
Global dynamics of neural nets with infinite gain.
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Abstract

We consider a model of neural and gene networks where the nonlinearities in the

system of differential equations are discontinuous and piecewise constant. We develop

a framework for study of such systems. As a first step we associate to the system a

graph G on a hypercube and show how the collection of strongly connected components

of G relates to the dynamics of the flow on the set of rays through the origin. In the

second step we discuss the relationship between the invariant sets of the ray flow and

the invariant sets of the original flow. We provide a sufficient condition for a one-to-one

correspondence between these sets.

Finally, we study the class of binary networks within this framework. Under certain

conditions we can determine the structure of an invariant set corresponding to the

lowest strongly connected component of the hypercube graph.

Key words. Neural and gene networks, strongly connected components of an oriented
graph, global dynamics.
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1 Introduction

The additive neural network

ẋi = −xi +
∑

j 6=i

wijfj(xj), i = 1, . . . , n, (1)

is a prototype of a system which, although composed of relatively simple units, may exhibit
wide range of dynamical behavior. This model may not be a particularly faithful represen-
tation of the processes in the brain but is a good testing ground for methods which aim to
describe dynamics of large systems of differential equations. The study of this model goes
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back to Grossberg [8, 9] and Hopfield [10]. The numbers wij were interpreted as synap-
tic connection weights and functions fj(xj) are nonlinear sigmoidal gating functions with
fj(0) = 0. The gain of fj is the derivative f ′

j(0). All of the results about the dynamics
of these networks assume certain structure of the matrix W = [wij] of connection weights,
see Hopfield [10] for symmetric W , Atyia and Baldi [2] for circular matrix W and Gedeon
and Fiedler [4] for the generalization of the symmetry assumption on W . To our knowledge
there is no theory which would describe the dynamics in the general case. In this paper we
propose a framework in which the dynamics for arbitrary matrix W can be studied in the
limit of infinite gain. In this limit, the sigmoidal gating functions fj become step functions

fj(xj) =

{

uj for xj > 0
−vj for xj < 0

. (2)

The simplification brought by this choice of nonlinearities comes from the fact that the right
hand side of the equations (1) has a fixed value on the interior of any given orthant in Rn

and the equations can be solved there explicitly. Under appropriate assumptions, solutions
can be glued together at the boundary between the two orthants to form a C0 flow. The
difficulties come from the fact that the solution may traverse these boundaries infinitely
many times and thus the long term prediction of the behavior remains difficult.

We wish to simplify the situation further. Under assumption (H1) below, we can as-
sociate to system (1) with nonlinearities (2) a graph of the dynamics G: Every orthant in
Rn will be represented by a vertex in the graph and a boundary between two orthants by
an edge. Every edge is oriented along the flow through the corresponding boundary be-
tween orthants. Observe, that there are many systems (3) which lead to the same graph
G. Changing values vj and uj associated to the function fj in (2) changes the graph only if
these numbers change sign. Therefore the information that can be inferred from the graph
about the dynamics of (3) must be valid for every system which gives rise to the same graph
G. Our methods are applicable to a slightly more general set of equations, introduced by L.
Glass [6]

ẋi = −γixi + Λi(x1, . . . , xn), i = 1, . . . , n. (3)

The functions Λi depend only on the signs of the variables x1, . . . , xn and hence are constant
on the interior of every orthant in Rn.

In the chain of simplifications

additive network (1) → infinite gain network (3) → graph G

we are interested how we can use the information gained on the simpler level to understand
the higher level. The first simplification is not as drastic as the second and can be handled
by classical perturbation results. In this paper we study second part of this chain.

Some questions related to the correspondence between the graph G and dynamics of (3)
were addressed by Glass and collaborators in [6] and [7]. The correspondence between stable
equilibria of (1) for symmetric matrix of weights W = [wij] and the stable fixed points of
an asynchronous content addressable memory as the gain approaches infinity was studied in
Hopfield [10]. His argument was corrected and completed by T. Troyer [17].

