
UNCORRECTED
PROOF

J Comput Neurosci () :
DOI 10.1007/s10827-006-6357-1

Effects of stimulus transformations on estimates of sensory neuron
selectivity

1

2

Alexander G. Dimitrov · Tomáš Gedeon3
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Abstract Stimulus selectivity of sensory systems is of-6

ten characterized by analyzing response-conditioned stim-7

ulus ensembles. However, in many cases these response-8

triggered stimulus sets have structure that is more complex9

than assumed. If not taken into account, when present it will10

bias the estimates of many simple statistics, and distort the11

estimated stimulus selectivity of a neural sensory system.12

We present an approach that mitigates these problems by13

modeling some of the response-conditioned stimulus struc-14

ture as being generated by a set of transformations acting15

on a simple stimulus distribution. This approach corrects16

the estimates of key statistics and counters biases intro-17

duced by the transformations. In cases involving temporal18

spike jitter or spatial jitter of images, the main observed19

effects of transformations are blurring of the conditional20

mean and introduction of artefacts in the spectral decom-21

position of the conditional covariance matrix. We illustrate22

this approach by analyzing and correcting a set of model23

stimuli perturbed by temporal and spatial jitter. We apply24

the approach to neurophysiological data from the cricket25

cercal sensory system to correct the effects of temporal26

jitter.27
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1. Introduction 30

The mean and covariance of spike-conditioned stimulus sets 31

are frequently used to characterize stimulus selectivity of 32

neural sensory cells. The spike-conditioned mean is often 33

interpreted as the stimulus “feature” to which a cell responds 34

(Jones and Palmar, 1987; Meister et al., 1994; Poon and Yu, 35

2000; Reid and Alonso, 1995; Simoncelli et al., 2004). It has 36

been proposed recently that the spike-conditioned covariance 37

(STC) and its spectral decomposition can provide additional 38

information about stimulus structures to which a cell re- 39

sponds as well (Agüera y Arcas and Fairhall, 2003; de Ruyter 40

van Steveninck and Bialek, 1988; Rust et al., 2004; Schwartz 41

et al., 2002; Theunissen et al., 2004). Many widely used 42

characteristics of stimulus selectivity in neural sensory sys- 43

tems, like reverse Wiener kernels (Rieke et al., 1997), spatio- 44

temporal receptive fields (STRF, DeAngelis et al. (1993) and 45

Theunissen et al. (2004)) or spectro-temporal receptive fields 46

(Eggermont et al., 1983; Poon and Yu, 2000), rely on sim- 47

ilar simple statistics of response-conditioned stimuli. How- 48

ever, these response-conditioned statistics may be distorted 49

by the action of several confounding processes, associated 50

with uncertainty and non-uniqueness of neural system re- 51

sponses. The distortion can be substantial and lead to signifi- 52

cant misrepresentation of the cells’functional characteristics. 53

In this paper we present an approach that analyzes and cor- 54

rects these distortions by explicitly modeling some of the 55

response-conditioned noise sources. 56

As an example of the effects to which we refer, con- 57

sider temporal uncertainty in the generation of single action 58

potentials. In a classic experiment (Bryant and Segundo, 59

1976; Mainen and Sejnowski, 1995), a stimulus waveform 60

generated by a band-limited white noise process is pre- 61

sented to a cell multiple times (frozen noise). On repeated 62
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presentation of the same sensory stimulus, the cell does not63

respond at exactly the same times. It exhibits a certain tempo-64

ral jitter, typically captured in the stimulus-conditioned firing65

rate (PSTH). Imagine now that a spike-triggered statistic is66

estimated from the same dataset, as a proxy for the cell’s67

functional properties. In this case typically the stimuli are68

aligned on the time of occurrence of individual spikes. Thus,69

the temporal jitter of spikes is translated into uncertainty in70

the time of occurrence of the spike-triggered stimuli. This71

will affect the estimates of statistical quantities, including72

mean (as illustrated recently in Aldworth et al. (2005)) and73

covariance. If these spike-conditioned quantities are used to74

represent stimulus-related function of this cell, they will lead75

to a distorted description of the cell’s stimulus selectivity.76

A similar effect also manifests itself when considering77

eye jitter and microsaccades in the visual system (Forte et al.,78

2002; Martinez-Conde et al., 2002). While the visual system79

may receive proprioceptor input with information about such80

events, this input is currently not available to researchers. So81

images in the response-conditioned stimulus ensemble will82

be contaminated by random spatial jitter. This will again83

distort the estimates of various statistical quantities. Stimulus84

selectivity estimated without taking this jitter into account85

will differ from the actual stimulus selectivity of a cell in the86

visual system.87

These two examples can be seen as special cases of a88

more general phenomenon, which involves the action of89

some class of transformations on the stimulus, that leave90

the response unchanged. The two cases above are exam-91

ples of 1-dimensional translation in time (temporal jitter)92

and 2-dimensional translation in space (spatial jitter). They93

leave the response invariant: in all cases a hypothetical single94

spike occurs at relative time zero with respect to the spike-95

triggered stimulus. Although these two examples deal exclu-96

sively with physiological noise, the invariance may also be97

due to the lossy nature of neural processing, where many dif-98

ferent stimuli lead to identical responses. Many other trans-99

formations may conceivably modify the stimulus and not100

affect the response, including spatio-temporal translations,101

rotations, spatial or temporal stretching, and scaling to name102

just a few.103

In this paper we present a framework in which to model,104

analyze and correct the effects of such transformations. The105

approach explicitly represents the effect of transformations106

on the stimulus and isolates them in a separate probability107

model. After the transformations are removed, the stimulus108

residual is processed in the conventional way. Statistics com-109

puted with the corrected stimulus will not contain artefacts110

introduced when these transformations are present.111

In Section 2 we present the basic modeling framework.112

Using this framework, we describe the effects of transfor-113

mations on the spike-triggered mean and covariance in the114

general case, and specialize to the case of temporal jitter.115

Section 3 develops tools with which to correct the biases in 116

the mean and covariance introduced by transformations, and 117

reverse their action on the stimulus by inferring the most 118

likely set of transformations that could have produced the 119

observed response-conditioned stimulus set. In Section 4 the 120

tools developed in this framework are validated in two cases: 121

(1) a model of temporal jitter of spike trains; (2) a model of 122

spatial jitter in two dimensions, with model receptive filed 123

similar to a a simple primary visual neuron (V1 simple cell 124

model). In the same Section we also apply the methodology 125

to the study of temporal jitter in an identified interneuron of 126

the cricket cercal sensory system. The main effects that our 127

theory predicts and we observe for these cases are: 128

� The mean, estimated in the presence of jitter (raw mean) 129

is a blurred version of the true mean. 130

� The conditional covariance matrix, estimated in the pres- 131

ence of jitter (raw covariance), has artefactual eigenvec- 132

tors. They resemble the derivatives (temporal or spatial) of 133

the true mean when the jitter is small. 134

In Section 5 we discuss the implications of this work in the 135

context of general neural sensory processing, and its relations 136

to other research. Mathematical details of this investigation 137

are relegated to the Appendix. 138

2. Sources of uncertainty in response-conditioned 139

stimuli 140

We shall model the space of inputs preceding a distinct neu- 141

ral response as a probability space X with elements x ∈ X . 142

We denote by p(x | r ) the conditional probability of x given 143

that a response r occurs. This is a stimulus reconstruction, 144

or “reverse” type of model. In principle, a model of neural 145

response generated by the stimulus (“forward” model) can 146

be obtained from the reverse model through Bayes’ theo- 147

rem by p(r | x) = p(x | r )p(r )/p(x). However here we take 148

the animal-centric stimulus reconstruction point of view and 149

study p(x | r ). To simplify the notation, we shall denote the 150

conditional stimulus probability simply as p(x), implicitly 151

assuming a fixed response type. We further restrict our at- 152

tention to response sequences consisting of isolated single 153

spikes, in order to avoid confounding effects arising from 154

interaction between spikes. However, this approach can be 155

applied to stimuli conditioned on any sequence of spikes, 156

groups of spike patterns (Dimitrov and Miller, Victor and 157

Purpura), or discriminable instances of other measures of 158

neural activity (e.g., rates). 159

We shall model some of the sources of uncertainty in 160

response-conditioned stimuli as being generated by random 161

transformations that act on the stimulus and leave the re- 162

sponse invariant (Grenander, 1996). As an example, the un- 163

certainty in the timing of a spike given a stimulus can be 164
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interpreted as an invariance of the cell’s response to small165

