynamics on a compact polygon �⊂R

n by a multivalued
mapping on a polygonal decomposition of �. This approximation is deter-
mined from the vector field without numerically integrating to approxi-
mate specific trajectories. The resulting multivalued map on polygons is a
finite, combinatorial representation of the flow from which specific qualita-
tive information can be extracted using topological ideas from the Conley
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index theory. A general description of such techniques for maps can also
be found in [9, 12].

To construct an appropriate polygonal decomposition, we first trian-
gulate � by a simplicial complex K with simplices, which are aligned with
the flow. Then simplices are aggregated into polygonal regions by remov-
ing (n− 1)-faces, which are not transverse to the vector field, yielding a
polygonal decomposition P of �. This transversality is verified rigorously
using interval arithmetic. Thus, on every remaining interior (n−1)-face the
vector field points out of a polygon P and into a polygon Q. The mul-
tivalued map F: P−→→P is then defined by Q⊂F(P ). The main prop-
erty of such polygonal decompositions that we will utilize here is stated in
the following theorem. For a more detailed description of this construction
and properties of such decompositions (see [2]).

Theorem 6.1. If Q is a collection of recurrent polygons in P and the
geometric realization X=|∪n≥0 F

n(Q)|∩ |∪n≥0 F
−n(Q)|⊂ int(�), then X is

an isolating block for the flow. In particular, if Q is the set of polygons con-
taining the equilibrium points, then X contains all connecting orbits between
equilibria.

Proof. Follows from the proofs of Boczko et al. [2, Theorems 2.18
and 2.20].

Now, we briefly describe the specific computations performed on
the fast system (1.4). First, we generate a triangulation in the rectangle
[−0.4,1.4] × [−0.7,0.7]. The polygonal decomposition resulting from this
triangulation is shown in Figure 13. The details of the algorithms used to
generate this triangulation are beyond the scope of this paper and will be
the subject of future work [8]. The polygonal decomposition in Figure 13
was rigorously computed by checking the transversality of each edge for
the entire interval of parameter values v∈ [0.275,0.7] using interval arith-
metic, then the multivalued map was rigorously constructed. Notice that
the multivalued map is valid for all parameter values v∈ [0.275,0.7], since
all the edges are transverse for all v ∈ [0.275,0.7]. Finally the set X was
computed starting from the three polygons containing the three equilibria
(0,0), (0.3,0), and (1,0), and so X contains these equilibria as shown in
Figure 14. By Theorem 6.1, X is an isolating block for all parameter val-
ues v∈ [0.275,0.7]. The boundary of the isolating block X has an exit set
with two components as shown in Figure 13.

We should note that the triangulation used is very coarse and only
about half of the resulting edges are flow transverse. If a finer triangula-
tion were computed, the number of transverse edges would increase. How-
ever, such a finer triangulation, while computable, is not necessary for the
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Figure 13. (Color online) Coarse polygonal decomposition with 2,200 vertices and 1,308
polygons from 4,336 simplices. The gray shaded region is an isolating block X. The black
(dashed) portion of ∂X is the immediate exit set, and red (solid) portion is the immediate
entrance set.

Figure 14. (Color online) Close-ups of Figure 13 near the fixed points (0,0) and (1,0).

results of this paper, which is one of the strengths of the Conley index
theory. The total time for these computations, including interval arithme-
tic, was 2.8 min on a 3.0 GHz P4 machine.
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