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Abstract. It is known [8,11,16,26] that phase locking can entrain frequency information
when the leaky integrate-and-fire (IF) model of a neuron is forced by a periodic function.
We show that this is still the case when the IF model is made more biologically realistic. We
incorporate into our model spike dependent threshold modulation and refractory periods.
Consecutive firing times from this model and their respective interspike intervals are related
by an annulus map. We prove a general theorem concerning orientation reversing annulus
twist homeomorphisms, which shows that our map admits a unique rotation number. This
implies, in particular, that chaotic behaviour is not possible in our model and phase locking
is predicted.

1. Introduction

One of the central questions in neuroscience is how the brain represents and pro-
cesses information. This process involves very large collections of highly inter-
connected neurons and is difficult to tackle in this generality. A simpler version of
this question asks how this same process is performed by a single neuron. It is not
clear to what extent it is reasonable to expect that the behaviour of a single neuron
can give insight into the function of a large ensemble of neurons. However, since
only the measurements from single neurons were technologically possible until
relatively recently, neuroscientists have studied single neurons extensively and a
great deal is known about them. One of the phenomena observed on this level is
that of phase locking. In neuroscience, what is often meant by this term is a stable
matching of a post-stimulus time histogram (PSTH) of spikes to peaks in the input
signal. A PSTH can be interpreted as an approximation of the probability of a spike
following the stimulus. This notion does not require periodic input, but does require
a repeated stimulus, so that one can form the PSTH.
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One mathematical model of this phenomena requires periodic input and a deter-
ministic model which produces spikes. Different models [8,11,15,17,21,36,26,20]
give rise to different maps which relate consecutive spikes, but for all these maps
one can define a rotation number, ρ, that counts average phase rotation per spike.

If this number is unique and rational
(
ρ = p

q

)
, then the map admits a stable q-

periodic point, whose period is completed in p periods of the driving input. When
the system settles to such a stable periodic point it fires q times per p periods,
thus exhibiting matching frequency of firing to the frequency of the input. Further,
since these periodic points are stable, they will persist under small perturbations
and so this behaviour is “locked” under small changes in parameters. Such phase
locking has been shown to exist for periodic input to the integrate-and-fire model
of a neuron [26,16,17,33].

The leaky integrate-and-fire (IF) model of a neuron, introduced by Lapicque [29]
almost hundred years ago, is one of the simplest models of a spiking neuron. In
this model, the state of the neuron is modelled by the variable u(t). The model is
forced by some stimulus s(t) and integrated until u(t) reaches a constant threshold
�. The time t such that u(t) = � is considered a firing time, at which the variable
u(t) is reset to zero and integration begins anew. To model the permeability of real
neurons, a leak parameter σ ≥ 0 is included. We denote {τn}∞n=0 to be the set of
discrete times at which the model fires, not to be confused with the continuous time
t . The model is then described by a linear differential equation with a threshold

du

dt
= −σu + s(t) (1)

u(t) = � ⇒ u(t+) = 0

Keener et. al [26] investigated the behaviour of the IF model with constant threshold
when forced by a periodic input. Following their lead we will consider a periodic
input of the form

s(t) = S(1 + B cos(t))

where S and B are non-negative scaling parameters. We will ignore the case S = 0
since this is equivalent to the input s(t) = 0 for which firing never occurs. Also,
we consider only the 2π periodic case since for any other period a simple transfor-
mation of time in (1) can transform the system into a 2π periodic one.

When the IF model (1) is forced by this input, it is possible to construct an
implicit function that relates consecutive firing times. This map was originally
introduced in [38] and was subsequently studied extensively in Keener et. al [26].
In the latter paper, it was shown that given certain invertibility criterion this function
could be solved explicitly in the form

τn+1 = f (τn).

For this map, they found that f (τ + 2π) = f (τ) + 2π and thus f is a lift of a
degree one circle map. For such a map the rotation number ρ can be defined

ρ(f ) = lim
n→∞

f n(τ)

2πn
.
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Fig. 1. Representative examples of A) the classic IF model with constant threshold and B)
the modified version used in this paper. Note that the next firing time is the first intersection
of the two variables.

In their case, the rotation number is independent of the initial condition τ [26]. Con-
sequently, when the rotation number of the induced mapping is rational, ρ = p

q
,

then the corresponding IF model is q : p phase locked.
The IF model can be thought of as a reduction of more biologically realistic

models such as the Hodgkin-Huxley model [1]. Like any model, despite its simi-
larities the IF model fails in many ways to mimic the behaviour of real neurons.
This is to some extent caused by the simplicity of the integrating mechanism, but
also by the simple form of the threshold.

The goal of this paper is to include additional features into the IF model which
better model the behaviour of a real neuron. In the first part, we will incorporate
both absolute and relative refractory periods and in the second we add modulation
of the threshold by the length of previous interspike interval. To define these terms,
recall that during the absolute refractory period a neuron cannot fire [28] . After
this period, during the relative refractory period the neuron can fire, but only if the
input is very large. Interspike interval threshold modulation [28] is a phenomena
where the threshold is lowered if there was no spiking for a long time (i.e. the
preceding interspike interval is large) and the threshold is increased if the preced-
ing interspike interval was short. This characteristic can also be thought of as a
simplified version of adaptation. Adaptation is a well established and long known
characteristic of neural cells that dates back to Adrian and Zotterman [2]. Recently,
Azouz and Gray [4] performed in vivo experiments demonstrating a relationship
between the firing threshold and previous firing times that is qualitatively similar
to the interspike interval threshold modulation studied in this paper.

Different combinations of these features have been used in integrate-and-fire
models previously. In particular, adaptation has been modelled via dynamic thresh-
olds extensively in the past [13,19,34,35,39].

We approach this topic with a model as general as possible and focus on the
phase locking properties inherent to this model. However, it is important to note that
our goal is not to create a quantitative model of refractory periods and adaptation.
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Instead, we will focus on the behaviour of the IF model when it is constrained to
exhibit the qualitative nature of these features.

We begin modelling this behaviour by considering a non-constant threshold
function, g(t, �n) where �n = τn − τn−1 is the length of the preceding interspike
interval. This threshold function will be reset after each spike and therefore it takes
the form g = g(t − τn, �n). We assume that:

1. There is a �abs > 0 such that the function g(t) for t ∈ [τn, τn + �abs] is
sufficiently large so that no firing can occur during this time period.

2. After τn + �abs , the threshold function will decrease monotonically to some
base value �. We will not define relative refractory period precisely, as we will
not use this notion mathematically. Roughly, it corresponds to an interval after
which the threshold has decreased to values comparable to �. Thus,

g′ = ∂g

∂t
< 0

lim
t→∞ g(t) = � (2)

For the remainder of this paper, we denote g′ to be the partial derivative of g

with respect to t .
3. To model interspike interval threshold modulation we assume that

∂g

∂�n

< 0 (3)

so that “large” previous interspike intervals lead to lowered threshold values
and consequently quicker spiking and vice versa.