temporal shifts of the stimulus. In other words, if we slightly166

shift in time a given stimulus, the timing of the response167

spike will not change. The probability that a transformation168

leaves the response invariant will be modeled as a distribu-169

tion on the set of transformations (Grenander, 1963). That170

is, the invariance of the response to stimuli is probabilistic:171

some transformations are less likely to leave the response172

unchanged compared to others.173

We model the effects of transformations by following174

closely the transformation-invariant clustering formalism de-175

veloped by Frey and Jojic (2003). There will be three spaces176

involved in this discussion: the space of observable (raw)177

stimuli Z, the set of true stimuli to which the cell is as-178

sumed to respond, X, and the space of transformations T179

that act on the true stimuli to produce the raw stimuli in180

Z. We parameterize the set T by t ∈ T with probability181

p(t) and denote the corresponding transformation by gt ∈ T .182

Thus the complete description of the system is given by the183

triple (z, x, t) ∈ Z × X × T , and the probability p(z, x, t)184

in this product space. In this paper the only transforma-185

tions considered are those for which the true space X coin-186

cides with the raw space Z (X ≡ Z), that is, T is a set of187

automorphisms.188

The assumption that a raw stimulus z is obtained by the189

action of a transformation > upon a true stimulus means that190

p(z | x, t) = p(z | gt x)

where gt x is the action of a transformation gt on a stim-191

ulus x. For practical purposes, we will always assume, as192

in Frey and Jojic (2003), that p(z | gt x) = N (z; gt x, �) is a193

multivariate normal distribution with mean gt x and instru-194

ment noise given by the covariance matrix �. We assume195

that � has simple structure (diagonal or spherical) and is196

much smaller than other sources of noise in the problem197

(e.g. the maximal eigenvalue of � is much smaller than the198

maximal eigenvalue of any other covariance matrix present199

in the problem). As such, it is unlikely to randomly gener-200

ate transformations on the same scale as the effects we are201

looking for. A further simplification we will make when con-202

venient is that � = 0, in which case z = gt x . The instrument203

noise model is a useful technical abstraction, that makes all204

the quantities of interest random variables, and allows for a205

completely probabilistic treatment of the problem.206

With these assumptions,207

p(z, x, t) = N (z; gt x, �)P(x, t)

208

We also assume that the joint probability factorizes:209

P(x, t) = p(x)p(t),

that is, transformations are independently applied to stimuli. 210

This brings us to the final probability model, 211

p(z, x, t) = N (z; gt x, �)p(x)p(t) (1)

212

From here onward we shall set the instrumental noise � 213

to 0, except when explicitly stated otherwise. In this case, 214

z = gt x . 215

In addition to the terms true and raw, describing the stim- 216

uli in spaces X and Z correspondingly, we shall use the term 217

dejittered to denote our estimate of the true stimulus. 218

2.1. Effects of transformations on the conditional mean 219

and covariance: general case 220

Typically, when analyzing a relation between stimuli and 221

neural responses, we are interested in statistics of the true 222

stimulus distribution p(x). However, in the presence of trans- 223

formations we can obtain immediate statistics only for the 224

raw distribution p(z) = EP(x,t) p(z, x, t), as the other two 225

variables are latent (unobservable). Equation (1) implies that 226

the action of transformations modifies the raw response- 227

conditioned stimulus distribution. We first describe the ef- 228

fects of transformations on the estimate of the conditional 229

mean 230

x̄ = E p(x)x (2)

taken as a representative of the cell’s stimulus preference. 231

When we compute the average of the raw collection (1), we 232

are actually estimating the parameter 233

z̄ = E p(z)z = E p(z,x,t)z.

234

As shown in Lemma 2 of Appendix A, if gt are linear 235

transformations, the relation between the true mean x̄ and 236

the mean in the presence of transformation (raw mean), z̄, is 237

z̄ = E p(t) x̄t , (3)

where x̄t := gt x̄ . That is, the raw mean z̄ is the average over 238

all transformations of the transformed true mean x̄t . 239

The transformations also affect the estimate of the covari- 240

ance when this estimate is based on the raw set (1). There 241

are differences between the true covariance matrix 242

Cx = E p(x)(x − x̄)(x − x̄)T (4)

and the covariance matrix computed in the presence of trans- 243

formations (raw covariance) 244

Cz = E p(z)(z − z̄)(z − z̄)T .
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Using techniques similar to the ones applied to the anal-245

ysis of the mean (3), in Lemma 3 of Appendix A we show246

that247

Cz = C̄x + Ct , (5)

when � = 0. Here C̄x = E p(t) gt Cx gT
t is the expected trans-248

formed covariance and Ct = E p(t) (x̄t − z̄) (x̄t − z̄)T is a co-249

variance term induced by the difference between the trans-250

formed true mean x̄t and the raw mean z̄.251

2.2. Model of the temporal uncertainty in neural cell252

responses253

We now specialize our model of uncertainty to temporal254

uncertainty of spikes. In this case T is a set of time shifts255

acting on stimulus waveforms and the action of gt ∈ T on256

the stimulus is257

gt x(τ ) := x(τ − t). (6)

258

We assume that the probability of a spike elicited at time259

t given a stimulus at time τ is distributed in time around the260

mean spike time, represented by the probability of spike at261

time τ given stimulus at the same time τ . The natural delay in262

response is build into the stimulus at time τ . In other words263

we have264

p(spike(t) | input(τ )) = p(t − τ )p(spike(τ ) | input(τ )).

265

For the analysis developed here, we need p(input266

(τ ) | spike(t)), which we obtain by Bayes’ theorem:267

p(input(τ ) | spike(t)) = p(spike(t) | input(τ ))p(input(τ ))
/p(spike(t))

= p(t − τ )p(spike(τ ) | input(τ ))
p(input(τ ))/p(spike(τ ))

= p(t − τ )p(input(τ ) | spike(τ )),

as p(spike(t)) = p(spike(τ )) is a constant, inversely propor-268

tional to the mean spike rate. In this case (3) specializes269

to270

z̄(τ ) = E p(t) x̄(τ − t) =
∫

p(t)x̄(τ − t)dt =: p ∗ x̄, (7)

where * denotes the convolution operation. That is, for tem-271

poral jitter the raw mean is obtained by convolving the true272

mean with the jitter distribution. Correspondingly, (5) spe-273

cializes to274

Cz(τ ) =
∫

p(t)Cx(t−τ )dt +
∫

p(t)(x̄t − z̄)(x̄t − z̄)T dt

2753. Analyzing and correcting the effects of 276

transformations 277

Expression (7) points to a way to undo the effects of tem- 278

poral jitter on the estimates of the spike-triggered aver- 279

age. The convolution with the distribution of jitters acts in 280

exactly the same way as blurring (point spread function) 281

in optical systems. Standard algorithms from image pro- 282

cessing (Wiener deconvolution, regularized deconvolution, 283

Gonzalez and Woods (1992) can be used to perform the de- 284

convolution. All rely on some assumptions about the form 285

of the convolution kernel p(t), and about the level of noise, 286

on which to base the regularization. We discuss some natural 287

choices of those parameters in Appendix B. 288

It is harder to analyze the effects of jitter on the covari- 289

ance matrix, since it depends non-trivially on the transforma- 290

tions. Here we approach this problem by assuming that the 291

density p(t) is sharply peaked around zero with small stan- 292

dard deviation σt and thus the distortions caused by trans- 293

formations can be treated as perturbations. As we show in 294

Lemma 4 of Appendix A in this case, the expression (5) 295

becomes 296

Cz ≈ Cx + σ 2
t

(
CAx + C S

A2x + CA
)