We also note that (3) is a generalization of N −K systems, studied by S. Kauffman [11]
as a model of complex interactions between genes and controlling proteins in a cell. This
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admittedly simplistic model assumes that every gene or protein is either active or inactive
and so it can be modeled by a binary variable. There are N genes or proteins in the system.
The phase space of the systems consists of 2N vectors in RN , which are arranged as vertices
of a hypercube in RN . The dynamics is simple; every unit changes its state based on the
states of K other units, i.e.

xi(t + 1) = Λi(xi1(t), . . . , xiK (t)). (4)

Here Λi is a logical function of the same type as in (3).
To see the correspondence between (3) and (4) we integrate equations (3) in a fixed

orthant O in Rn . Since in O the values of Λi are constant, say pi := Λi(O), we get

xi(t) = pi + (xi(0) − pi)e
−γit. (5)

The point p(O) := (p1, . . . , pn) is called the target point of the orthant O. The dynamics in
every orthant is linear and focused toward the target point.

We see now that (3) is an asynchronous version of the N − K system; while solutions of
(4) jump to their target points instantaneously, solutions of (3) approach the target point
gradually.

2 Main results

In this paper we concentrate on two problems. First, we show how the properties of the
graph G influence dynamics of (3) and, at the same time, we provide a framework within
which questions about the dynamics of (3) can be successfully tackled.

In the second part we use this framework to investigate a particular class of systems (3)
where all target points p have coordinates ±a for some a. We call these systems binary
systems. This agrees with the choice of binary values S. Kauffman uses for N − K systems.
For this subclass we use the developed framework to characterize invariant sets of (3) for a
class of graphs G.

2.1 Infinite gain networks.

We assume that

the value of Λi(x1, . . . , xn) does not depend on the sign of xi (H1).

This assumption is satisfied for additive neural networks (1). To avoid unnecessary technical
problems we also assume that

every target point p lies in the interior of an orthant (H2).

The assumption (H1) guarantees that the trajectories of (3) can be continued from orthant
OA to the next orthant OB , if the trajectory hits a codimension 1 hyperplane which separates
OA and OB. In this case we define the vector field on the wall to be the closure of the vector
field in OB. We denote this C0 piecewise smooth flow by Φ(x, t).
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If the trajectory hits a codimension p hyperplane, p ≥ 2,

H := {x ∈ Rn | xi1 = . . . = xip = 0},

then the flow is not well defined, since this hyperplane is in the closure of more then 2
orthants. Our goal is to use the system (3) as an approximation of the system of the type
(1). If S is an invariant for (3), we want to assert an existence of a similar invariant set S̃
for (1), for sufficiently large values of gains. For this reason we are looking for sufficiently
stable invariant sets for (3), which we will be able to perturb back to (1). It is therefore
reasonable to restrict our attention to the domain

D := {x ∈ Rn | Φ(x, t) 6∈ H for all t and H}.

2.2 Graph of the dynamics.

A strongly connected component (SCC) of an oriented graph G is a maximal set of vertices
such that for every pair of vertices u, v ∈ G there is path in the graph from u to v and the
path from v to u. If G is connected, the strongly connected components form a partially
ordered set. We illustrate this in an example below.

Figure 1: An oriented graph G on the left and the induced order on the set of connected
components of G on the right.
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We observe that every invariant set of (3) has to lie in the set of orthants corresponding
to one SCC of the graph G. Furthermore, the order on SCC’s induces order on the invariant
sets; if G0 is a strongly connected component above G1 in the partial order then there is no
connecting orbit from the invariant set corresponding to G1 to invariant set corresponding
to G0. The order also suggests that the attractors with large basins of attraction are most
likely lying in the orthants corresponding to minimal SCC in the partial order. Thus the first
step in analyzing dynamics of a given system (3) would be to analyze these minima of the
partial order, since they likely contain the attractors for (3). Furthermore, one would hope
that the structure of the subgraph corresponding to a particular SCC has a strong influence
on the type of the invariant set in the corresponding set of orthants.

We now examine this idea in the light of available results. We say that S ⊂ G is an
attracting set of vertices, if it is a strongly connected component of G and a minimum in the
partial order. The corresponding set of orthants, OS , is an attracting set of orthants.

The simplest attracting set of vertices is a single vertex. If a vertex p of G is attracting,
then the target point of the corresponding orthant Op lies in Op. This target point is
attracting all points in Op. Hence attracting vertex in the graph G implies existence of
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attracting fixed point in the dynamics of (3) and the correspondence between the graph and
the dynamics is complete.

Next Theorem, due to Glass and Pasternack [7], examines this issue for cyclic attractor.
An N-dimensional cyclic attractor C in G is an attracting cycle in G, which is not contained
in any lower dimensional sub-cube of G.

Theorem 2.1 ([7]) Given an N-dimensional cyclic attractor C in G, the corresponding set
OC either admits a unique stable periodic orbit, or all solutions in OC converge to the origin.

This result shows that the correspondence between the dynamics and structure of the
subgraph of SCC is still good, but there are two possible outcomes. This means some systems
(3) with cyclic attractor in G admit periodic orbit while others with the same graph G have
no periodic orbit. On the closer inspection one realizes that this dichotomy is inevitable.
For a given strongly connected component S ⊂ G, where S contains more then one vertex,
there is always a selection of target points such that all trajectories in OS converge to zero.

Does this mean that we have to give up hope for correspondence between the structure of
SCC and the dynamics in the corresponding orthants? No, but we must address the special
role of zero in the dynamics of (3).

Mestl et. al. [13] observed that all solutions of (3) starting on the same ray through the
origin converge to a single point as t → ∞. This allows us to separate radial dynamics from
the dynamics of rays: to determine the long term behavior of solution through x we first
determine the behavior of the ray on which x lies and then determine, whether the points
along this ray converge to zero or not. We call the flow on the set of rays, induced by the
flow of system (3), a ray flow (R-flow). Precise definition is presented in a later section.

The R-flow can be thought of as a flow on the n − 1 dimensional unit sphere. Every
orthant O intersects the unit sphere in a region RO. The graph G not only describes the
direction of the flow of (3) from orthant to orthant, it also describes the direction of the
R-flow from a region to region on the unit sphere. Since R-flow does not contain zero, it is
easy to see, that Theorem 2.1 gives rise to the following result: if G has an N -dimensional
cyclic attractor then the R-flow of (3) admits unique periodic orbit. There is a complete
correspondence between the structure of the graph G and the dynamics of the R-flow. Since
at the end we are not interested in dynamics of the R-flow, but in dynamics of the original
problem (3) we have to address the correspondence between the invariant sets in these two
flows.

To summarize, we propose the following approach to study dynamics of (3):

1. Determine SCC decomposition of G.

2. Deduce information about the dynamics of R-flow based on information about the
structure of SCC’s of the graph G.

3. By examining radial dynamics, determine how much of this information is valid for the
flow of (3).

Our first Theorem below expresses the fact that SCC decomposition of the graph induces
a corresponding decomposition of the invariant set of the R-flow. This result is not true for
the original flow (3). Such a decomposition is called Morse decomposition and the invariant
set, which lies in the orthants corresponding to a particular SCC, is called a Morse set.
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Definition 2.2 The Morse decomposition of a compact invariant set S is a finite collection

M = {M(q) | q ∈ (P, >)}

of disjoint compact invariant sets, indexed by a strictly partially ordered finite set P. For
every x ∈ S \

⋃

q∈P M(q) there are q, r ∈ P with q > r such that

ω(x) ∈ M(r) and α(x) ∈ M(q).

The sets M(p) are called Morse sets.

Here ω(x) and α(x) denote omega and alpha limit sets of x respectively (see ([16])). The idea
of a Morse decomposition was used for attractor of scalar delay equation by Mallet-Paret [12]
and for cyclic feedback systems by Gedeon and Mischaikow [5].

Theorem 2.3 Consider system (3) and assume (H1) and (H2). Then the ray flow admits
a Morse decomposition

PM := {PM(q) | q ∈ (P, >)}.

This Morse decomposition is determined by the SCC decomposition of the graph G.

The connection between the graph G and invariant sets of R-flow is close. There are
topological methods which can benefit from this result and may be used to determine the
character of the invariant set in the corresponding set of orthants based solely on the graph
G. Such arguments may include fixed point theory, Wazewski retract theorem (see [3] II.2.3
or [18]) or Conley index theory (see Mischaikow [1] for review of the theory and Mischaikow
et.al. [14] for results about existence of periodic orbits).

The third step of our strategy is to look at the radial dynamics. As we saw in Theorem 2.1
while all R-flows with cyclic attractor in the graph G admit a periodic orbit, some of the
systems (3) have a periodic orbit and some do not. In the former case solutions of (3) along
the periodic set of rays converge to a non-zero orbit while in the second case they converge
to zero. Given a vertex P in the graph G we denote by win(P ) the set of incoming edges

win(P ) = {i | xi = 0 along an edge pointed toward P}.

The set of outgoing will be denoted by wout(P ). A vertex P is a splitting vertex if there are
at least two outgoing edges from P . In Theorem 3.5 we find sufficient conditions for the
first case to happen. As a corollary we get following generalization of the result of Glass and
Pasternack ([7]).

Corollary 2.4 Consider an attracting set OA of orthants without a splitting vertex. Then

1. either there is a periodic orbit of (3) in OA

2. all solutions in OA converge to zero.

Furthermore, if for every orthant O in OA the target point p(O) = (p1, . . . , pn) satisfies

p2
j <

∑

k∈win(O)

p2
k

where {j} = wout(O), then the first part holds.
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In the last part of the paper we apply our approach to binary dynamics.

Definition 2.5 We say that the system (3) is a binary system if the set of target points is
a subset of a hypercube with vertices (±a,±a, . . . ,±a) for some a.

It is easy to see that one can rescale the phase space so that a = 1.
We study the R-flow associated to binary system (3). In Theorem 4.1 we describe ex-

plicitly how this flow acts on the incoming walls of an orthant O. In Proposition 4.2 we
partially describe how the local descriptions in individual orthants can be pieced together.
We then define a class of simple SCC. We show that every invariant set lying in orthants
corresponding to a simple SCC, consists only of periodic orbits whose structure can be de-
scribed explicitly. No chaotic dynamics is possible in the invariant set corresponding to a
simple SCC.

Theorem 2.6 An invariant set of (3) corresponding to the simple SCC in G is a finite (or
empty) collection of periodic orbits.

A set of orthants OA is a one-split attractor if it is attracting set of orthants and there is a
unique splitting vertex in the subgraph A ⊂ G.

Corollary 2.7 For a binary system the invariant set in a one-split attractor is a finite (or
empty) set of periodic orbits.

3 Dynamics of infinite gain networks and the graph G

3.1 The R-flow

As we saw in the introduction, the trajectories of (3) are straight lines inside every orthant
and may have corners on the boundaries between the orthants. We call such a boundary
a wall. Each wall corresponds to an edge of the graph G. Each wall is either incoming or
outgoing relative to the orthant OA depending on whether the corresponding edge points
toward or away from A.

We may compute a transition function from an incoming wall W1 to an outgoing wall
W2 through an orthant O. Obviously, W1 and W2 must be parts of the boundary of O.
This function takes an initial value on an W1 and associates to it the intersection of the
solution with W2. Assume that on the wall W2 we have xj = 0 and that the target point of
an orthant O is p = (p1, . . . , pn). Solving the j-th equation for the time of transition t∗ and
then substituting to the other equations we find that

yi =
xi(0) − (pi/pj)xj(0)

1 − xj(0)/pj
. (6)

In the vector notation (see [7])

y = MO(x) =
Cx(0)

1 + ctx(0)
, (7)
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where C ∈ Rn×n and the transposed vector c has zero entries except cj = −1/pj. The
assumption (H2) implies that ctx(0) > 0. Observe that the formula (6) does not depend on
the wall W1 in other way than initial condition. So this formula is valid for the transition
from any incoming wall to the outgoing wall W2.

The map MO is a linear fractional transformation and composition for two such trans-
formations is again a linear fractional transformation.

Consider two points, x1 = k1v and x2 = k2v, on a ray starting at the origin. The ray
is the set of all positive multiples of a given vector, {x | x = kv, k > 0}. Assume that the
ray lies on a wall W1. Then it is easy to see that y1 := MO(x1) and y2 := MO(x2) are again
collinear and lie on a ray Cv.

Furthermore the linearity of the flow in O guarantees that the trajectories starting at x1

and x2 are collinear. By this we mean the following: given a point z = Φ(x1, t), 0 ≤ t ≤ t∗(x1)
where t∗(x1) is given by y1 = Φ(x1, t

∗(x1)), there is a point w = Φ(x2, t̄), 0 ≤ t̄ ≤ t∗(x2),
such that z and w are collinear. Notice, that t∗(x1) 6= t∗(x2) in general. Since the flow
Φ(x, t) is linear in O, the flow lines of Φ(x, t) starting at the ray through x span the plane
containing rays through x and Cx. We rescale time in flow Φ(x, t) so that the points initially
on a ray stay on a ray throughout the interior of the orthant O. The rescaling can be made
continuous by the continuous dependence on initial conditions. After rescaling we project
the flow Φ(x, t) onto the unit sphere to obtain the ray flow (R-flow) ϕ(x, t) on a subset D
of Sn−1. The set D is defined as

D := {z ∈ Sn−1 | [ϕ(z, t)]i = 0 for at most one i ∈ {1, . . . , n}},

where [ϕ(z, t)]i is the i-th component of the vector ϕ(z, t). The walls in Rn divide the sphere
Sn−1 into regions, each of which lies in one orthant. Every z ∈ D corresponds to a ray in
Rn. Most of the time we will work with the maps mapping the rays in incoming walls to
the rays on the outgoing walls, rather then directly with R-flow. We again emphasize that
these maps are linear

y = Cx. (8)

Let G = {G(q) | q ∈ (P, >)} be a decomposition of the graph G into strongly connected
components G(q), ordered by a partial order (P, >).

Definition 3.1 Given the graph decomposition G = {G(q) | q ∈ (P, >)},W we denote by
O(i) the set of orthants corresponding to the subgraph G(i). We set

PM := {PM(q) | q ∈ (P, >)}

where PM(i) is the maximal invariant set in D ∩ Int O(i).

Proof of Theorem 2.3
Let x ∈ S \

⋃

i∈P PM(i). This implies that ω(x) ∈ PM(j) and α(x) ∈ PM(i) for
j 6= i. The set of orthants O(i) ∪

⋃

k<i O(k) is positively invariant under the R-flow ϕ by
the construction of G. This set must contain O(j) since solution x(t) connects PM(i) to
PM(j). By the construction of the partial order (P, >) this implies i > j in P. 2
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3.2 Convergence to zero

We first recall a result of Mestl et. al. [13].

Lemma 3.2 (Theorem 3,[13]) The distance between points Φ(x1, t) and Φ(x2, t), where
x2 = kx1, x1, x2 ∈ D goes to zero as the time goes to infinity.

Proof. Assume that the trajectories Φ(x1, t) and Φ(x2, t) traverse through a sequence of
orthants T = {O1, . . . ,On}. Then the corresponding mapping given by the composition of
individual transition maps (7) is a fractional linear map MT = Snx

1+s
t
x
, where Sn = Cn . . . C1,

and stx = ct
1x + ct

2C1x + . . . + ct
nSn−1x. Note that stx → ∞ as n → ∞. Therefore, as

n → ∞

lim
n→∞

x
(n)
1

x
(n)
2

= lim
s
t
x→∞

1 + kstx

k(1 + stx)
= 1.

By the continuity of the flow in D this implies the result. 2

Corollary 3.3 Fix a ray y = kx, k > 0. Then all solutions of (3) starting at initial values
on this ray either converge to an unique nonzero solution, or converge to zero.

Proof. In view of Lemma 3.2 all we need to show is the boundedness of all solutions. This
follows from the fact that the functions |Λi(x)| are uniformly bounded on Rn. 2

It is clear, that the invariant set S for the R-flow corresponds to an invariant set S for
the flow Φ if the solutions on the set of rays, corresponding to S, do not converge to zero.

We present now a sufficient conditions for this to happen. Consider a Morse set PM(q)
and the corresponding subgraph G(q). Fix a vertex A ∈ G(q) and assume that i ∈ win(A)
and j ∈ wout(A).

Definition 3.4 We say that the transition i → j at a vertex A is an expanding transition if
for every x ∈ PM(q) ∩ {xi = 0}.

∑

k 6=i,j

pkxk > 0 (9)

p2
j <

∑

k 6=j

p2
k (10)

where p = (p1, . . . , pn) is the target point in orthant OA.

We want to remark that

• the first condition is automatically satisfied if every target point is in the neighboring
orthant;

• the second condition is easy to check and does not require knowledge about the invari-
ant set PM(q).

Theorem 3.5 If all transitions in G(q) are expanding then the Morse set PM(q) is home-
omorphic to an invariant set M(q) of the system (3).
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Proof. We shall show that if the transition i → j at vertex A is expanding, then

||MA(x) ≥ ||x|| (11)

for ||x|| sufficiently small (see (7)). This implies that trajectories in M(q) cannot converge
to the origin. By Corollary 3.3 every trajectory in PM(q) has a homeomorphic image in
M(q).

It remains to show (11). By (6) MA(x) = Cx

1+xj/(−pj)
. Also recall that xj/(−pj) =

|xj|/|pj| > 0 since the transition is through the wall xj = 0. Then

||Cx|| = (x1 − (p1/pj)xj)
2 + . . . + ((pi/pj)xj)

2 + . . . + (xn − (pn/pj)xj)
2

= (
∑

k 6=j

(pk/pj)
2)x2

j +
∑

k 6=i,j

x2
k + 2

|xj|

|pj|
(

∑

k 6=i,j

pkxk)

Let us denote ε := |xj

pj
| and assume that ε << 1. This corresponds to x close to zero. We

compute

||MA(x)|| =
1

1 + ε
[(

∑

k 6=j

p2
k)ε

2 +
∑

k 6=i,j

x2
k + 2ε(

∑

k 6=i,j

pkxk)]

= (1 − ε + ε2)[(
∑

k 6=j

p2
k)ε

2 +
∑

k 6=i,j

x2
k + 2ε(

∑

k 6=i,j

pkxk)]

=
∑

k 6=i,j

x2
k + ε[2(

∑

k 6=i,j

pkxk) −
∑

k 6=i,j

x2
k]

+ ε2[
∑

k 6=j

p2
k +

∑

k 6=i,j

x2
k − 2(

∑

k 6=i,j

pkxk)].

Let us denote L := 2(
∑

k 6=i,j pkxk) −
∑

k 6=i,j x2
k and observe that

||x|| =
∑

k 6=i,j

x2
k + ε2p2

j .

Then we have

||MA(x)|| =
∑

k 6=i,j

x2
k + L(ε − ε2) + ε2

∑

k 6=j

(pk)
2 + O(ε3)

>
∑

k 6=i,j

x2
k + ε2

∑

k 6=j

(pk)
2

>
∑

k 6=i,j

x2
k + ε2p2

j

= ||x||

where we used that for sufficiently small x the quantity L > 0 if and only if (9) holds. The
second inequality follows from (10). 2

Proof of Corollary 2.4 Let us fix a wall W of an orthant O in the set OA, which corre-
sponds to an edge in the subgraph G(A). We consider an R-flow acting on the intersection
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U := W ∩ O ∩ D. Since OA is an attracting set of orthants, it is easy to see that W is a
Poincaré section of the Morse set M := PM(A) under the R-flow. By (8) the map from an
incoming wall to an outgoing wall in R-flow is y = Cx. A Poincaré map π on U is a finite
composition of such maps and thus it is linear. Since OA is an attracting set of orthants, π
maps the boundary of U into U. By the Brouwer fixed point theorem ([15]) there is a fixed
point of π in U . Since π is linear there is at most a finite number of fixed points in U , which
correspond to eigenvectors of π. These correspond to periodic orbits of the R-flow.

By Corollary 3.3 for every such periodic orbit of the R-flow there is either a corresponding
periodic orbit of (3) or solutions starting on the corresponding rays go to zero. Since there
is no splitting vertex in G(A) the target point of every orthant O in OA lies in an orthant
V ⊂ OA, which differs from O in one variable. Hence the condition (9) is satisfied for all
x ∈ PM(OA). The result now follows. 2

4 Binary dynamics

In this section we study binary systems. We denote by Xi the hyperplane given by {xi = 0}.
Let O be an arbitrary orthant. We will represent the intersection Xi ∩ O and the sphere
Sn−1 as an n − 2 dimensional simplex. In R3 this amounts to representation of S2 as an
octagon with vertices in vectors (±1, 0, 0), (0,±1, 0) and (0, 0,±1). The intersections with
all Xi are line segments i.e. 1-simplices.

Each n − 2 dimensional simplex Xi ∩ O in Rn can be parameterized as

{x ∈ O | xi = 0,
∑

j 6=i

|xj| = 1}.

We will use this parameterization in what follows.
To describe the dynamics of the R-flow in an orthant O we need to describe a flow induced

map from an arbitrary incoming simplex to an arbitrary outgoing simplex of O.

Proposition 4.1 Fix an arbitrary orthant OP ⊂ Rn and denote the corresponding vertex
in the graph G by P . Choose i ∈ win(P ) and j ∈ wout(P ). Then the simplex

I := {|xj| ≤ |xk| | k ∈ (wout \ {j})},

I ⊂ Xi ∩ OP , is mapped into the simplex

O := {|xi| ≤ |xk| | k ∈ (win \ {i})}

O ⊂ Xj ∩OP by the R-flow. If (wout \ {j}) = ∅ then I = Xi ∩OP and if (win \ {i}) = ∅ then
O = Xj ∩ OP .

Proof. To every u ∈ Xi ∩ OP and k ∈ wout we can associate the time

tk(u) := min{t | ϕ(u, t) ∈ Xk}.
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Observe that any u ∈ Xi ∩ OP such that ϕ(x, t) exits the orthant OP through the face
Xj ∩OP must satisfy tj(u) ≤ tk(u) for all k ∈ (wout \ {j}). We compute the times tk(u) and
tj(u) using (5). By setting xj = 0 and xk = 0, respectively, we get

e−tj = −
pj

xj(0) − pj
, e−tk = −

pk

xk(0) − pk

where pj, pk = ±1 are components of the target point in the orthant OP . Since both j and
k are in wout(P ) we have that xj(0)pj < 0 and xk(0)pk < 0. Then

e−tl =
|pl|

|xl(0)| + |pl|
=

1

|xl(0)| + 1

for both l = j and l = k. Thus etj = |xj(0)|+1 and etk = |xk(0)|+1. Therefore the solutions
starting at simplex I = {|xj| ≤ |xk| | k ∈ (wout \ {j})} exit the orthant OP through the wall
Xj.

Now we look at Xj ∩ OP and see where the points landing on Xj ∩ OP came from. By
(6)

xk =
xk(0) − pk

xj(0)

pj

1 − xj(0)

pj

.

We observe that xj(0)/pj = −|xj(0)| since j ∈ wout and pj = ±1. Thus

xk =
xk(0) + pk|xj(0)|

1 + |xj(0)|
. (12)

For every k ∈ win we have that xk(0)pk > 0 and for such k we can write

|xk| =
|xk(0)| + |xj(0)|

1 + |xj(0)|
. (13)

If the point x came from the incoming hyperplane Xi ∩ OP then

|xi| =
|xj(0)|

1 + |xj(0)|

and from (13)

|xk| =
|xk(0)|

1 + |xj(0)|
+ |xi| ≥ |xi|.

Therefore the set in Xj ∩ OP which got mapped onto from Xi ∩ OP is the simplex O. This
proves the Proposition. 2

The Proposition 4.1 describes how the simplices are mapped from an incoming hyperplane
of an orthant to an outgoing hyperplane of an orthant. In order to understand the invariant
sets in a collection of orthants we need to compose the maps in successive orthants. While
this process is in general very complicated and is the essence of complicated dynamics in
systems (3), we will get a partial answer. Every simplex S which we consider lies in the
intersection of some Xi and our representation of the unit sphere Sn−1. As such, it is defined
by a set of inequalities between n quantities |x1|, |x2|, . . . , |xn|. We associate to every simplex
S its defining set of inequalities I(S). Since S ⊂ Xi, for some i, the set I(S) should include
inequalities |xi| ≤ |xk| for all k, since |xi| = 0 on Xi. Since we consider these inequalities
trivial we exclude them from I(S).

12



Proposition 4.2 Consider a simplex S ⊂ (OP ∩ Xi) given by a set of inequalities I(S).
Then the image of S by the R-flow in the orthant OP is a subset of a simplex Q ⊂ Xj whose
set I(Q) is constructed from I(S) in the following way:

• drop from I(S) all inequalities involving xj

• drop from I(S) all inequalities |xl| ≤ |xm| where l ∈ win(P ), m ∈ wout(P )

• add inequalities |xi| ≤ |xk| for all k ∈ win(P ) \ {i}

Proof. All inequalities involving xj are dropped since simplex Q lies in Xj.
The addition of the inequalities |xi| ≤ |xk| for all k ∈ win(P ) \ {i} follows from Proposi-

tion 4.1.
Recall that if k ∈ wout(P ) then xk(0)pk < 0 and if k ∈ win(P ), then xk(0)pk > 0, where

p is the target point of OP . Then from (12) we have

|xk| =
|xk(0)| + |xj(0)|

1 + |xj(0)|

for k ∈ win(P ) and

|xk| =
|xk(0)| − |xj(0)|

1 + |xj(0)|

for k ∈ wout(P ). Therefore, if |xl(0)| ≤ |xm(0)| and l ∈ wout(P ) we have |xl| ≤ |xm|. Also, if
l ∈ win(P ) and m ∈ win(P ), we have |xl| ≤ |xm|. If however |xl(0)| ≤ |xm(0)| and l ∈ win(P )
and m ∈ wout(P ), we cannot make any statement about |xl| and |xm| in general. By dropping
all these inequalities we get a simplex Q which contains the image of S. 2

We shall define a class of strongly connected components of G for which we can determine
the structure of the corresponding invariant set directly from the subgraph of SCC.

A closed cycle in the oriented graph G will be called a loop. The set N(A) is the set of
all edges adjacent to a vertex A. Given a subgraph L ⊂ G we denote by win(P )/L the set of
edges in the subgraph L which points to a vertex P . Similarly we define the set wout(P )/L

as the set of outgoing edges of P in the subgraph L.

Definition 4.3 We say that a loop L in the strongly connected component H is simple if,
given any splitting vertex A and any other vertex Q ∈ L we have

1. if N(Q) ∩ L ∩ (wout(A)/H) = ∅ then either (wout(A)/H) ⊂ win(Q) or

(wout(A)/H) ⊂ wout(Q).

2. if {j} ∈ N(Q)∩L∩(wout(A)/H) and the edge corresponding to xj = 0 goes from vertex
Q to vertex Q̄, then either (wout(A)/H) ⊂ wout(Q) or (wout(A)/H) ⊂ win(Q̄).

We say that the strongly connected component H is simple if every closed loop in H is
simple.

13



Proposition 4.4 Let A be a splitting vertex in a simple strongly connected component H ⊂
G. Assume that x(t) is a solution of R-flow of a binary system (3), which leaves the orthant
OA through the hyperplane Xj at t = 0, for some j.

If x(t) reenters the orthant OA again at t = T , it will subsequently leave OA through Xs,
where xs is the last variable out of all variables in wout(A)/H which has changed the sign
along the solution x(t), 0 ≤ t ≤ T .

Proof. The solution x(t) between time 0 and time T sweeps through a set of orthants,
whose corresponding edges in the graph H form a loop L. Since the first edge of the loop
L corresponds to crossing the hyperplane xj = 0, there must be at least one other edge
corresponding to crossing xj = 0, before the loop L closes up. If there is an edge xl = 0 in
the loop L, with l 6= j, then it must occur even number of times in L. In any case, there
is at least one edge in L, apart from the first edge xj = 0, which corresponds to xl = 0, for
some l ∈ wout(A)/H . Assume that xs = 0 is the last such edge in L and that the edge xs = 0
goes from a vertex Q to a vertex Q̄. Let the next edge after xs = 0 along L correspond to
xu = 0. By Definition 4.3.2 either (wout(A)/H) ⊂ wout(Q) or (wout(A)/H) ⊂ win(Q̄). In the
first case by Proposition 4.1 the simplex which maps onto Xs ∩ OQ is a subset of

S := {|xs| < |xj| | for all j ∈ wout(A)/H}. (14)

In the second case, the Proposition 4.1 implies that the simplex which maps onto Xu ∩ OQ̄

is again a subset of the simplex S.
By assumption there is no other transition xk = 0 with k ∈ wout(A)/H in the remaining

part of the loop L. Therefore, in every remaining vertex Q along the loop, the first case of
Definition 4.3 applies. By Proposition 4.2, the inequalities (14) are preserved at every such
vertex. Proposition 4.1 now implies that the solution x(t) will exit orthant OA through Xs

upon arrival at t = T . The proof is complete.
2

Proof of Theorem 2.6 Fix a simple strongly connected component H of G. Let x(t)
be an arbitrary trajectory in the invariant set InvH. Let U(x) be a sequence of of orthants
through which the solution x(t) passes for t ≥ 0 and let Υ(x) be the corresponding sequence
of vertices in the graph H. If x travels through an orthant OA corresponding to a splitting
vertex A, in each subsequent visit, by Proposition 4.4, its trajectory is completely determined
by the previous visit in orthant OA. Since there are finitely many vertices and edges in the
subgraph H, the sequence Υ(x) must be periodic. Furthermore, its length is bounded above
by product of number of vertices and number of edges.

For every periodic sequence of orthants visited we can use the argument of the proof
of Corollary 2.4. The corresponding Poincare map is linear and there is at most finitely
many periodic orbit of R-flow passing through the fixed periodic sequence of orthants. Since
the number of admissible periodic sequences of orthants is bounded, as both their length is
bounded and the number of ortants in H is bounded, there may be at most finitely many
periodic orbits in InvH for the R-flow. By Corollary 3.3 the number of periodic orbits in the
full flow of (3) is less or equal to the number of periodic orbits in R-flow. This finishes the
proof. 2

Proof of Corollary 2.7
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The subgraph corresponding to a one-split attractor is a simple SCC , since the Defini-
tion 4.3.2 always applies with wout(A) ⊂ win(Q̄). 2
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