4. We assume that when evaluated at the time of fire τn+1 we have
∣∣∣∣
∂g

∂t

∣∣∣∣
t=τn+1

>

∣∣∣∣
∂g

∂�n

∣∣∣∣ (4)

Notice that at t = τn+1 we have

g = g(τn+1 − τn, �n) = g(�n+1, �n).

Therefore we can interpret the assumption (4) as the requirement that the effect
on the threshold function due to the most recent interspike interval should be
greater than that of previous interspike intervals.

These assumptions are quite general. We do not assume a particular form of the
threshold function g and all assumptions are biologically motivated. Once again,
we emphasise that the ambiguity concerning the threshold function g allows our
results more flexibility and breadth in their application.

Our main goal is to study the behaviour of the model (1) with the new thresh-
old function g when it is forced by a periodic input. We want to emphasise that
one should not expect that the results of Keener et. al. [26] would automatically
generalise to our problem with a non-constant threshold function. For instance, the
standard IF model can only fire when du

dt
≥ 0. Due to the dynamic nature of the
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threshold function g, this is not true in our case. As a result, the set of eligible firing
times is larger in magnitude and unique rotation number is not necessarily guaran-
teed. Furthermore, inclusion of interspike interval threshold modulation requires a
second variable which transforms our problem from the circle map f to an annulus
map F . This is also a non-trivial extension of the work of Keener et. al [26].

For a circle map f , recall that when f is not monotone, then it is possible that
the rotation number depends on initial condition [25]. A similar fact is known for
area-preserving annulus maps satisfying a twist condition [25]. In these cases, all
such rotation numbers belong to a closed interval called a rotation interval [25,
30]. For every rational rotation number the corresponding map on the circle has
a q-periodic point, and to each irrational rotation number corresponds a non-peri-
odic trajectory. The presence of a nontrivial rotation interval has been used as an
indicator of a chaotic dynamics [27] and is often referred to as rotational chaos.
The presence of such chaos has been observed in the Hodgkin-Huxley model [3],
the Van-der Pol Oscillator [18], a leaky IF model with threshold fatigue [14] as
well as in certain live neurons [22]. Intuitively, mathematical phase locking is not
compatible with chaotic dynamics.

In the first part of this paper we will show that the map f for a non-constant
threshold with refractory periods still admits a unique rotation number. Thus, a
non-trivial rotation interval and rotational chaos are not possible. In the process
of revising this paper we have learned of recent results due to Brette [8], where
the monotonicity of the function f was established under a quite general set of
assumptions. We discuss the relationship between these results and our results in
the conclusion.

In the second part of the paper we study a general threshold function that incor-
porates interspike interval threshold modulation in addition to refractory periods.
In this case, the model will give rise to an annulus map. Again, we show that if the
annulus map arising from the IF model is continuous, then the map admits a unique
rotation number. Therefore chaos is ruled out and phase-locking is predicted. We
prove the last result using a novel theorem about orientation reversing annulus
maps, whose second iteration satisfies the twist condition.

2. Preliminaries

In this section, we will consider a threshold function g(t − τn, �n) which satisfies
the assumptions stated in the previous section.

Note that the alteration of the threshold function g does not affect integration
of the IF equation (1) and as a consequence its solution is (see Keener et. al [26])

u(t) = S

σ
(1 − e−σ(t−τN )) + SB

σ
sin β{sin(t + β) − sin(τN + β)e−σ(t−τN )} (5)

where

sin β = σ√
1 + σ 2

.

The threshold function is reset at each firing time and therefore it takes the form
g(t − τN , �n). The next firing time occurs for the smallest value of t = τn+1 for
which
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u(τn+1) = g(τn+1 − τn, �n)

Thus, the condition for firing is an implicit function of three variables (τn+1, τn,

�n). We consider solutions of

g(τn+1 − τn, �n) − u(τn+1) = 0. (6)

Setting t = τn+1 in (5), and multiplying (6) by σ
S
eστn+1 yields

σ

S
g(τn+1 − τn, �n)e

στn+1 − eστn+1 + eστn − eστn+1B sin β sin(τn+1 − β)

+ eστnB sin β sin(τn + β) = 0,

from which we will define an implicit function H that relates τn+1, τn, and �n, as

H(τn+1, τn, �n) = σ

S
g(τn+1 − τn, �n)e

σ(τn+1) − h(τn+1) + h(τn) = 0, (7)

where

h(t) = eσ t (1 + B sin β sin(t + β)).

The equation (7) implicitly relates a firing time τn to the next firing time, τn+1. It
is possible that there is a set of distinct triples (τ i, τn, �n) such thatH(τ i, τn, �n) =
0 for all i. In such a case we take τn+1 to be the minimum of all such τ i .

Our first observation is that the function H is invariant under the transformation:

τn+1 → τn+1 + 2π, τn → τn + 2π τn−1 → τn−1 + 2π (8)

Indeed, h(t+2π) = e2σπh(t), g(τn+1+2π−τn−2π, �n) = g(τn+1−τn, �n)

and �n = τn + 2π − τn−1 − 2π = �n. Therefore, following the transformation
(8) both sides of equation (7) will be multiplied by a factor e2σπ .

Lemma 2.1. If a function of three variables H(τn+1, τn, �n) is invariant under the
transformation (8) and the equation H(τn+1, τn, �n) = 0 can be implicitly solved
as

τn+1 = f (τn, �n) (9)

then

f (τ + 2π, �) = f (τ, �) + 2π.

Proof. The invariant transformation (8) together with H(τn+1, τn, �n) = 0 gives

H(τn+1 + 2π, τn + 2π, �n) = H(τn+1, τn, �n) = 0.

Since the first component can be explicitly solved as a function of the second we
have

τn+1 + 2π = f (τn + 2π, �n). �	
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If this function f exists, we can relate the new firing time and new interspike
interval (τn+1, �n+1) to the old pair (τn, �n). Let G : R × R → R × R be defined
by

G(τn, �n) = (f (τn, �n), f (τn, �n) − τn). (10)

Then

(τn+1, �n+1) = G(τn, �n).

By Lemma 2.1 the function G(τ, �) is a lift of an annulus map F : S1×I → S1×I

where τn mod 2π ∈ S1 and the interspike interval �n ∈ I for I = [�abs, ∞).
We will now turn our attention to the conditions under which the function f

exists. By the Implicit Function Theorem, f exists locally whenever the partial
derivative

Hτn+1 := ∂H

∂τn+1

= 0.

This condition on the derivative Hτn+1 will appear many times throughout the
paper. We begin by computing the derivative explicitly and proving some lemmas
related to it.

Lemma 2.2. The function H(τn+1, τn, �n) is continuously differentiable and

Hτn+1(τn+1, τn, �n)= σ

S
eστn+1(

g′(τn+1, �n)+σg(τn+1, �n)

S
− 1 − B cos(τn+1))

(11)

Proof. We will expand the sin(τ + β) before differentiation. In this way

h(τ) = eστ (1 + B sin β sin(τ + β))

= eστ (1 + B sin β(sin(τ ) cos(β) + cos(τ ) sin(β)))

By product rule, we can differentiate so that,

h′(τ ) = σeστ (1 + B cos β sin β sin τ + B sin2 β cos τ)

+eστ (B cos β sin β cos τ − B sin2 β sin τ)

Since sin β = σ√
1+σ 2 it follows that cos β = 1√

1+σ 2 . Using this information we
get,

h′(τ ) = σeστ (1 + Bσ sin τ

1 + σ 2 + Bσ 2 cos τ

1 + σ 2 ) + eστ (
Bσ cos τ

1 + σ 2 − Bσ 2 sin τ

1 + σ 2 )

Note that both the second and fifth terms cancel, leaving the derivative only in terms
of cos(τ ).

h′(τ ) = σeστ + Bσ 3eστ cos τ

1 + σ 2 + Bσeστ cos τ

1 + σ 2
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We factor a Bσeστ cos τ term and cancel 1 + σ 2 to get

h′(τ ) = σeστ + Bσeστ cos τ = σeστ (1 + B cos τ). (12)

With h′(τ ) computed we finish the proof of the Lemma by straightforward differ-
entiation of (7) with respect to τn+1. �	
Corollary 2.3. The partial derivative of H with respect to τn has the following
form.

Hτn = σeστn(1 + B cos(τn)) − σ

S
g′eστn+1 (13)

Proof. Using (12) we arrive at,

Hτn = σeστn(1 + B cos(τn)) + σ

S

∂g

∂T

∂T

∂τn

eστn+1 ,

where T denotes the first component in g(t − τn, �n). To finish the proof of the
Lemma, we note that,

∂g

∂T

∂T

∂τn

= − ∂g

∂T
= −∂g

∂t
= −g′. �	

Now we investigate the domain of f . We show that the triples (τn+1, τn, �n)

at which H = 0, satisfy a certain condition, which restricts the image of f and
consequently the domain of the higher iterate maps, f n.

Lemma 2.4. If g(τn+1 − τn, �n) is the value of the threshold function at the first
firing time τn+1 after τn, then the following inequality must be satisfied:

1 − σg(τn+1 − τn, �n)

S
+ B cos(τn+1) ≥ g′(τn+1 − τn, �n)

S
(14)

Proof. Let τn+1 be the first instance after a firing time τn such that g(τn+1 −
τn, �n) = u(τn+1). Since both of these functions are continuous and from the
definition of firing, g(τn+1 − h − τn, �n) > u(τn+1 − h) for all sufficiently small
h. Subtracting the value of both functions at τn+1 from each side, and then dividing
by −h, we are left with

g(τn+1 − h − τn, �n) − g(τn+1 − τn, �n)

−h
<

u(τn+1 − h) − u(τn+1)

−h
.

Taking limits on both sides we see that g′(τn+1 − τn, �n) ≤ du
dt

(τn+1). In other
words,

−σu + S(1 + B cos(τn+1)) ≥ g′(τn+1 − τn, �n).

At τn+1, u = g(τn+1, �n), so substituting and then dividing by S, we derive the
stated result. �	
Corollary 2.5. The partial derivative Hτn+1 must be negative or zero at all firing
times.
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Proof. Notice that by moving everything to the right hand side in (14), we get

g′ + σg

S
− 1 − B cos(τn+1) ≤ 0.

Comparing to (11) we see that

Hτn+1 ≤ 0

at all values (τn+1, τn, �n). �	

3. Threshold function with refractory periods

In this section we simplify the function g defined above by not including threshold
modulation by �n. Thus in this section g = g(t − τn).

Our main result for this threshold function is similar to that of Keener et. al [26]
where the (σ, S, B) parameter space was sub-divided into three parameter regions.
In each region the function f had different properties: in one region, f was mono-
tone and continuous, in second f was piecewise continuous and monotone on its
image and in the third f was not defined. Despite these differences Keener et.al
[26] showed that for all parameter values either spiking stops or there is a unique
rotation number.

In our case, in addition to the parameters (σ, S, B), the threshold function g is
also a parameter. Let G be the set of continuous functions g : R+ → R+ satisfying
assumptions (2)-(4). Hence, our parameter space R+ × G is infinite dimensional.

Our main result in this section is the following Theorem.

Theorem 3.1. Assume that a threshold function g satisfies (2)-(4) (i.e. g ∈ G).
Then for all values of parameters (σ, B, S, g) ∈ R3+ × G either firing stops or the
function f relating firing times through τn+1 = f (τn) exists and admits a unique
rotation number. Consequently, chaotic behaviour is not possible.

In order to prove this Theorem we need to investigate all possible functions f

which arise from our model and how different forms of f affect their rotation set.
To this end we divide the set of possible functions f into four classes. Let

D := {f : D → R : f (x + 2π) = f (x) + 2π}
be the set of lifts of a degree one circle maps where the domain D may be a proper
subset of R (we allow D = ∅ as well). Let

A Let A := {f ∈ D | f is continuous and monotone increasing};
B Let B := {f ∈ D | f is piecewise continuous and monotone increasing};
C Let C := {f ∈ D | f is piecewise continuous};

From this we note that,

A ⊂ B ⊂ C ⊂ D.

We first observe that by results of Herman [23] and Keener [27], if f ∈ B, then
f admits a unique rotation number. We address the cases when f ∈ C or f ∈ D
next.
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Lemma 3.2. Assume that f is defined as in (9) and f ∈ D \ C. Then the domain
of f 2 is an empty set. In other words, the firing stops after at most one fire.

Proof. First, we note that the lemma is trivially true if the domain of f is an empty
set. Assume now that f is defined on a strict, non-empty subset of R. We compute
lim supt→∞ u(t) from (5):

LS := lim sup
t→∞

u(t) = S

σ
+ SB

σ
sin β. (15)

Observe that if LS > � then for all τn there exists a time τn+1 > τn when the
system fires again. In other words, if LS > � then f ∈ C and the mapping is
defined everywhere. Therefore, for f ∈ D \ C we must have

LS ≤ �,

and whether the system fires depends on the initial condition τn and its relation to
the period of the input. In order for the system to fire, there must exist a time t such
that the function u(t) is equal to g. Then, by (2), u(t) must be greater or equal � at
such a firing time. Combining this with LS ≤ � we get that at the firing time τn+1,

u(τn+1) ≥ S

σ
+ SB

σ
sin β. (16)

Recall from (5) that the solution u(t) has the form

u(t) = S

σ
(1 − e−σ(t−τn)) + SB

σ
sin β{sin(t + β) − sin(τn + β)e−σ(t−τn)}.

Since 0 < e−σ(t−τn) < 1 for all t greater than τn, we see that in order to satisfy
(16) we must have

sin(τn+1 + β) − sin(τn + β)e−σ(τn+1−τn) > 1. (17)

Therefore in order for τn+1 to exist, the previous firing time τn must satisfy

− sin(τn + β) > 0. (18)

This equation defines a superset of the domain D ⊂ [0, 2π ] of the map f . In other
words, if τn ∈ D then (18) holds. We rearrange terms in (17) to get

sin(τn+1 + β) > 1 + sin(τn + β)e−σ(τn+1−τn).

Since sin(τn + β) < 0 and e−σ(τn+1−τn) < 1, we get that sin(τn+1 + β) > 0.
Therefore, as a consequence of (18) τn+1 
∈ D. �	

As a result of this lemma, if f is undefined for some value in its domain, then
the rotation number is not defined for any value of its domain. Next, we investigate
what happens when f is non-monotone.

Lemma 3.3. Let f be given by (9) and let f ∈ C \ B. Then f is monotone on its
image.
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Proof. We define a set Q to be all τn for which the map f is decreasing and the
set P to be the set of τn+1 for which the model does not fire. We will show that
Q ⊂ P ; in other words τn ∈ Q implies τn+1 
∈ P , which implies the statement of
the Lemma.

We begin by defining Q. By Lemma 2.4, Hτn+1 is always non-positive at firing

times. Then f is decreasing ( f ′ = Hτn

Hτn+1
≤ 0) if and only if Hτn < 0. Using (13)

this means

Hτn = σeστn(1 + B cos(τn)) − σ

S
g′eστn+1 < 0

Dividing by σeστn and solving for B cos(τn) yields,

B cos(τn) <
g′(τn+1 − τn)

S
eσ(τn+1−τn) − 1 (19)

Let U1 be the right hand side of (19). Then the set Q has the form

Q := {x | B cos(x) < U1}.
This implicitly defines the set Q as all the values of τn at which f (τn) is decreasing.

To define the set P we return our attention to Lemma 2.4. The converse of
Lemma 2.4 provides a set of potential τn+1 where the model can not fire, defined
by the condition,

B cos(τn+1) <
g′(τn+1 − τn) + σg(τn+1 − τn)

S
− 1. (20)

If we denote the right hand side of (20) by U2 then P has the form

P := {x | B cos(x) < U2}.
This condition implicitly defines the set P .

Clearly, Q ⊂ P if and only if U1 ≤ U2. To demonstrate the latter inequality,
notice that eσ(τn+1−τn) > 1, g′ < 0 and consequently U1 ≤ U2 even without the
positive σg term in (20). Thus, we conclude Q ⊂ P which implies that although
the map f may not be monotone on its domain D, it is monotone on f (D). �	
Proof of Theorem 3.1. If f ∈ A or f ∈ B results of [23] and [27] respectively
show existence of a unique rotation number.

If f ∈ D \ B then either f ∈ D \ C or f ∈ C \ B. In the first case Lemma 3.2
shows that firing will stop, in the second case Lemma 3.3 implies that after one
iteration f is monotone. Since the rotation number is defined in terms of a limit
where the number iterations go to infinity, in this case rotation number will still be
unique. As a consequence, it is known that f either has a unique rotation number
or no rotation number at all, i.e. the firing stops. �	
Remark 3.4. We remark on the size of the parameter set where phase locking occurs.
For any fixed threshold function g let Xg := {(σ, B, S) | f = f (σ, B, S, g) ∈
C \ A} and Yg := {(σ, B, S) | f = f (σ, B, S, g) ∈ A}. By results of Keener [27]
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and Herman [23], there is a Cantor set CX of measure 0 in Xg , and a Cantor set
CY with positive measure in Yg , such that if (σ, B, S) ∈ C∗ then f (σ, B, S) has an
irrational rotation number. It follows that there is a full measure subset of Xg , and
there is a positive, but not full, measure subset of Yg where phase locking occurs.

The following theorem indicates which set (A, B, C or D) the functionf belongs
to, based on the parameter values (σ, B, S) and the threshold function g.

Theorem 3.5. The parameter space (σ, B, S, g) ∈ R3+ ×G can be subdivided into
11 regions according to the figure below. On the bottom of each decision path is
the set that the corresponding function f belongs to.

σ�

S
− 1 ≤ 0

1 − g′ + σg

S
< 0

∃ U ⊂ T , ∀ t ∈ U

1 − g′ + σg

S
≥ 0

∀ t ∈ T

0 ≤ B <
g′ + σg

S
− 1

∃ V ⊂ U , ∀ t ∈ V

0 <
g′ + σg

S
− 1 ≤ B

∀ t ∈ U

0 ≤ B < 1 − g′ + σg

S

∀ t ∈ T

0 < 1 − g′ + σg

S
≤ B

∃ U ∈ T

B ≤ 1 B > 1 B ≤ 1 B > 1

������
������

�� �� �� ��

�� �� �� ��

C B C A B C

σ�

S
− 1 > 0

1 − g′ + σg

S
≥ 0

∃ U ⊂ T , ∀ t ∈ U

1 − g′ + σg

S
< 0

∀ t ∈ T

0 ≤ B < 1 − g′ + σg

S

∃ V ⊂ U , ∀ t ∈ V

0 ≤ 1 − g′ + σg

S
≤ B

∀ t ∈ U

0 ≤ B <
g′ + σg

S
− 1

∀ t ∈ T

0 <
g′ + σg

S
− 1 ≤ B

∃ U ⊂ T , ∀ t ∈ U

B sin β ≥ σ�

S
− 1 B sin β <

σ�

S
− 1

�������
�������

�� �� �� ��

�� ��

D D C D\ C D\ C

3.1. Proof of Theorem 3.5

Parameter region σ�
S − 1 ≤ 0.

In this region of parameter space, our first observation is that for any τn, a succes-
sive firing time τn+1 always exists. To see this, observe that our definition of the
parameter region gives
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S

σ
≥ �. (21)

We also find that as t → ∞ the solution u(t) approaches

S

σ
(1 + B sin β sin(t + β)).

This function oscillates around the value S
σ

. By (21) this value is super-threshold.
Consequently, in this parameter region, the model will fire again, regardless of
when the previous fire τn was. In other words, the mapping f is well-defined on
the set [0, 2π ] and f 
∈ D.

For any τn, let T be the set of all possible firing times T = {t | t > τn + �abs}.
The limit

lim
t→∞ 1 − g′ + σg

S
= 1 − σ�

S
≥ 0

by the definition of this region. As a consequence, the term 1 − g′+σg
S

cannot be

negative for all values of t ∈ T . Therefore, either 1 − g′+σg
S

≥ 0 for all t ∈ T or
there is a subset of T where the opposite inequality holds true. According to this
criterion, we further subdivide this region.

3.1.1. 1 − g′+σg
S

≥ 0 ∀t ∈ T

Again, we further subdivide this region into two cases:

Case 1. 0 ≤ B < 1 − g′+σg
S

∀t ∈ T .
Recall from Lemma 2.2 that the sign of Hτn+1 depends on the sign of the expres-

sion g′+σg
S

− 1 − B cos(τn+1). We use the assumption for case 1 to get

g′ + σg

S
− 1 − B cos(τn+1) ≤ g′ + σg

S
− 1 + B < 0. (22)

It now follows that the partial derivative Hτn+1 < 0 is always negative in this region.
Therefore by the Implicit Function Theorem applied to the function H(τn+1, τn) =
0 there is a continuous function f with τn+1 = f (τn) satisfying

H(f (τn), τn) = 0.

The derivative of f is

f ′(τ ) = − Hτn

Hτn+1

Since Hτn+1 < 0 for this case, we turn our attention to the sign of Hτn to compute
the derivative of f . From Corollary 2.3 we know that that,

Hτn = σeστn(1 + B cos(τn)) − σ

S
g′eστn+1 .
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Using the fact that 1 + B cos(τ ) ≥ 1 − B we place a lower bound on Hτn ,

Hτn = σeστn(1 + B cos(τn)) − σ

S
g′eστn+1 ≥ σeστn(1 − B) − σ

S
g′eστn+1

By manipulating the condition defining case 1 we get 1−B >
g′(τ−τn)+σg(τ−τn)

S
and after substitution this yields,

Hτn > σeστn(
g′ + σg

S
) − σ

S
g′eστn+1 .

After rearranging terms,

Hτn >
σ

S
g′(eστn − eστn+1) + σ 2

S
eστng.

The first term is the product of two negative terms and the second is always
positive. Thus, the partial derivative of H with respect to τn is always positive.
Since Hτn+1 < 0 and thus non-zero f (τ) is continuous. Since Hτn > 0, f is
monotonically increasing and continuous. Thus, f ∈ A.

Case 2. ∃U ⊂ T such that for all t ∈ U we have B ≥ 1 − g′+σg
S

≥ 0
In this region the partial derivative, Hτn+1 may be zero and as a consequence

the Implicit Function Theorem is not always applicable. Therefore, f may not be
defined for all τn. However, it can still be defined on subintervals of the interval
[0, 2π ] where Hτn+1 < 0. Let (τd+1, τd) be a point such that H(τd+1, τd) = 0 and
Hτn+1(τd+1, τd) = 0, and where τd+1 is the minimal value of t satisfying these
conditions. Since Hτn+1(τd+1, τd) ≤ 0 for all (τd+1, τd) the points τd are isolated
for a generic choice of parameters by Lemma 2.2. Since Hτn+1 = 0 at this point,
the function f is not defined via Implicit Function Theorem at τd . To rectify this
we specify

f (τd) = τd+1.

Now we turn our attention to the behaviour of f at τd . Towards this end, we recall
(see (6) and (7)) that the function H(τn+1, τn) has the following form

H(τn+1, τn) = σ

S
eστn+1(g(τn+1 − τn) − u(τn+1)). (23)

From this we get,

Hτn+1(τn+1, τn)= σ 2

S
eστn+1(g(τn+1 − τn)−u(τn+1) + σ

S
eστn+1(

dg

dτn+1
− du

dτn+1
).

(24)

At (τd+1, τd), both H(τd+1, τd) = 0 and Hτn+1(τd+1, τd) = 0 are equal to zero.
By (23) and (24), at the discontinuity

g(τd+1 − τd) = u(τd+1) and
dg

dτn+1
(τd+1 − τd) = du

dτn+1
(τd+1).
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τd limτ→τ−
d

f (τ ) limτ→τ+
d

f (τ )

g(t)

u(t)

Fig. 2. The source of a discontinuity of the function f ; the threshold g(t) touches the solution
u(t).

Therefore at t = τd+1 the threshold function g(t − τn) and the solution u(t) have a
contact of order at least 1. It is easy to see that if the order of contact is even, then
the two functions cross each other, and if the order of the contact is odd, then the
intersection is “one-sided”(as shown in Figure 2). In the first case, the intersection
time τd+1 depends continuously on the initial time τd . It follows that f has at τd a
removable singularity for the even order case.

The case when g and u have a contact of odd order at τd+1 is illustrated in
Figure 2. Here, an arbitrarily small increase in the initial condition τd will have a
large impact on the intersection time of g and u. More precisely, following τd+1
there exists an interval I such that for t ∈ I ,

1 − g′ + σg

S
> −B cos(t)

or equivalently,

g′(t − τd) > u′(t).

By to Lemma 2.4, no value of t ∈ I is eligible to be a firing time. Thus, when τd is
increased the resulting effect upon the next consecutive firing time must be greater
than the length of I . As a result,

lim
t→τ−

d

f (τd) < lim
t→τ+

d

f (τd)

and at τd the function f has a jump discontinuity.
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We further subdivide case 2 into

• { B ≤ 1.} In this case it follows from (13) that the partial derivative Hτn < 0.
As a consequence, f is monotone and piecewise continuous. Thus, for case 2 if
B ≤ 1 then f ∈ B.

• {B > 1} When B > 1 the function f may be non-monotone since Hτn ≥ 0.
However, by the previous argument it is still piecewise continuous. This means
that if B > 1 then f ∈ C.

In case 2, it is impossible to state explicitly whether the function f belongs to A
or B \ A (for B < 1). Since the condition defining case 2 is time dependent, it
follows that making a distinction between the continuous and discontinuous case
(A or B \ A) would require advance knowledge concerning the precise location of
future firing times (to assure that the condition for case 2 is satisfied at the firing
time and not just for some possible firing time after the absolute refractory period).
Such an assumption is impractical to the point that the more ambiguous representa-
tion presented here is preferable. The moral is that the existence condition defining
case 2 does not imply a discontinuity, only that it is possible there could be one.
Regardless, the rotation number remains well-defined and unique for all possible
parameters within this case.

Recall that we still assume σ�
S

− 1 ≤ 0. Now instead of assumption (3.1.1) we
assume

3.1.2. ∃U ⊂ T such that 1 − g′+σg
S

< 0 ∀t ∈ U

We again consider two cases.

Case 3. B ≥ g′+σg
S

− 1 > 0 ∀t ∈ U .

Recall that in this parameter region limt→∞ 1− g′+σg
S

≥ 0 and firing is always

guaranteed regardless of τn. In other words, although 1 − g′+σg
S

is negative for
t ∈ U , the set U must be bounded and thus U is a strict subset of T . Rearranging
the condition for case 3, we find that

−B ≤ 1 − g′ + σg

S
< 0. (25)

With this condition we have an analog of case 2 where

B ≥ 1 − g′ + σg

S
> 0 (26)

since B cos(t) oscillates around the origin. However, there remains a key distinc-
tion between case 2 and the present case 3. In the present case, the restriction
B ≥ g′+σg

S
− 1 > 0 only applies to the set U . Outside the set U , B could be less

than or greater than g′+σg
S

− 1. If the time of the next fire falls within U , then by
(25) and (26) the system behaves analogously to case 2. If the time of the next fire
falls within the subset of T where B <

g′+σg
S

− 1, the system behaves analogously
to case 1. Since it is possible that some of the firing times can fall into one set and
other times to another set, we must consider a worst case scenario. This implies
that f ∈ B or f ∈ C depending on whether B ≤ 1 or B > 1 respectively.
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Case 4. ∃V ⊂ U such that 0 ≤ B <
g′+σg

S
− 1 ∀t ∈ V

Moving the B term to the left hand side of the expression in case 4 yields,

0 <
g′ + σg

S
− 1 − B <

g′ + σg

S
− 1 + B cos(τn+1)

Referring to Lemma 2.4 we see that the model cannot fire for any t ∈ V . Once
again, recalling that limt→∞ 1 − g′+σg

S
≥ 0 implies that V � U � T . Since τn+1

cannot be in V the set of eligible firing times is reduced to those within T \ V .
Other than this difference, the same conclusions from case 3 hold here and f ∈ C
or B depending on B ≤ 1 or B > 1.

Parameter region σ�
S − 1 > 0

We will leave the definition of T unchanged and note that firing is not necessarily
guaranteed in this regime as it was in the previous one. Therefore, we are presented
with the possibility that f may not be well-defined for some values of τn.

3.1.3. 1 − g′+σg
S

< 0 ∀t ∈ T

Case 5. 0 ≤ B <
g′+σg

S
− 1 ∀t ∈ T

By Lemma 2.4, if B <
g′+σg

S
− 1 is true for all t , then there is no τn+1 at which

the system can fire. Hence, the model is unable to fire and for parameters in this
region we have f ∈ D \ C.

Case 6. ∃U ∈ T such that for all t ∈ U we have B ≥ g′+σg
S

− 1 > 0.

There are two distinctions to be made for parameters within this region. We will
take the limsup of u(t) as t → ∞

lim sup
t→∞

u(t) = S

σ
+ SB

σ
sin β. (27)

If the right hand side is super-threshold (B > 1
sin β

(σ�
S

− 1)), then for all τn

a successive τn+1 exists and the map f can be defined for all τn . Therefore, the
same results as in section 3.1.2 apply and f ∈ B or C. Since B ⊂ C we conclude
only that f ∈ C.

On the other hand, if the right hand side is eventually sub-threshold then whether
the model fires or not is a function of τn. Recalling the form of u(t) (see (5)), we
regroup it as follows,

u(t) = {S

σ
(1 − e−σ(t−τn)) + SB

σ
sin β sin(t + β)}

−SB

σ
sin β sin(τn + β)e−σ(t−τn)

The bracketed portion of this expression or the left side must be less than � and
hence g by (27). Therefore, the model can only fire if the right most term is positive.
Namely, sin(τn + β) < 0 must be true in order for the model to elicit firing and
hence the domain of f is restricted to a subset of [0, 2π ]. Therefore, by Lemma 3.2
f ∈ D \ C.
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3.1.4. ∃U ⊂ T for which 1 − g′+σg
S

≥ 0

Case 7. 0 ≤ 1 − g′+σg
S

≤ B ∀t ∈ U

Once again, existence of a set U does not imply that the model will fire within
U for all τn. If that were the case, then the results from Case 2 would be directly
applicable here and the model would give rise to an f ∈ B or C, whose behaviour
would depend upon the value of B. However, it is also possible that the next firing
time will fall outside this set U , or will not exist at all. This means that the model
would be firing according to either Case 5 or Case 6. Thus, we can only conclude
f ∈ D.

Case 8. ∃V ⊂ U for which 0 ≤ B < 1 − g′+σg
S

∀t ∈ U

This is again an expansion of what was described in Case 7. If the model fires
in V for all τn, then the results are analogous to those in Case 1 and the model will
induce a map, f ∈ A. However, if this is not true, then from Case 7 we know that
the model will give rise to a map f ∈ D.

This completes the proof of Theorem 3.5.

�	

4. Interspike interval threshold modulation

In this section we will add dependence of the threshold function on the preced-
ing interspike interval �n. Recall from section 2 that if the implicit equation
H(τn, τn+1, �n) = 0 can be solved for τn+1 as τn+1 = f (τn, �n) then the function
f gives rise to a function

G = (f (τn, �n), f (τn, �n) − τn). (28)

Furthermore, G covers an annulus map F : A → A, with A = S1 × [�abs, ∞).
Our goal is to show that if the map f is continuous, then the map F admits a unique
rotation number. This is rather surprising since, in general, homeomorphisms of an
annulus may have rotation sets with non-empty interior [25].

4.1. Annulus maps

In this section, we introduce some theorems and constructions concerning general
annulus maps. We will use the notion of prime ends, introduced by Carathéod-
ory [10] and used previously in similar settings by [5–7,12,31,32].

Let S be a continuum in an annulus A, separating the annulus into two parts,
Aout and Ain. This means that both Aout and Ain are open, Aout , Ain and S are
mutually disjoint and their union is A. A simple arc Q ⊂ cl(Aout ) with distinct
endpoints q1, q2 on the boundary ∂S and Q \ {q1, q2} ⊂ intAout , is a cross cut.
Consider a sequence {Qn} of disjoint cross cuts such that Qn separates Qn−1 from
Qn+1. There is a corresponding sequence of domains {Dn}, where Dn is a sub-
domain of Aout bounded by the crosscut Qn and the continuum S, which contains
Qn+1, except its end points. Then D1 ⊃ D2 ⊃ . . . . We call e, a sequence of such
domains {Dn}, an chain of Aout .
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F

in

out

n−1

n

A

A

Q
Q

S

nD
Q

n−1

n
Q

nD

Fig. 3. End in Aout is mapped by the map F to an end in Ain.

A domain D′ contains a chain e if Dn = Dn(e) lies in D′ for all n > n0(D
′).

If e1 and e2 are two chains such that for every n, Dn(e1) ⊃ Dm(e2) for m = m(n),
then we say that e1 contains e2 (or that e1 is divisible by e2). Two chains are equiv-
alent if they divide each other. An equivalence class of chains is called an end. A
prime end p is an end, such that for any chain e ∈ p and any chain e′ such that e′
divides e, we have e′ ∈ p.

We now specify a topology on the set of prime ends of the set Aout . Take an
arbitrary cross cut Q and its domain D. Let D̃ be the set of all prime ends contained
in the domain D. Let B := {D̃ |D is a domain for a crosscut Q}. Carathéodory [10]
has proved that with this topology the set of prime ends of Aout is homeomorphic
to a circle S1. We call the circle defined by the prime ends of Aout a circle of prime
ends of Aout and denote it by S1

out .
A similar construction using prime ends in Ain defines a circle of prime ends

of Ain and will be denoted by S1
in.

Theorem 4.1. Assume that the annulus A := S1×I , where I is an interval, admits a
homeomorphism onto the image F : A ↪→ A, satisfying the following conditions:

1. there is a globally attracting invariant set S ⊂ A which separates A into two
open sets Aout and Ain;

2. F maps Aout to Ain and Ain to Aout ;
3. F 2(x, y) = (F1(x, y), F2(x, y)) satisfies the twist condition

∂F1

∂y
< 0. (29)

Then for any z ∈ A the rotation number ρ(z) = ρ independent of z.
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Proof. As a first step we define the dynamics induced by F 2 on the sets of prime
ends S1

out and S1
in. We observe that given a chain of cross-cuts {Qn} ⊂ Aout

the image {F 2(Qn)} ⊂ Aout is a chain of cross-cuts. Furthermore, since F 2 is a
homeomorphism, the division property of chains is preserved by F 2. Thus a chain
representing a prime end maps by F 2 to a chain representing another prime end.
Therefore, if e is a prime end in Aout then F 2(e) is another prime end, and this nota-
tion is unambiguous. Since F 2 is a homeomorphism it induces a homeomorphism
gout : S1

out → S1
out . A similar construction shows that F 2 induces a homeomor-

phism gin : S1
in → S1

in. Since these maps are homeomorphisms, there is a unique
rotation number ρout for the map gout and a unique rotation number ρin for the
map gin. Since F 2 satisfies the twist condition, the result of LeCalvez [30], follow-
ing earlier results of Birkhoff [7], shows that for any z ∈ A the rotation number
ρ(z) ∈ [ρin, ρout ]. To finish the proof we will show that ρin = ρout .

Indeed, we notice that the homeomorphism F maps a chain of cross cuts {Qn} ⊂
Aout to a chain of cross cuts {Q′

n} ⊂ Ain. Since F is a homeomorphism, it maps
prime ends of Aout to prime ends of Ain. Thus, there is a commutative diagram

S1
out

gout→ S1
out

↓ F ↓ F

S1
in

gin→ S1
in

.

It follows that the maps gout and gin are conjugate and thus their rotation num-
bers ρout and ρin are the same. �	

4.2. Annulus Map for the IF model

We now wish to apply Theorem 4.1 to the annulus map that arises from the IF model
with refractory periods and interspike interval threshold modulation included. With
the function G defined by (28) and covering the annulus map F , we have the fol-
lowing theorem.

Theorem 4.2. Consider the threshold function g = g(t − τn, �n) in the IF model
(1) which satisfies assumptions (2)-(4). Assume that the f defined in (9) is contin-
uous.

Then there is an annulus A0 ⊂ A, with f (A) ⊂ A0, such that the restriction of
the annulus map F to A0 has the following properties

1. F is a homeomorphism onto the image;
2. there exists an attracting invariant set S which separates the annulus A into

Aout and Ain;
3. F maps Aout to Ain and Ain to Aout ;
4. F 2 satisfies the twist condition (29).

Remark 4.3. The assumption that f is continuous is restrictive since it requires,
roughly, that the circle maps f (τn, �n) with �n fixed, belong to set A for all �n.
This set has non-empty interior and its size depends on the particular choice of
the threshold function g. As is clear from Theorem 4.1 however, this assumption
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needs to be satisfied only in some small neighbourhood of the set S. Since we do
not know where the set S is located, this sharper condition is hard to verify, but
we expect that it will be satisfied for most choices of parameters. The results from
the previous section give a way to verify the continuity of f for a given form of
the threshold function g by checking that all circle maps f (τn, �n), with �n fixed,
belong to the set A.

Proof of Theorem 4.2. We first list some consequences of the continuity assump-
tion on f . By Corollary 2.5 at the time of fire we must have Hτn+1(τn+1, τn, �n)≤0.
However, since f (τn, �n) is continuous for all (τn, �n) we must have that

Hτn+1(τn+1, τn, �n) < 0.

On the other hand, by assumption (3)

∂H

∂�n

= σ

S
eστn+1

∂g

∂�n

< 0.

Finally, from the Implicit Function Theorem we get

∂f

∂�n

= −
∂H
∂�n

Hτn+1

< 0. (30)

1. F is homeomorphism onto the image We have assumed that the map f is
continuous. Since G has the form G = (f, f − τn), it is continuous as well and
the induced annulus map F is also continuous.
We show that F is injective. Consider an arbitrary element of (τ ′, �′) ∈ A0.
We seek the values (τ, �) such that

(τ ′, �′) = G(τ, �) = (f (τ, �), f (τ, �) − τ).

First we note that comparing second components we get

�′ = f (τ, �) − τ = τ ′ − τ

from which we solve τ = τ ′ − �′. Since τ ′ is only determined up to multiples
of 2π , the same holds for τ . With the τ value determined, we need to solve

τ ′ = f (τ, �)

for �. By (30) and the Implicit Function Theorem there is a function q such that
τ ′ = f (τ, q(τ ′, τ )). In other words � = q(τ ′, τ ). By Lemma 2.1 this solution
is unique, even if we change τ and τ ′ to τ + 2π and τ ′ + 2π respectively.

2. F is orientation reversing: Computing the Jacobian of F yields:

DF =
[

∂F
∂τn

∂F
∂�n

∂F
∂τn

− 1 ∂F
∂�n

]

and the determinant is,

det DF = ∂f

∂τn

∂f

∂�n

− (
∂f

∂τn

− 1)
∂f

∂�n

= ∂f

∂�n
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The last expression is negative by (30), which implies that the determinant is
always strictly negative and thus the map F is orientation reversing. It follows
that F 2 is orientation preserving.

3. There exists an invariant set S which separates A to Aout and Ain and F

maps Aout to Ain and Ain to Aout We first define annulus A0. Let

α := 2 sup
τn

(f (τn, �abs) − τn).

By (30)

∂�n+1

∂�n

= ∂f (τn, �abs) − τn

∂�n

= ∂f

∂�n

< 0

and so the second component of the image G(A) is always less than or equal to
α/2. Since the inequality above is strict it follows that the second component
G(τ, α) is strictly bigger than �abs for all τ . We define A0 := S1 × [�abs, α].
For notational convenience, we set U0 := A0 and we let Un := Fn(U0). By
the previous argument about the covering map G,

U1 � U0

is a strict subset of U0. Clearly U1 ⊃ U2 ⊃ U3 ⊃ . . . is a nested sequence of
compact, connected, non-empty subsets of A. Therefore the set

S :=
∞⋂
i=1

Ui

is a non-empty, compact and connected set; in other words, a continuum. Since
U1 is a homeomorphic image of an annulus U0, that separates S1 × �abs from
S1 × α, the set A \ U1 has two components, A1 and B1, such that

S1 × �abs ⊂ A1 and S1 × α ⊂ B1.

Let Ai be the component of U0 \Ui containing A1, and let Bi be the component
of U0 \ Ui containing B1. Since F 2 is orientation preserving it is easy to see
that

F 2(Ai) = Ai+2 and F 2(Bi) = Bi+2. (31)

Let Ain = ⋃∞
i=i Ai and Aout := ⋃∞

i=1 Bi . Since Ai and Bi are open, so are
Aout and Ain. Since F 2 is a homeomorphism Ain ∩ Aout = ∅. Indeed, if
x ∈ Ain ∩Aout , then x ∈ Ai ∩Bj for some i and some j . Assume without loss
of generality that i ≥ j . Using (31) we get, depending on the parity of i, either
F−i+1(x) ∈ A1 ∩ Bj−i+1 or F−i+1(x) ∈ B1 ∩ Aj−i+1. Since Bj−i+1 ⊂ B1
and Aj−i+1 ⊂ A1, and A1 ∩ B1 = ∅ we arrive at a contradiction. Therefore
Ain ∪ Aout ∪ S = A and these sets are mutually disjoint.
It remains to show that S separates Aout and Ain.Assume, by contradiction, that
S does not separate Aout and Ain and so there exists a path γ : [0, 1] → A0
with γ (0) ∈ Ain, γ (1) ∈ Aout and γ ([0, 1]) ∩ S = ∅. Let Pin ⊂ [0, 1] be
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the set of all t such that γ (t) ∈ Ain and let Pout ⊂ [0, 1] be the set of all
t such that γ (t) ∈ Aout . We first note that since γ ([0, 1]) ∩ S = ∅ we have
Pin ∪ Pout = [0, 1]. Furthermore, both Ain and Aout are open and thus the sets
Pin and Pout are open. Finally, γ (0) ∈ Ain and γ (1) ∈ Aout , and so both Pin

and Pout are non-empty. Since Pin and Pout are disjoint, they form a separation
of a connected set [0, 1]. This is a contradiction.

4. F 2 satisfies the twist condition
To show that F 2 satisfies the twist condition we consider the second iteration
of F (see (10)).

(τn+2, �n+2) = (F1(τn, �n), F2(τn, �n))

= (f (τn+1, �n+1), f (τn+1, �n+1) − τn+1)).

Differentiating F1 with respect to �n yields

∂F1

∂�n

= ∂f

∂τn+1

∂τn+1

∂�n

+ ∂f

∂�n+1

∂�n+1

∂�n

Given the form of (10) we get

∂τn+1

∂�n

= ∂f

∂�n

and
∂�n+1

∂�n

= ∂f

∂�n

.

Therefore, we can factor out ∂f
∂�n

and are left with

∂F1

∂�n

= ∂f

∂�n

(τn, �n)

(
∂f

∂τn+1
(τn+1, �n+1) + ∂f

∂�n+1
(τn+1, �n+1)

)
.

(32)

By (30) the first term is negative. We turn our attention to the remaining partial
derivatives. These can be calculated explicitly from the function H and yield,

(
∂f

∂τn+1
+ ∂f

∂�n+1

)
(τn+1, �n+1)

= σeστn+1(1 + B cos(τn+1)) − σ

S

∂g

∂τ
eστn+2 + σ

S

∂g

∂�n+1
eστn+2

= σeστn+1(1 + B cos(τn+1)) − σ

S
eστn+2

(
∂g

∂τ
− ∂g

∂�n+1

)
.

The assumption (4) implies that the last bracket is negative and hence(
∂f

∂τn+1
+ ∂f

∂�n+1

)
(τn+1, �n+1) > 0.

This implies that the twist condition (32) holds.. Therefore, F 2 is an orientation
preserving twist map.

�	
Corollary 4.4. Under the assumptions of Theorem 4.2 the map F : A0 → A0
admits a unique rotation number.

Proof. Theorem 4.2 verifies the assumptions of Theorem 4.1. �	
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5. Conclusions

We generalised the integrate-and-fire model of a neuron by modifying the thresh-
old function to include absolute and relative refractory periods and the effects of
adaptation. We modelled the latter by assuming that a long interspike interval tends
to lower the threshold and a short interspike interval increases the threshold. The
assumptions on the threshold functions are very general and biologically justified.
In particular, we do not assume a particular functional form of the threshold and
the class of thresholds satisfying our assumptions is quite broad.

Our first result is a generalisation of the work of Keener et. al. [26]. In con-
trast to the constant threshold considered in Keener et. al. [26], we assume that the
threshold function is very large immediately following a spike and then decreases
monotonically to a constant value �. This models absolute and relative refractory
periods. Even with the more general threshold function we obtain an analogous
result to that of Keener et. al. [26]. For all parameter values and all threshold func-
tions satisfying the assumptions above and when forced by a periodic stimulus,
either the model stops firing or the function relating consecutive spike times is
monotone on its image. As a consequence, the rotation number associated to this
function is always unique and chaotic behaviour (chaotic spiking) is ruled out. In
the process of revising this paper we have learned of a recent paper by R. Brette [8],
which overlaps considerably with this result. Contrasting our model with the more
general one presented there, it is seen that our model is leaky (assumption (H1) in
[8]), but it does not satisfy assumption (H2) in [8], since we allow the constant B

to be greater than one. The Theorem 3 of [8] is analogous and more general to our
Lemma 3.3 and it is proved under either assumption (H1) or the assumption (H2).
As corollary of Theorem 3 of [8] one can obtain the result of our Theorem 3.1.
The analog in our paper to Theorem 2 of [8], which is a key result needed to prove
Theorem 3, is Lemma 2.4. The only advantage of our result over a more general
result of [8] is the Theorem 3.5, which shows explicit regions in parameter space in
which the resetting function f is continuous and monotone, piecewise continuous
and monotone, and non-monotone respectively.

Our second result concerns modelling adaptation of the threshold function in
addition to modelling refractory periods. With the threshold depending on two vari-
ables, the map relating consecutive spikes depends not only on the previous spike
time, but also on the previous interspike interval. This map is a covering map for
an annulus map. We prove that this map, under biologically justified assumptions,
is orientation reversing and its second iterate satisfies the twist condition. We prove
a general result for annulus homeomorphisms with these properties, which states
that such a homeomorphism admits a unique rotation number. We then apply this
general result to our map stemming from the integrate-and-fire model.

The fact that the integrate-and-fire model with both refractory periods and adap-
tation always admits a unique rotation number is surprising. The dynamics of gen-
eral annulus maps can be quite complicated [7,30] and rotation numbers may form
nontrivial intervals in which case chaotic behaviour is present [24].

The second reason why this result is interesting is that Chacron et. al. [13,
14] studied the integrate-and-fire model with threshold adaptation, which they
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modelled using threshold fatigue. They provide convincing numerical evidence
and some analytical evidence that the annulus map in their model exhibits chaotic
dynamics. In their analysis they also construct an annulus map, which uses fatigue
as a radial variable. Our annulus map uses the previous interspike interval as the
radial variable and in both cases the phase variable is the phase of the fire. It seems
that the key aspect of our model, which may be responsible for a lack of chaos, is
the monotone dependence of the radial variable with respect to phase variable. This
difference is more subtle when considered on the level of the differential equations
defining these two IF models. In our model the reset value of the threshold depends
monotonically on the last interspike interval and the form of threshold function
decaying towards steady state is arbitrary. The level of the threshold (fatigue) in
Chacron et. al. [13,14] after the spike depends monotonically on the level of the
fatigue before the spike and afterwards the threshold decays exponentially towards
its steady state value. The key difference between the two models is that the reset
value of the threshold in Chacron et. al. [13,14] also depends on the value of volt-
age u(t) at the time of spike, while in our model the threshold reset value depends
only on the time since the last spike. Thus, in both cases the threshold reset value
is state-dependent, but the state of the neuron is defined differently.

Given the nature of these findings and others which cite chaos as being intrinsic
to neural cells [37,3,22,18], our results suggest that this chaotic behaviour may not
be due to refractoriness or threshold adaptation which depends only on the time
since the last spike.

Acknowledgements. The authors would like to thank Marcy Barge for discussions of prime
ends and Sherry Heis for formatting the diagrams.
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