(8)

where A is the generator of the set of transformations, 297

CAx = E p(x) A(x − x̄) (A(x − x̄))T is the expectation of the 298

transformed residual, C S
A2x = 1

2 (CA2x + CT
A2x ) is the sym- 299

metrized second order analog of CAx , and CA = (Ax̄)(Ax̄)T
300

depends only on the transformed mean x̄ . 301

Since expression (8) links Cz and Cx directly, it allows 302

us to predict the effect of the transformations on the form 303

and structure of eigenvectors of the raw covariance matrix 304

Cz . We will apply this approximation to the case of temporal 305

jitter (6). The approximation for temporal uncertainty is (see 306

(A.17) in Appendix A) 307

x(τ − t) ≈ x(τ ) − dx

dt
(τ )t + d2x

dt2
(τ )

t2

2
.

308

Then (8) becomes 309

Cz ≈ Cx + σ 2
t

∫ (
d

dt
(x − x̄)

d

dt
(x − x̄)

)T

p(x)dx

+σ 2
t

2

∫ ((
d2

dt2
(x − x̄)

)
(x − x̄)T

+(x − x̄)

(
d2

dt2
(x − x̄)

)T
)

p(x)dx + σ 2
t

(
dx̄

dt

) (
dx̄

dt

)T

.

(9)
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The spectral decomposition of the covariance matrix has310

gained a lot of popularity of recently as a way to uncover ad-311

ditional stimulus dimensions which can modulate neural re-312

sponses independently of the mean (de Ruyter van Stevenick313

and Bialek, 1988; Rust et al., 2004; Schwartz et al., 2002).314

In particular, the space spanned by the leading or lagging315

eigenvectors is considered one such set of relevant stimulus316

dimensions. It is thus imperative to address the question of317

which of those eigenvectors are real and which are artefactu-318

ally induced by the transformations. Expression (9) allows us319

to estimate how the leading eigenvectors of the raw covari-320

ance Cx and Cz are related. While we leave the details of the321

argument to the Appendix A, we remark that if the last term322

in (9) dominates the other terms then the leading eigenvector323

of Cz will be approximately equal to dx̄
dt , the sole eigenvector324

of the last term. This perturbation technique is only able to325

explain some effects in the special case of peaked distribu-326

tion of transformations and relatively small noise around the327

mean. Without these simplifying assumptions the situation is328

even more problematic, since the spectral decomposition of329

the covariance matrix will be transformed in less predictable330

ways, and more of its components will be affected. When331

applying this theory (Section 4), we empirically observe that332

several of the top eigenvalues and eigenvectors seem to be333

either pure artefacts of the transformations, or are heavily334

modified from the true distribution.335

In the following section we discuss tools that allow for336

the general correction of such artefacts, without the assump-337

tion of small perturbation stated above. While these tools338

do not provide an explicit form of the artefacts, they do339

remove them to a great degree, and allow further analysis340

of the conditional mean and covariance structure. Similar341

tools have been developed by researchers in machine vision342

and automated object recognition (Amit et al., 1991; Frey343

and Jolic, 2003; Miller et al., 2000; Rao and Ruderman,344

1999).345

3.1. Estimating transformation parameters for346

individual samples: the dejittering procedure347

Here we attempt to reverse the transformation on a sample-348

by-sample basis. The approach we take is similar to the349

transformation-invariant clustering developed in Frey and350

jojic (1999, 2003). According to our assumptions (1),351

p(z, x, t) = N (z; gt x, �)p(x)p(t). Using this distribution352

we can infer the pair (x, t) that is associated with an ob-353

served raw z. Assuming we know p(z, x, t), this can be done354

by considering355

p(x, t | z) = p(z, x, t)/p(z)

= N (z; gt x, �)p(x)p(t)/p(z). (10)

This expression gives us a distribution over possible pairs 356

(x, t). We shall select the pair (x∗, t∗) that maximizes (10). 357

Since p(z) is a constant for a fixed z, this is equivalent to max- 358

imizing the joint probability N (z; gt x, �)p(x)p(t). To sim- 359

plify our computations further we again set � = 0. Therefore 360

z = gt x and hence x = g−1
t z is a deterministic function of 361

z. Thus the only variable that remains to be optimized is t, 362

and the problem to be solved is (M-step in an EM algorithm) 363

(Dempster et al., 1977) 364

t∗ = arg max
t

p
(
g−1

t z
)

p(t). (11)

After finding t∗, set x∗ := g∗−1
t z, obtaining the pair (x∗, t∗) 365

which is most likely to have produced the observed z. 366

In reality, the distributions p(x) and p(t) are unknown 367

and are initialized to arbitrary initial models p0(x) and 368

p0(t). Once the pairs (x∗
i , t∗

i ) are inferred for each sam- 369

ple zi , the models for p(x) and p(t) are updated (E- 370

step in an EM algorithm). As the two models are inde- 371

pendent, the expectations for their parameters are run in- 372

dependently over the x∗
i and t∗

i sets inferred from the 373

observations. The parameters that are estimated through 374

the expectations depend on the types of models that 375

are used for p(x) and p(t). The whole cycle is then 376

iterated. 377

We now discuss one particular choice of models for 378

p(x) and p(t). Consider x ∝ N (x ; x̄, Cx ), t ∝ N (t ; 0, σt ) 379

and z(τ ) = gt x(τ ) := x(τ − t). The probability for a raw 380

observation z(τ ) to have come from this model is given by 381

p(x)p(t) = N (z(τ + t); x̄, Cx )N (t ; 0, σt ). (12)

382

The optimal pair (g∗−1
t z, t∗) is obtained as the solution to 383

t∗ = arg max
t

N (z(τ + t); x̄, Cx )N (t ; 0, σt ). (13)

384

Note that here we are assuming (and enforcing) the mean 385

of the t distribution to be t̄ = 0. For the first step, we initialize 386

p(x) with the estimates of the raw mean and covariance, 387

z̄, Cz , and p(t) with a physiologically relevant σt . Given 388

that the parameters of p(t) are guessed anyway, a better 389

starting point would be to assign x̄ to the deconvolved z̄ (7), 390

and approximate Cx with Cx = Cz − σ 2
t (CAx + C S

A2x + CA) 391

(see Eq. (8)). 392

For computational purposes it is better to write expression 393

(13) in terms of the negative log likelihood of the transformed 394

observation. This monotonic transformation does not change 395

the position of any extremum, but dramatically increases the 396

numerical precision. The non-constant portion of the log 397

likelihood is a quadratic form of the variables, and hence a 398
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distance,399

d((z, t), (x̄, 0)) = (
g−1

t z − x̄
)

C−1
x

(
g−1

t z − x̄
)T + t2/σ 2

t .

(14)
400

A minimal distance here implies maximal likelihood in401

(11).402

In the case where t are temporal shifts, we have performed403

the procedure outlined in (14) under several simplifying as-404

sumptions about the structure of the covariance matrix Cx405

of the stimulus model, similar to the ones made by Dimitrov406

et al. (2003) One simplification to (14) constrains Cx to a407

diagonal matrix that can have different values (variances) on408

the diagonal. In this case the distance (14) is expressed by409

d((z, t), (x̄, 0)) =
∑

i

((
g−1

t z
)

i − x̄i
)2

/σ 2
xi

+ t2/σ 2
t , (15)

where zi and x̄i are the i-th coordinate of the raw stimu-410

lus sample and true mean, correspondingly. This distance411

will tend to accentuate (weigh more) coordinates with low412

variance, and disregard coordinates with high variance. Of413

course this is also automatically done by the full covariance414

C−1
x in (14), but one typically needs many more samples for415

a reliable estimate of Cx from observations.416

This distance, without the penalty term and in a probabil-417

ity form (exponentiated), was used by Chang et al. (2005) as418

a similarity index with which to correct the spectro-temporal419

receptive fields of rat auditory neurons, with results similar420

to the ones reported below and by Aldworth et al. (2005).421

In the context of the formalism presented here, this trans-422

lates to assuming a uniform jitter distribution. This assump-423

tion is problem-dependent and may lead to the introduction424

of additional artefacts when not fulfilled, as random fea-425

tures far in time may be pulled towards and aligned to the426

template.427

The simplest case in this series is when Cx = σx I , that is,428

the stimulus distribution is modeled as a spherical Gaussian.429

In this case the distance (15) further simplifies to430

d((z, t), (x̄, 0)) = ∣∣g−1
t z − x̄

∣∣2 /
σ 2

x + t2
/
σ 2

t , (16)

which is essentially an Euclidean distance between the in-431

versely transformed stimulus and the true mean, penal-432

ized by the squared temporal shift needed to reverse the433

transformation.434

4. Application435

In this section we apply the tools developed in the previous436

section to two models of sensory processing, where we ex-437

plicitly introduce transformations of a known kind. We also438

use the tools to analyze the stimulus selectivity of a sensory 439

interneuron in the cricket cercal sensory system. 440

4.1. Analysis of temporal processing and temporal 441

jitter: model studies 442

A simple model of the conditional stimulus illustrates the 443

application of this analysis to neural signal processing. The 444

model is a multivariate Gaussian, the mean of which is the pu- 445

tative target to which a cell responds in its assigned function 446

of a signal discriminator. The model mean waveform was 447

obtained by slightly modifying a spike-triggered average of 448

a cricket sensory interneuron. We use two different models 449

for the noise covariance: one with a spherical noise model 450

around the mean (model 1), and another with an autoregres- 451

sive noise model (model 2), the correlation function of which 452

is similar to the one observed in physiological recordings in 453

the cricket cercal sensory system. The mean and correlation 454

functions for both models can be seen on Fig. 1. The covari- 455

ance matrix of each model was obtained as a Töplitz matrix 456

of the autocorrelation function. For model 1, this resulted in 457

a multiple of the identity matrix (spherical noise model). For 458

model 2, a more complex covariance matrix resulted, more 459

similar to signal covariances estimated from physiological 460

recordings. Both models are in 25 dimensional space at 1 ms 461

temporal resolution; waveforms were interpolated to 0.1 ms 462

for visualization purposes. Additionally, model 1 has a single 463

variance parameter to describe the spherical noise structure 464

around the mean. For model 2, the first 15 principle compo- 465

nents (PC-s) account for >95% of the total variance in the 466

model. 467

For both models we applied the transformation procedure 468

outlined in Section 2: sample a stimulus from the multi- 469

variate normal model, and shift it by a time t. The shift 470

times in both cases were sampled from a normal distribu- 471

tion p(t) = N (0 ms, 1.5 ms). The results of the analysis for 472

the more physiologically relevant autoregressive model 2 473

are presented in Fig. 2. The results for the spherical model 474

1 are very similar, and are not presented here in detail. 475

The steps of sampling, jittering to obtain a simulated raw 476

dataset and dejittering with the diagonal distance function 477

(15) are presented in panels A, B and C correspondingly. 478

The transformations acts on the mean as expected, by blur- 479

ring it (green trace on panel D). Reversing the effects of 480

jitter was successful: the true mean (blue) and reconstruc- 481

tions through dejittering (red) and deconvolution (magenta) 482

essentially overlap. Panel E explicitly shows the top eigen- 483

vector of the raw covariance Cz , which will be shown to be 484

an artefact from the transformation; it bears no resemblance 485

to the top 3 eigenvectors computed from the true covariance 486

matrix Cx (blue), or the top 3 eigenvectors of the dejittered 487

covariance matrix (red). This was further confirmed by the 488

angle between subspaces spanned by those eigenvectors. The 489

Springer



UNCORRECTED
PROOF

J Comput Neurosci () :

-20 -15 -10 -5 0
-20

-15

-10

-5

0

5

10

15

20

25

30

time, ms
-10 -5 0 5 10

0

50

100

150

200

lag, ms
-10 -5 0 5 10

-100

-50

0

50

100

150

200

lag, ms

A B C

Fig. 1 Model parameters. A. Conditional mean of both models. B. Autocorrelation function of the residual for model 1. The autocorrelation peak
is at temporal lag 0. C. Autocorrelation function for the residual for model 2. The autocorrelation peak is at temporal lag 0.

angle between the true (model) and dejittered subspaces was490

approximately 15◦. The angle between the true and jittered491

subspaces was 77◦, meaning that those 2 subspaces were al-492

most orthogonal, a distortion caused by the transformations.493

The dejittering procedure cannot guarantee an exact recov-494

ery of the eigenvectors, as small perturbations in the top495

few eigenvectors may lead to relatively large changes of the496

whole eigensystem, due to the orthogonality imposed by the497

properties of the covariance matrix. The top 10 eigenvalues498

of the true covariance, the raw covariance, and the covari-499

ance estimated after dejittering (dejittered covariance) can500

be seen in Panel F. For eigenvalues obtained from estimated501

covariance matrices (jittered, dejittered), we obtained error502

margins by bootstrapping the eigenvalue estimates and com-503

puting the standard deviation of the bootstrap samples (Efron504

and Tibshirani, 1993). Estimates were based on 2000 sample505

drawn from model 2. The model covariance matrix defines506

model parameters, and hence model eigenvalues computed507

from it do not contain sampling uncertainty. The two largest508

eigenvalues of the raw covariance differ significantly (more509

than 95% level) from the corresponding values of the true510

covariance, implying that the spectral decomposition was511

significantly changed in at least 2 dimensions. Dejittering512

restores the original spectrum: red and blue values don’t dif-513

fer significantly. We discuss these effects in more detail in514

Fig. 4.515

To establish if the dejittering procedure helps in explain-516

ing the observations better, we applied the model selection517

criteria described in C. Briefly, we fitted two different mul-518

tivariate normal models to the observations. One was fitted519

to the set of samples (xi , ti ) of stimuli and transformations.520

The second was fitted to the set of raw samples zi = gti xi .521

After the models were estimated, we computed the log like-522

lihood ratio between the two models with the same set of523

observations, and the corresponding difference of AIC val-524

ues (Akaike’s Information Criterion, see C). We report the525

average value of both criteria (per sample), so it can be com-526

pared for cases with different number of samples. Positive527

values in both cases favor the true process model; negative528

values favor the raw model. For the synthetic case discussed 529

so far, the average log likelihood ratio was 0.6075 per sam- 530

ple. Since this is a logarithmic measure, it means that on the 531

average, each sample was about 2 times more likely to be 532

explained by the true model than by the raw model. The cor- 533

responding average difference of AIC criteria, which takes 534

into account the small difference in model complexity, was 535

1.214, again favoring the true model. To obtain the corre- 536

sponding values for the whole set of 2000 observations, the 537

average values have to be multiplied by 2000, stressing the 538

enormous advantage that the true process model has above 539

the model directly estimated on observables. 540

4.2. Analysis of temporal processing and temporal 541

jitter: physiological studies in the cricket cercal sensory 542

system 543

The same procedures were applied to stimulus/response data 544

from the cricket cercal sensory system. This mechanosensory 545

system mediates the detection and analysis of low velocity air 546

currents, and is considered a low-frequency, near-field exten- 547

sion of the animal’s auditory system (Bacon and Murphey, 548

1984; Jacobs et al., 1986; Kämpar and Kleindienst, 1990; 549

Kanou and Shimozawa, 1984; Miller et al., 1991; Roddey 550

and Jacobs;1996; Theunissen et al., 1996). The data analyzed 551

here consists of sensory stimuli and intracellular record of 552

stimulus-evoked spike trains from the axon of the primary 553

sensory interneuron IN10-3, kindly provided by Zane Ald- 554

worth. The sensory stimulus used to drive IN10-3 was a 555

dynamic air current moving across the animal’s body with 556

Gaussian white noise (GWN) velocity profile band-passed at 557

5–150 Hz, which brackets the range of frequencies to which 558

this cell is known to respond. The physiological protocols 559

used here are detailed in Aldworth et al. (2005). The analysis 560

reported below is based on 13,600 samples of isolated single 561

spikes. The stimulus samples conditioned on isolated single 562

spikes were represented as vectors in 20 dimensional space 563

at 1 ms temporal resolution; waveforms were interpolated 564

to 0.1 ms for visualization purposes. Additionally, the first 565
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Fig. 2 Effects of temporal jitter on spike-triggered statistics: model
studies. (A) Rasters of waveforms sampled from the autoregressive
conditional stimulus model of interneuron function. (B) The samples
from (A) are shifted randomly in time, with a distribution of shifts
p(t) = N (0 ms, 1.5 ms) to obtain a raw dataset that models a spike-
triggered stimulus ensemble. (C) The effects of temporal jitter are re-
moved from the raw dataset by dejittering with the cost function in
Eq. (16). (D) Comparison between the true model mean (blue), raw
mean (green), dejittered mean (red) and deconvolved mean (magenta).
As expected, the raw mean is a blurred version of the true mean. The
corrections to the mean, obtained either by dejittering or deconvolution,
closely match the true mean. (E) Evidence that eigenvectors of the raw

covariance may be artefacts of the transformations. In particular, the top
eigenvector of the raw covariance Cz (solid green line) bears no resem-
blance to any of the top 3 eigenvectors of the true covariance matrix Cx

(dot-dash blue lines), or of the dejittered covariance matrix (dashed red
lines). The eigenvectors of the true and dejittered covariance matrices
are similar. (F) Top 10 eigenvalues of the true covariance (blue), the
raw covariance (green) and the dejittered covariance (red). Eigenval-
ues obtained from estimates of the covariance matrix (red, green) are
shown with 95% confidence intervals. The two largest eigenvalues of
the raw covariance differ significantly from the corresponding values
of the true covariance. Dejittering restores the original spectrum: red
and blue values do not differ significantly

8 PC-s account for > 95% of the total variance around the566

sample mean.567

The results from the analysis of this dataset using the di-568

agonal distance function (15) are reported in Fig. 3 in the569

same format as the results reported for the synthetic data.570

The obvious exception in the case of an actual sensory sys-571

tem is that the set of true stimuli, mean and covariance are not572

available, hence the top right panel and some traces in other573

panels are missing. The panels are labeled consecutively,574

thus the labels do not correspond to the labels in Fig. 2. As575

with the model studies in Fig. 2, the raw dataset on Panel 576

A was dejittered to obtain the raster on Panel B. The stan- 577

dard deviation of the jitter was estimated to be σt = 1.27 ms. 578

Unlike the model case, now there is not a true model mean 579

and covariance to which to compare the results of dejitter- 580

ing. However, the waveforms on Panel C follow the general 581

pattern established in the corresponding Panel D of Fig. 2: 582

the raw mean (green) is a blurred version of the dejittered 583

mean; dejittering (red) and deconvolution sharpen its fea- 584

tures and in general increase in size. Comparing the top raw 585
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Fig. 3 Effects of temporal jitter
on spike-triggered statistics:
physiological studies. (A)
Rasters of stimulus waveforms
preceding isolated single spikes
of IN10-3 in the cricket cercal
sensory system. The spikes
occur at relative time 0 on this
plot. (B) The effects of temporal
jitter are removed from the raw
dataset by using the cost
function in Eq. (15). (C)
Comparison between the raw
mean (green), dejittered mean
(red) and deconvolved mean
(magenta). The corrected means
differ significantly from the raw
mean, and agree with one
another. (D) Evidence that
eigenvectors of the raw
covariance can be artefacts of
the transformations. In
particular, the top eigenvector of
the raw covariance Cz (solid
blue line) bears no resemblance
to any of the top 3 eigenvectors
of the dejittered covariance
matrix Cx (dashed red lines),
which is the most likely estimate
of the true covariance. (E) Top
10 eigenvalues of the raw
covariance (green) and the
dejittered covariance (red). The
top eigenvalue of the raw
covariance differs significantly
from the corresponding value of
the dejittered covariance

eigenvector (solid blue) on Panel D to the top three eigen-586

vectors of the dejittered covariance again demonstrates that587

some of the spectral components of the spike-triggered co-588

variance may be artefacts of temporal jitter. The top 10 eigen-589

values of the raw (green) and dejittered (red) covariances in590

Panel E suggest that here there are a number of eigenvalues591

that differ significantly (more than 95% level).592

There are similarities and differences in the application593

of the dejittering methods to models and sensory data. Most594

of the results are quite similar to the ones obtained from595

our study of synthetic data. This distinctions are manifested596

in panels C and E of Fig. 3. In Panel C one can notice597

somewhat larger differences between the mean corrected by598

deconvolution, and the one recovered by the dejittering pro-599

cedure. There were essentially no noticeable differences in600

the corresponding panel of Fig. 2. One possibility is that601

in the real system there may be more transformations act-602

ing on the stimulus, and undoing the effects of one still603

leaves nontrivial noise sources to affect the mean waveform.604

Panel E shows multiple eigenvalues differing between the605

raw and dejittered spectra, compared to two on the corre- 606

sponding panel of Fig. 2. This highlights the observation 607

that even small levels of jitter (σt ≈ 1.5 ms in this case) can 608

lead to large distortions of the conditional covariance spec- 609

trum. It still leaves open the possibility that there are more 610

artefacts generated by other transformations. 611

We again apply the model selection criteria described 612

in C. Positive values in both cases favor the true process 613

model; negative values favor the model of observables. For 614

the physiological observations, the average log likelihood 615

ratio was 1.06 per sample. Since this is a logarithmic mea- 616

sure, it means that on the average, each sample was about 617

3 times more likely to be explained by the true model than 618

by the raw model. The corresponding average difference of 619

AIC criteria was 2.12, again favoring the true model. To ob- 620

tain the corresponding values for the whole set of 13,600 621

observations, the average values have to be multiplied by 622

13,600, stressing the overwhelming advantage that the true 623

process model has above the model estimated directly on raw 624

observables. 625
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Fig. 4 Evidence for the artefactual origin of the top eigenvectors
of the spike-triggered covariance. (A) Similarity between the top two
eigenvectors of the raw covariance for data sampled from the diagonal
normal model (green lines) and data sampled from the autoregressive
normal model (magenta lines). Pairs of eigenvectors are very similar
to one another (bright green and bright magenta; dark green and dark

magenta), even though the true stimuli have very different covariance
matrices and corresponding spectral decomposition. (B) Similarity be-
tween the top eigenvector of the raw covariance matrix in Fig. 2 (top
raw evec) and the normalized derivative of the true mean (diff(mean)).
(C) Similarity between the top eigenvector of the raw covariance matrix
in Fig. 3 and the normalized derivative of the dejittered mean

The spectral decomposition of the raw covariance matrix626

in both figures deserves more attention. As can be seen in Eq.627

(5), transformations induce artefactual structures in the raw628

covariance Cz , which are otherwise not present in Cx . In Fig.629

4 we present evidence that the top eigenvectors of the raw630

covariance may be artefactual. In Panel A we compare the631

top two eigenvectors of the raw covariances obtained from632

model 1 and model 2. To remind the reader, we sample a set of633

stimuli from each true model, and shift them by random time634

t ∝ p(t) to obtain raw stimuli. The raw covariances are then635

estimated from those raw stimuli. Recall that both models636

have the same true mean, but very different true covariance637

structures. Model 1 has a spherical covariance structure—638

the covariance matrix is Cx = σ 2 I . Thus any vector is an639

eigenvector of Cx . Model 2 on the other hand has an au-640

toregressive covariance, the top three eigenvectors of which641

were shown in Panel E of Fig. 2. In Panel A we show the top642

two eigenvectors of the raw covariance for both model 1 and643

model 2. Despite the big differences in the true covariances,644

the spectral decomposition of the raw covariances derived645

from those models are strikingly similar. This is a strong in-646

dication that these eigenvectors are artefacts of the temporal647

shifts.648

As we discussed in Section 3, when σt is relatively small649

and when CA in (9) dominates the other terms, the analysis650

in Appendix A predicts that in the case of temporal jitter651

the leading eigenvector of Cz is approximately the derivative652

of the true mean, dx̄
dt . We hasten to state that, even though653

currently the results of the perturbation analysis (9) can ex-654

plain just the top raw eigenvector, it by no means implies that655

just a single artefactual eigenvector is generated. Evidence656

for that is shown in Panel A of Fig. 4, where we see two657

artefactual eigenvectors, and in panel F of Fig. 2, where two658

eigenvalues were found to be significantly different from the659

expected spectrum.660

We tested the perturbation assumptions for both661

model 2 and the cricket data. In the case of the model, the662

largest eigenvalue of Cx is (approximately) 9 103σt is set to 663

15 (= 1.5 ms at 10 kHz sampling rate), the largest eigen- 664

value of CAx is 36, the largest eigenvalue of C S
A2x is 0.11 and 665

the only nonzero eigenvalues of CA is 115. Therefore, since 666

σ 2
t ||CA|| ≈ 2.6 × 104, the last term dominates the rest in (9). 667

Currently we cannot estimate analytically for what range 668

of σt the approximation (9) is valid. Instead we present the 669

eigenvectors with corresponding normalized derivatives of 670

the mean in Panel B of Fig. 4. For the cricket data the mean 671

and covariance were estimated by deconvolution and dejit- 672

tering, as outlined above. The largest eigenvalue of Cx was 673

1.7 × 104, the value of σt was 21.5 (2.15 ms at 10 kHz sam- 674

pling rate), the largest eigenvalue of CAx was 11.2, the largest 675

eigenvalue of C S
A2x was 8.2 and the only nonzero eigenvalue 676

of CA was 234. In this case, as before, the largest eigenvalue 677

of Cx is much smaller than the size of σ 2
t ||CA|| ≈ 1.1 × 105, 678

and visual inspection of the leading eigenvector of Cz on 679

Panel C reveals that it also strongly resembles the eigenvec- 680

tor of CA, that is, dx̄
dt . 681

4.3. Analysis of visual processing and spatial jitter: 682

model studies 683

Extension of this framework and algorithms to two dimen- 684

sional shifts is straightforward. For related work from the 685

perspective of computer vision the reader should consult 686

(Frey and Jolic, 1999, 2003; Miller and Chef’dhotel, 2003; 687

Miller et al., 2000; Rao and Ruderman, 1999). Here we study 688

the effects of spatial jitter on a model of a simple V1 cell. We 689

use a classic model of simple V1 cells: the Gabor function 690

(Jones and Palmer, 1987; Marcelja, 1980). The model cell 691

has the receptive field (true mean), shown in Fig. 5A, that 692

is a 32 × 32 pixels Gabor wavelet with Gaussian σ = 3.5 693

pixels and sine wavelength k = 2
√

2σ . We use arbitrary 694

non-dimensional units instead of spatial angle to keep the 695

model general. The noise for the model cell was an inde- 696

pendent Gaussian noise with standard deviation σ for each 697
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pixel, approximately of the order of the maximum RF value.698

The data on which the algorithms operated was generated by699

sampling from this model. Once frames were sampled, they700

were shifted in the plane by shifts consisting of a horizon-701

tal and vertical component, both drawn independently from702

a normal distribution with mean zero and σx,y = 2.5 pixels703

(spatial jitter).704

We report results from the analysis of a model simple705

visual cell in Fig. 5 and 6. Panel B of Fig. 5 shows the blurring706

caused by the action of spatial shifts. Panel C demonstrates707

that this effect can be corrected, in this case by deconvolving708

the estimate in panel B with the 2-d distribution of spatial709

shifts.710

The spectral analysis of the conditional covariance can711

also be extended to higher dimensions, with equally impor-712

tant consequences. As mentioned above, the noise model for713

this model cell was independent for each pixel. Thus the714

true covariance matrix here is proportional to the unit ma-715

trix, and any specific eigen-basis of the estimated covariance716

would be induced at random by the finite number of samples.717

However, as can be seen on Fig. 6, the covariance matrix es-718

timated from the raw data has some very specific structures719

(panels B, D and F there). We can show that some of those720

structures (the 3 shown here) are generated solely by the ac-721

tion of the transformations on the stimulus. In these cases,722

the first derivatives of the receptive field in x (A) and y (C),723

and the second derivative in x (E) matched almost exactly724

eigenvectors 1, 4 and 3, respectively. The above derivatives725

emerge from perturbation analysis similar to the one per-726

formed for the 1-d case, which is not discussed in detail727

here.728

The first order perturbation analysis result in (9) can pro-729

vide an approximation to the top eigenvector of the raw730

covariance. In reality, more eigenvectors and eigenvalues731

will be affected. For example, in Panel F on Fig. 2, at least732

two eigenvalues are significantly affected, as judged by the733

eigenvalue spectrum. As we just discussed, in Fig. 6 at least734

three are affected. The first order expansion presented in735

the Appendix cannot explain more than one such artefactual736

eigenvector. However a second- and higher-order expansions 737

can provide further insight in this process when necessary. 738

It bears repeating that the dejittering procedure discussed 739

above, not relying on perturbation analysis, can in principle 740

remove all effects of transformations. The drawbacks there 741

are the increased computational cost of the current imple- 742

mentation of this procedure, and the use of specific models, 743

the choice of which may affect the final results. The prac- 744

tice that we have adopted was to first search for signatures 745

of the transformations in the raw covariance matrix, which 746

is a relatively quick process. If such signatures were found, 747

we applied the dejittering procedure to remove the effects of 748

transformations not just for the top eigenvector, but from the 749

whole ensemble of spike-triggered stimuli. 750

5. Discussion 751

Biological sensory systems, and more so individual neu- 752

rons, do not represent external stimuli exactly. This obvious 753

statement is a consequence of the almost infinite richness 754

of the sensory world compared to the relative paucity of 755

neural resources that are used to represent it. Even if the 756

intrinsic uncertainty present in all biological systems is dis- 757

regarded, there will always be a many-to-one representation 758

of whole regions of sensory space by indistinguishable neural 759

responses. One direction of research in sensory neuroscience, 760

espoused by us and others, is to identify and model such 761

regions, with the goal of eventually completely describing 762

neural sensory function as the partitioning of sensory space 763

into distinguishable regions, associated to different response 764

states of a sensory system. 765

In pursuing this agenda, the vastness of sensory space 766

imposes a certain style of analysis that explicitly addresses 767

the problem ensuing from the availability of relatively small 768

datasets with which to provide description of relatively large 769

sensory regions. Typically, response-conditioned stimuli are 770

represented by parametric models with few free parameters. 771

Multivariate Gaussians, characterized by center (mean) and 772

Fig. 5 Effects of spatial jitter on receptive field estimates of a
model V1 simple cell. All images are plotted on a common grayscale
map. (A) Receptive field of the model V1 simple cell: a Gabor patch
with Gaussian spread σ = 3.5 pixels and sine wavelength k = 2

√
2σ .

(B) Estimate of the receptive field in the presence of random spatial
shifts with σx,y = 2.5 pixels. (C) The mean in (B) after deconvolution
with a rotationally symmetric Gaussian kernel with σ = 2.5 pixels is a
much better estimate of the true mean in (A)
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Fig. 6 Evidence that eigenvectors of the raw spatial covariance of the
model V1 simple cell can be artefacts due to the presence of random
spatial translations. The panels show relations between eigenvectors
of the raw stimulus covariance matrix and functions of the receptive
field for the model V1 simple cell. All images are plotted on a com-
mon grayscale map. On the top row are shown several of the spatial
derivatives of the receptive field from Fig. 5A (A) The first horizon-
tal derivative (∂/∂x); (C) the first vertical derivative (∂/∂y); (E) the

second horizontal derivative (∂2/∂x2). All derivatives were estimated
numerically. On the bottom row are shown several of the eigenvectors
of the raw covariance matrix. (B) The eigenvector corresponding to
the largest eigenvalue; (D) The eigenvector corresponding to the 4th
largest eigenvalue. (F) The eigenvector corresponding to the 3rd largest
eigenvalue. Eigenvectors and corresponding derivatives are strikingly
similar

covariance structure around it, are one such set of models.773

Once such models are obtained, their parameters are inter-774

preted as neural functions in the context of sensory process-775

ing: stimulus features to which the system is selective, or776

filters and discriminant functions used to represent neural777

stimulus selectivity.778

The analysis presented here provides tools with which to779

obtain more precise “reverse” models of the sensory regions780

associated with distinct neural responses. It achieves this781

by explicitly identifying sources of non-uniqueness and un-782

certainty in the stimulus, and providing specific models for783

those sources. This leaves a stimulus residual with smaller784

variance, which is more likely to be explained by the gen-785

eral parametric models discussed above. Furthermore, pa-786

rameters of the stimulus models will not be contaminated787

anymore by the presence of those noise sources. Any in-788

terpretation of these parameters in the context of stimulus789

selectivity will be free of distortions formerly induced by the790

unaccounted noise sources. So, at the cost of at most a minor791

increase of model complexity, and possibly a decrease (due792

to the simplification of the set that needs to be explained),793

the analytical tools discussed here achieve a much better794

description response-conditioned stimulus space. Quantita-795

tively, “more precise” refers to the evidence presented here796

that models which explicitly represent transformations con-797

sistently outperform by a sizable margin in both log like-798

lihood ratio and AIC tests equivalent models with implicit799

representation.800

In this work we model some of the effects of uncer- 801

tainty and non-uniqueness of neural responses as a set of 802

transformations that act on the stimulus and leave the re- 803

sponse invariant. We demonstrate how stimulus transfor- 804

mations, when not taken into account explicitly, can bias 805

the estimates of response-conditioned statistics. In particu- 806

lar, we show that the conditional mean is “blurred” with a 807

point-spread function given by the distribution of transfor- 808

mations. The conditional covariance is affected in a more 809

complex manner (5). However, in some special cases we 810

can associate the top eigenvectors of the raw covariance ma- 811

trix with transformation-induced functions of the conditional 812

mean (temporal, spatial or spatio-temporal derivatives in the 813

case of corresponding shifts). Thus, according to this line 814

of research, such eigenvectors have no relation to stimulus 815

selectivity, but are artefacts of the transformations acting on 816

the stimulus. Both of these effects have been confirmed in 817

models and their presence verified with observations in the 818

cricket’s cercal sensory system. 819

The results we report are also relevant to spike-triggered 820

covariance analysis (Agüera y Arcas and Fairhall, 2003; de 821

Ruyter van Stveninck and Bialek, 1988; Rust et al., 2004; 822

Schwartz et al., 2002; Theunissen et al., 2004), in which 823

special meaning is assigned to eigenvectors of the condi- 824

tional covariance matrix, whose eigenvalues differ signifi- 825

cantly from those of the unconditional stimulus covariance. 826

Here, without referring to the unconditional spectrum, we 827

demonstrated that some of the top conditional eigenvectors 828
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may be artefacts of transformations. Moreover, these results829

seems consistent with eigenvector structures observed for830

temporal stimuli (Agüera y Arcas and Fairhall, 2003; Agüera831

y Arcas et al., 2003; Schwartz et al., 2002) and 1-space, 1-832

time stimuli (Pillow et al., 2003; Rust et al., 2004; Schwartz833

et al., 2002 Simoncelli et al., 2004), although we have not834

re-analyzed data from the above publications to confirm this835

statement. Certainly not all of the structures reported in these836

articles are due solely to the uncertainty (spatial or temporal)837

of neural responses. However, when functional significance838

is attributed to eigenvectors of the covariance, any close sim-839

ilarity between derivatives (spatial or temporal) of the true840

response-triggered average and eigenvectors of the raw co-841

variance matrix should be studied carefully to avoid possible842

artefacts due to the processes described above, irrespective843

of the properties of the unconditional covariance matrix. The844

work reported by Agüera y Arcas and Fairhall (2003) and845

Agüera y Arcas et al. (2003) is especially interesting, as such846

structures appear there despite the fact that the authors used847

deterministic models in their work, so no biophysical noise848

sources are present. As we discuss below, the other major849

source of uncertainty is the major compression performed850

by the early sensory system, which will generate effec-851

tive temporal uncertainties that can be modeled as temporal852

jitter.853

Fortunately, in many cases it is not too difficult to re-854

move the action of the transformations and obtain a data855

set and response-conditioned model that are free of this856

confounding influence. We propose an iterative algorithm857

for a set of 1-parametric shifts that selects inverse shifts858

that are maximally likely under a joint model of stimulus859

and shifts, P(x, t), and then re-estimates the model to ob-860

tain better parameters. In particular, we assume that stim-861

ulus and transformations are independent. In cases where862

the conditional stimulus distribution is not as simple as as-863

sumed here (e.g., is bimodal or multi-modal), the method864

can easily be extended by modeling the stimulus distri-865

bution P(x) with a mixture model. Nothing else changes866

in the formalism of Section 2 except the form of P(x)867

with which we model the stimulus. Similarly, the distri-868

bution of transformations can be modeled with paramet-869

ric models other than Gaussian when the problem demands870

it.871

The analysis shown here was performed predominantly872

with the assumption that the action of the transformations873

on the stimulus is parametrized by a single scalar parameter,874

t. It can be extended easily to higher dimensional transfor-875

mations, with essentially identical results. Similar ideas for876

the more general case of arbitrary affine transformation has877

been proposed by Frey and Jojic (1999, 2003), for problems878

in Computer Vision. Both of these cases can also be treated879

in the common framework of Pattern Theory (Grenander,880

1996). Results of the 2-d case shown here are relevant for the881

analysis of visual systems, especially regarding the concepts 882

of spatial receptive fields (Schwartz et al., 2002), 1-space, 883

1-time receptive fields (Rust et al., 2004; Theunissen et al., 884

2004), and spike-triggered covariance analysis (Agüera y 885

Arcase and Fairhall, 2003; Agüera y Arcase et al., 2003; 886

Pillow et al., 2003; Rust et al., 2004, Schwartz et al., 2002; 887

Simoncelli et al., 2004). 888

Interpretations of the parameters of the transformation 889

noise models depend on the specific problems and sensory 890

systems being analyzed. For example, here we attribute the 891

transformation noise predominantly to biophysical sources, 892

while Aldworth et al. (2005) interpreted the standard devi- 893

ation of temporal jitter as a mixture of intrinsic biophysical 894

noise and external stimuli leading to variable precision. In 895

the visual system model discussed here, the noise was con- 896

sidered due solely to invariance of the response to such trans- 897

formations, that is, its source was assumed to have a signal- 898

processing origin. Any of those cases, or a mixture, may 899

be present in a biological sensory system, which makes the 900

parameter interpretation more difficult and problem specific 901

than the actual analytical tools developed here. Furthermore, 902

there are interesting limiting cases—jitter approaching zero, 903

and jitter dominating the variability, that can further compli- 904

cate the interpretation of these processes. We view temporal 905

jitter as fundamentally different from other transformation- 906

induced noise. In threshold biological systems, many distinct 907

noise sources will manifest themselves at least partially as 908

temporal jitter: any variability in the membrane potential 909

will cause either a delay or speed-up of a spike. Thus, when 910

several types of transformations are considered, temporal 911

jitter may be correlated with other transformation-induced 912

noise. To unravel these effects will require a more detailed 913

noise models. Purely biophysical noise sources can be ad- 914

dressed with the stochastic neuronal models recently devel- 915

oped by Paninski (2004) and Paninski et al. (2005). How- 916

ever, invariance-based and mixed noise sources are beyond 917

the current reach of those types of models. Additional tech- 918

niques may have to be developed to address such issues as 919

they arise.
920

Appendix A: Mathematical details 921

We follow the notation established in the main body of the 922

paper. 923

Appendix A.1. Effects of transformations on the 924

conditional mean and covariance 925

We first describe the effects of transformation on the estimate 926

of the conditional mean 927

x̄ = E p(x)x (A.1)
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as a representative of the cell’s stimulus preference. When928

we compute the raw mean of the observed collection (1), we929

are estimating930

z̄ = E p(z,x,t)gt x .

931

Our analysis is based on the following straightforward932

observation regarding the linearity of expectation:933

Lemma 1. If the action of the transformations gt is lin-934

ear, then the transformation commutes with the expectation935

in x936

E p(x)gt x = gt E p(x)x . (A.2)

937

The relation between z̄ and x̄ is addressed in the following938

Lemma 2. Assume that the joint probability factorizes939

P(x, t) = p(x)p(t) and that the action of transformations940

gt is linear. Then941

z̄ = E p(t)gt x̄ . (A.3)

942

Proof: Since P(x, t) = p(x)p(t), the raw conditional mean943

z̄ can be written as944

z̄ = E p(z,x,t)z = EP(x,t) EN (z;gt x,�)z = E p(t) E p(x)gt x .

945

By (A.2) the last expression is E p(t)gt E p(x)x = E p(t)gt x̄ .946

Next we discuss the differences between the true covari-947

ance matrix948

Cx = E p(x)(x − x̄)(x − x̄)T (A.4)

and the covariance matrix computed from the collection of949

observations (raw covariance) (1)950

Cz = E p(z,x,t)(z − z̄)(z − z̄)T . (A.5)

951 �

Lemma 3. Assume that P(x, t) = p(x)p(t) and that trans-952

formations gt act linearly. Then953

Cz = C̄x + Ct + � (A.6)

where C̄x = E p(t)gt Cx gT
t and Ct = E p(t)(gt x̄ − z̄)(gt x̄ −954

z̄)T .955

Proof: First write 956

z − z̄ = (z − gt x) + (gt x − z̄)

and compute the conditional covariance 957

Cz|x,t = E p(z|x,t)(z − z̄)(z − z̄)T

= EN (z;gt x,�)((z − gt x)
+(gt x − z̄))((z − gt x) + (gt x − z̄))T

= EN (z;gt x,�)(z − gt x)(z − gt x)
+EN (z;gt x,�)(z − gt x)(gt x − z̄)T

+EN (z;gt x,�)(gt x − z̄)(z − gt x)T

+EN (z;gt x,�)(gt x − z̄)(gt x − z̄)T

958

The first term here is the instrument noise covariance 959

�. In the second and third terms, (gt x − z̄) is independent 960

of z, and EN (z;gt x,�)(z − gt x) = 0 as the expected residual 961

around the mean. Nothing depends on z in the last term, 962

hence 963

Cz|x,t = EN (z;gt x,�)(gt x − z̄)(gt x − z̄)T

= (gt x − z̄)(gt x − z̄)T + �. (A.7)

964

Now consider the expression for Cz (A.5). By (A.7) we 965

can write
966

Cz = E p(z,x,t)(z − z̄)(z − z̄)T

= E p(x,t) E p(z|x,t)(z − z̄)(z − z̄)T

= E p(x,t)(Cz|x,t + �)

= � + E p(x,t)(gt x − z̄)(gt x − z̄)T

(A.8)

since � does not depend on p(x, t). Define x̄t := gt x̄ to be 967

the transformed mean x̄ . We write
968

gt x − z̄ = (gt x − x̄t ) + (x̄t − z̄)

and compute the last term of (A.8)
969

E p(t) E p(x)(gt x − z̄)(gt x − z̄)T

= E p(t) E p(x)(gt x − x̄t )(gt x − x̄t )
T

+E p(t) E p(x)(x̄t − z̄)(x̄t − z̄)T

+E p(t) E p(x)(gt x − x̄t )(x̄t − z̄)T

+E p(t) E p(x)(x̄t − z̄)(gt x − x̄t )
T (A.9)
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970 We analyze successively all the terms in this expression.971

The first term972

E p(t) E p(x)(gt x − x̄t )(gt x − x̄t )
T

= E p(t) E p(x)gt (x − x̄)(x − x̄)gT
t

= E p(t)gt (E p(x)

(x − x̄)(x − x̄))gT
t = C̄x (A.10)

by (A.2). The second term in the expression (A.9) does not973

depend on x and we can write974

E p(t) E p(x)(x̄t − z̄)(x̄t − z̄)T = E p(t)(x̄t − z̄)(x̄t − z̄)T = Ct .

(A.11)

975

Finally, we look at the third expression in (A.9)976

E p(t) E p(x)(gt x − x̄t )(x̄t − z̄)T

= E p(t) E p(x)gt (x − x̄)(x̄t − z̄)T

= E p(t)

(
E p(x)gt (x − x̄)︸ ︷︷ ︸

=0

)
(x̄t − z̄)T = 0

where we again used (A.2). An analogous argument applies977

to the last expression in (A.9).978

Combining (A.9), (A.10) and (A.2) the expression (A.8)979

takes the form980

Cz = C̄x + Ct + �.

981

Appendix A.2. