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ABSTRACT
Many insects are able to sense their surrounding fluid en-

vironment through induced motion of their filiform hairs. The
mechanism by which the insect can sense a wide range of input
signals using the canopy of filiform hairs of different length and
orientation is of great interest. Most of the previous filiform hair
models have focused on a single, rigid hair in an idealized air
field. We have developed [1] a model for a canopy of filiform
hairs that are mechanically coupled to the surrounding air.The
model equations are based on the penalty immersed boundary
method. The key difference between the penalty immersed bound-
ary method and the traditional immersed boundary method is
the addition of forces to account for density differences between
the immersed solid (the filiform hairs) and the surrounding fluid
(air). In this work we validate the model by comparing the model
predictions to experimental results on cricketAcheta domestica
cercal system.

NOMENCLATURE
cerci Cone-like appendages at the rear end of a cricket.

filiform hair Thread-like hair.

∗Address all correspondence to this author.

Introduction
Many biological systems test the limits of our understanding

of fluid-structure interactions. Insect air-current receptors serve
as an example of this challenge. These receptors consist of multi-
ple thread-like filiform hairs (see figure 1) that move in response
to air current. Each hair is attached to a sensory neuron, that
transmits the information about the air currents to the brain. The
principal difficulties in modelling the fluid-structure interaction
in this case are the large number of the hairs and their essen-
tially 1-dimensional character. While the effect of the moving
fluid on a single hair can be modelled in a relatively straightfor-
ward manner, the effect of the moving hairs on the motion of
the fluid is a more formidable challenge. The resulting viscous
coupling between the hairs is biologically very important,since
it may have a substantial effect on the function of the sensory
system and hence very likely poses an evolutionary constraint on
development of this system.

In this contribution we review a penalty immersed boundary
method, introduced in [1], which allow us to model a fully in-
teracting set of hairs in a fluid. The key difference between the
penalty immersed boundary method and the traditional immersed
boundary method is the addition of forces to account for density
differences between the immersed solid (the filiform hairs)and
the surrounding fluid (air). Our model has a single free parame-
ter which we fit to reproduce the data from a cercal system of a
cricketAcheta domestica.

A number of mathematical models have been developed to
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help describe the relationship between filiform hair structure and
its response to various stimuli. In order to compare and con-
trast our work with that of previous researchers, we briefly re-
view some of these models.

Single hair models
One of the earliest models was proposed in a series of papers

by Shimozawa and Kanou [2, 3]. The model was developed by
assuming that the filiform could be approximated as an inverted,
rigid pendulum with both a viscous- and a spring-type elements
to resist angular displacement. The equation of motion describ-
ing the motion of the filiform hair under this assumption is

I ·
d2θ
dt2

+R·
dθ
dt

+S·θ = N, (1)

whereI is the moment of inertia of the hair,R is the viscous re-
sistance within the hair base,Sis the spring stiffness, andN is the
torque applied by the moving air. TheR andSparameters were
determined through experiments on filiform hairs [3–5], andN
was approximated using Stokes’s solution to flow above a large
oscillating plate. In this approach the cercus surface was approx-
imated as an infinite plane.

In a series of papers [6–8] Humphreyet al. modified Shi-
mozawa’s model. The principal differences between the mod-
els are the addition of a ‘virtual mass’ term that captures the ef-
fects of fluid inertia and the use of an alternative theory (also by
Stokes) for estimating the drag force on the pendulum. In this ap-
proach the underlying surface is modelled as an infinite cylinder.
However, neither Shimozawa nor Humphrey in this early work
model viscosity mediated interactions between the hairs.

The set of models describing single hair motion under the
fluid motion is now well established. These models have been
used more recently by Shimozawa et al. [4, 5] to examine the
effects of varying the filiform hair shape on its motion.

Interactions between the hairs
As mentioned in the introduction, modelling viscosity medi-

ated coupling between the hairs presents certain challenges. The
models addressing the interaction between the hairs has been de-
veloped only very recently. Bathellier et al. [9] developedmeth-
ods for modifying the idealized flow field around a hair to ap-
proximate the viscous dampening of the hair on the fluid in order
to approximate hair-to-hair coupling. This model is limited to
interactions between two hairs.

Most recently, Cumminset. al.[10] developed the first com-
prehensive model that allows study of fluid mediated viscousin-
teraction between arbitrary number of hairs. Their model builds
on Humphrey’s model in treating the cercus as an infinite cylin-
der and allowing only periodic fluid motion in the axial direction.

Figure 1. FILIFORM HAIRS ON THE CRICKET CERCUS. THE

CRICKET HAS A PAIR OF ABDOMINAL CERCI THAT CONTAIN 500-

1000 HAIRS EACH. Foto courtesy of J.P. Miller, Center for Com-
putational Biology, Montana State University)

The fluid velocity is then a sum of an explicit solution of oscillat-
ing Navier-Stokes equations over an infinite cylinder and a per-
turbation velocity due to the presence of hairs. The perturbation
velocity is computed using steady Stokes flow approximationto
Navier-Stokes equations. Because of the steady state approxima-
tion, the model is accurate only for low and moderate frequencies
of the driving fluid and a for relatively short distances between
the hairs.

Summary of the existing models In summary, the
following assumptions are used in models of filiform hair mo-
tion:

1. the hairs are rigid, linear oscillators,
2. angular motion of the hair is restricted by a viscous- and

spring-type resistance elements at the base,
3. the cercus is a smooth cylinder or infinite plane,
4. often, there is no hair-to-hair interaction, and
5. the bulk flow is oscillatory.

The model of the cercus and filiform hairs presented in the
next section was developed to avoid making some of the assump-
tion in the Humphrey and Cummins models. Specifically, arbi-
trary driving flow from arbitrary direction is allowed, the hairs do
not have to be completely rigid, and the bulk flow is determined
by solving the Navier-Stokes equations rather then its approxi-
mation, or assuming a specific analytical form. The hair-to-hair
viscous coupling is captured.

While the hair response to a bulk oscillatory flow is an im-
portant problem, there are examples of small scale flow struc-
tures, such as microturbulence, being used for communication.
Eventually, a model that can capture these structures in thefluid
may improve our understanding of cricket-to-cricket communi-
cation. Our model is a step in this direction.
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We fit our model to data from common cricket (Acheta do-
mestica), which we describe next.

Cercal sensory system in a cricket
A cerci of an adult crickets contains 500-1000 filiform hairs

each [11]. The length of the wind-receptor hairs vary between
30 and 1500µm[12], and the hair density is higher near the ab-
domen relative to the posterior end of the cercus. The hair di-
ameter varies not only between different hairs (from 1 to 9µm),
but also from the tip to the base (with the square root of dis-
tance from the tip, [12]). Even though the size and shape of the
filiform hairs is highly variable, the inter-animal variability is ap-
parently extremely low [11, 13, 14]. Filiform hairs are placed in
oval shaped asymmetrical sockets. The hair pivots in the sock-
ets; the structure of the base of the hair within the socket acts as
a hinge, and constrains the motion of the hair to a single plane.
This plane varies from hair to hair [11, 13, 14]. At the base of
each filiform hair is a single mechanoreceptor neuron that senses
the deflection of the hair. The cricket receives informationabout
the velocity, frequency, and direction of air movement through
the array of filiform hairs.

Penalty Immersed Boundary Method
In this section we describe the penalty immersed boundary

method. The equations of motion for a three-dimensional vis-
cous incompressible fluid are [15]

ρ
(

∂u
∂t

+ u ·∇u
)

= −∇p+µ∆u+ f, (2)

∇ ·u = 0, (3)

whereu andp are the velocity and pressure of the fluid. At 20oC
the viscosity (µ) and density (ρ) of air are 1.8×10−5 kg/(ms)
and 1.2 kg/m3 respectively. Selecting a characteristic velocity,
V0, of 0.01m/sand a characteristic length scale,L, of 1×10−3 m
gives a Reynolds number of

Re=
LV0 ρ

µ
= 0.67. (4)

A more appropriate characteristic length scale may be the diame-
ter of the hair (L = 5×10−6 m), which givesRe= 3.3×10−3. In
either case, the term on the left side of equation 2 is likely to be
small, but it will be retained because it does not contributesig-
nificantly to the computational costs of the algorithm employed

here. The body force term,f, on the left side is going to be sig-
nificant in what follows because this term will capture the effects
of the immersed, elastic boundary with mass.

The immersed boundary method [15–18] treats the entire
domain as a fluid. One- and two-dimensional boundaries without
any volume are then ’immersed’ in that fluid and coupled to the
fluid through a force balance and a velocity matching condition.
Originally, the immersed boundary method was developed to
model the interaction between a tissue and a biological fluid. Be-
cause tissues typically have a density equal to that of biological
fluids (i.e., approximately the density of water), the mass of the
tissue is treated implicitly because it is the same as the fluid now
occupying that volume. Hence, the only force that the immersed
boundary applies to the fluid arise from the elastic stress ofthe
material. The filiform hairs of present interest, however, have a
much higher density than the surrounding air, and an additional
body force must be applied to the fluid to account for the inertia
of the hairs and the force of gravity. One mechanism for handling
the boundary mass is to locally increase the density of the fluid
(i.e., air) so that it is equal to the mass of the immersed boundary,
but this approach makes Fourier methods inapplicable [19].An-
other approach, which is used here, is to introduce duplicate im-
mersed boundary points (i.e., a second immersed boundary) with
mass wherever it is needed. Thismassiveboundary accounts for
inertia and the gravitational force, and it is connected to the elas-
tic boundary using a strong restoring force. In summary, there
are two immersed boundaries, which are tightly linked together,
with one boundary without mass representing the elastic forces
in the solid and the other massive boundary representing thein-
ertial and gravitation forces. A detailed derivation and analysis
of this technique has been published elsewhere [20], and only the
details relevant to modelling filiform hairs are presented below.

The velocity of the fluid,u(x), is expressed in an Eule-
rian reference frame, and it is defined on the fixed fluid grid.
The immersed boundary is based on a Lagrangian reference
frame, and its position in timet is given byX(r,s,t) for the 2-
dimensional boundary representing the cercus and byX(s,t) for
the 1-dimensional boundary representing the hairs. We willuse
the more general notationX(r,s,t) to explain concepts applicable
to both types of boundary. The body force per unit volume on the
fluid, f, is related to the force density in the immersed boundary,
F, by

f(x,t) =

Z

F(r,s,t)δ(x−X(r,s,t))drds, (5)

whereδ is the 3-dimensional Dirac delta function. In calculations
we use discrete or distributed delta function, with non-zero sym-
metric support centred atX(r,s,t) that is large enough so that it
overlaps with the nearest fluid points. Equation 5 is the key equa-
tion that handles the interaction between the moving immersed
boundary (hairs) and the fluid.
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The immersed boundary force density can be divided into
two parts:FE representing the elastic stress force andFK repre-
senting the inertial gravitational force. The elastic contribution
is given by:

FE = −
∂E
∂X

, (6)

whereE(X) is the elastic energy function. Since each compo-
nent of a 1-D immersed boundary represents a hair, that can be
modelled as a 1-D rod, we use the following energy functional:

E(X(s,t)) =
1
2

cs

Z

(∣

∣

∣

∣

∂X
∂s

∣

∣

∣

∣

−1

)2

ds+
1
2

cb

Z

(

∂2X
∂s2

)2

ds,

(7)
where the first term, containingcs, represents stretching or com-
pression of the rod and the second term, containingcb, represents
the bending of the rod. Stretching of the filiform hairs is notsig-
nificant in the problems of interest, so we usecs ≫ cb. In com-
putations we makecs = 106cb. The parametercb must be deter-
mined from experimental data. For the 2-D immersed boundary,
that represents the cercus, we select bothcs andcb very large. As
a consequence the 2-D boundary is practically immobile.

The inertial force play a key role in response of the hair to
the motion of the fluid. We will incorporate the gravitational
force FK using the massive immersed boundary. The equation
for the massive immersed boundary is Newton’s law (F = ma),
and the only forces are gravity and a stiff spring force linking
the massive and elastic immersed boundary. The location of the
massive immersed boundary is given byY(s, t), so Newton’s law
takes the form:

M(s)
∂2Y
∂t2 = −FK(s, t)−M(s)g , (8)

whereg is the gravitational acceleration andM(s) is the mass
density of the 1-D immersed boundary. The massive and elastic
1-D boundaries are linked by stiff springs with zero rest length
and spring constantK. Therefore, the force density for the mas-
sive boundary is

FK = K(Y(s, t)−X(s, t)) . (9)

Larger values ofK cause the two boundaries to be linked more
closely, butK cannot be set to infinity. Suggested values forK
and the accuracy implications of different values are discussed
in [20].

In additional to matching the forces between the fluid and
the immersed boundary, the velocity of the boundary must also

be approximately equal to the velocity of the fluid. As with the
forces described previously, a discrete form of the Dirac delta
function is used handle the interaction between the fluid andsolid
resulting in the following matching condition:

∂X(r,s,t)
∂t

=

Z

u(x,t)δ(x−X(r,s,t))dx . (10)

Notice that matching the velocity of the 2-D boundary with that
of the fluid, coupled with elastic energy with highcs andcb re-
sults in no-slip boundary condition on the 2-D boundary.

In summary, equations (2-10) are the full set of equations for
the penalty immersed boundary method used here. The only sig-
nificant, unknown parameter needed to model filiform hair mo-
tion iscb, which must be determined from experimental data.

A number of different numerical approaches have been de-
veloped for approximately solving equations systems similar to
the one presented in this section [17,21–23]. The formal second-
order method used here was originally described in [24] and [18],
and a detailed application to the penalty immersed boundary
method can be found in [20]. The termformal is used because
full second-order accuracy is not achieved due to the jumps in
the velocity derivative across the immersed boundary. We want
to make two additional remarks before briefly describing theal-
gorithm: (1) forward differencing is used for the time derivatives
and second-order accuracy is achieved using the midpoint rule so
the algorithm presented below is completed twice per time step
(i.e., second-order Runge-Kutta), and (2) second-order central fi-
nite differences are used for both first and second derivatives in
space.

Numerical Algorithm.
Givenu, X, andY from a previous solution or initial condi-

tions, the following algorithm is repeated twice each time step.

1. Update the position of the massless boundary (equation 10).
2. Calculate the force density, which is the sum of the elastic

force density (equation 6) and the massive boundary (equa-
tion 9).

3. Convert from the force density defined on the Lagrangian
grid to forces applied to the Navier-Stokes equations on the
Eulerian grid (equation 5).

4. Update the fluid velocity by solving the Navier-Stokes equa-
tions (2,3) using a Fast Fourier Transform (FFT). To accom-
plish this, the velocities from the previous time step are used
in the nonlinear convection term (u ·∇u).

5. Update the massive boundary (equation 8).

The use of the FFT algorithm requires periodic boundary con-
ditions. This is not a significant limitation because we are able
to immerse any boundary we require in the the fluid domain and
impose ‘inflow velocities’ as described in the following section.
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Figure 2. DOMAIN WITH TWO KINDS OF IMMERSED BOUNDARIES.

THE FLUID DOMAIN CONTAINING TWO DIMENSIONAL SURFACE

OF A CERCUS AND FOUR ONE-DIMENSIONAL FILIFORM HAIRS OF

VARIOUS LENGTHS. THE DISTANCES ARE GIVEN IN CENTIMETERS.

Model specification for cercal filiform hairs
The model domain is a cuboid with a height of 3mm, a depth

of 3 mm, and a length of 6mm. The finite difference nodes are
equally spaced in all three dimensions, and a typical mesh has
32× 32× 64 nodes. A mesh with 64× 64× 128 nodes gave
nearly identical results. Figure 2 shows the two different types of
boundaries immersed in the fluid domain. The two-dimensional
cylindrical surface represents the cerci. As explained above, the
combination of highcb andcs, with the velocity matching im-
poses no-slip boundary condition on the cercus. This boundary
does not extend out to the edges of the domain because then the
no-slip condition would conflict with the uniform inflow veloc-
ity.

The second type of boundary are one-dimensional filiform
hairs that are attached slightly below the cerci surface andare
sloped at approximately 80o relative to the cerci surface. The
hairs are massive with the mass density set to be that of water[6].
The two bottom nodes on the hair (nearest the center of the cerci)
are fixed so that the hair cannot freely rotate without an associ-
ated energy cost.

To limit the motion of the hairs to a single plane with a nor-
mal vectorn, the velocity of the fluid on the surface of the hair is
projected onto the plane of allowed motion by

up = u− (u ·n). (11)

The projection has no impact on the velocity field, but the hair
only ‘feels’ the projected velocity,up, pushing it in an allowed
direction. This is equivalent to projecting out any hair movement
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Figure 3. MAXIMAL EXCURSION OF THE HAIR AS A FUNCTION OF

THE DRIVING AMPLITUDE FOR 700µm HAIR AT 50HZ DRIVING FRE-

QUENCY. THE LINE INDICATES THE RESULTS OF THE SIMULATION,

THE BLUE DOTS REPRESENT THE DATA.

that is not in the allowed plane of motion. Finally, the nodal
spacing for the immersed boundaries are set to be less than half
the nodal spacing in the fluid to avoid ‘leaks’.

The inflow velocity is set by applying an external force per
unit volume on the fluid that is equal to

f0(x,t) =

{

α(u0(t)−u(x,t)) , x ∈ Ω0

0 , otherwise ,
(12)

whereu0(t) is the desired velocity andΩ0 is a set points on two
grid planes on which we want to control the velocity. For the in-
sects, we are typically interested in temporally oscillating veloc-
ities which may approximate velocities created by the flapping
wings of a digger wasp as it approaches a cricket. As a result,u0

is typically defined by:

u0(t) = U ·sin(2πωt) (13)

whereω is the frequency of the oscillation andU is the peak
velocity (e.g., 1cm/s).

Results
The first set of numerical experiments were designed to de-

termine the bending stiffnesscb of the cricket hair as a function
of position along the length of the hair. This is the one unknown
parameter in the model. It has been well established experimen-
tally, that the hair is relatively rigid and bends primarilyat the
base and beneath the surface of the cerci. We chose the following
function to describe the bending stiffness of the cricket filiform
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Figure 4. MAXIMUM DEFLECTION AS A FUNCTION OF DRIVING

FREQUENCY. THE DRIVING VELOCITY AMPLITUDE IS FIXED AT 10

cm/sec. THE LINE INDICATES THE RESULTS OF THE SIMULATION,

THE BLUE DOTS REPRESENT THE DATA.

hair:

cb =

{

0.004 if x < 0.2
0.004+0.04(1−exp(−(10x−0.2)/L) if x≥ 0.2

(14)

The choice of the form comes from [1]. While the choice (14)
is based on the present data from measurement in cricketAcheta
domestica, the model in [1] is based on published data by Kuma-
gai et al. [4] in a different species of cricketGryllus bimaculatus.
The only difference between the choice ofcb in these two species
is that forGryllusnumbers 0.004 in equation 14 are replaced by
0.002 and 0.04 by 0.02. However, the functional form (14) is
identical forGryllus andAcheta. This implies that the stiffness
of the hairs inAchetaappears to be twice as large as the stiffness
in Gryllus. This could be the result of different developmen-
tal constrains, or it could be an artifact of different experimental
protocols. More experimental work is needed to disambiguate
these factors.

With cb fixed we proceed to test our model against the data.
In the first figure 3 we keep frequency of the stimulus con-

stant at 50 Hz and the hair length is 700µm. We change the am-
plitudeU0 of the sinusoidal background velocity and we measure
the maximal excursion of the moving hair. Since the data have
been collected in linear regime where the driving velocity am-
plitudesU0 are low enough so that the hairs do not come close
to their physically imposed limits of motion, we expect thatthe
maximal excursion will change linearly with the driving ampli-
tude. We see that the model (line) matches quantitavely the data
(blue circles) well. Also notice that our model also matcheslin-
ear tendency in the data, that becomes slightly tapered at high
driving amplitudes.

In the figure 4 we graph the maximum deflection of a
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Figure 5. MAXIMAL DEFLECTION AS A FUNCTION OF LENGTH OF

THE HAIR. THE INPUT IS FIXED WITH MAXIMAL VELOCITY AMPLI-

TUDE 10cm/sec AND FREQUENCY 50Hz. THE LINE INDICATES THE

RESULTS OF THE SIMULATION, THE BLUE DOTS REPRESENT THE

DATA.

700µm hair as a function of the frequency of the driving in-
put, while keeping its maximal velocity amplitude constantas
U0 = 10cm/sec. Both graphs exhibit same qualitative features.
Data show maximal deflection around 65 Hz while the simulation
has maximum at 80Hz. This difference and the slightly larger
deflections seen overall in the model are probably due to the uni-
form hair diameter used in the model. The real hairs have tapered
parabolic shape [12] and thus they present smaller profile tothe
moving air.

In figure 5 we fix the input (maximal velocity amplitude is a
4 cm/sec and frequency at 50 Hz) and change the hair length
(horizontal axis). On the vertical axis we graph the maximal
deflection of the hair. The fit for both the shorter hairs and the
long hair is very good.

Finally, in figure 6 we graph the phase shift as a function of
frequency, while the maximal velocity amplitude of the input is
fixed at 10 cm/sec. Here the phase shift is the difference between
the phase of the driving signal and the phase of the response of
the hair. We rescale the phase so that it lies on a unit circle and
so the horizontal axis should be viewed mod 1.

Conclusions
In this paper we reviewed a penalty immersed boundary

method, that was originally proposed in [1]. This method al-
lows simulation of a large number of filiform hairs and is a first
step to asking questions about the function of the entire sensory
systems consisting of the filiform hairs. In the first paper [1] we
fit the model to the data from cricketGryllus bimaculatus, while
in this contribution we fit the data to a different species of the
cricketAcheta domestica. We observed that a change in a single

6 Copyright c© 2007 by ASME



30 40 50 60 70 80 90 100

−0.4

−0.2

0

0.2

0.4

0.6

Frequency (Hz)

P
ha

se
 S

hi
ft 

(le
ad

)

Figure 6. PHASE SHIFT AS A FUNCTION OF FREQUENCY. THE
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parameter that models stiffness of the hairs can account forthe
difference between these species. This shows that our method is
very robust, since it is able to fit different data sets with the same
structure of the equations.
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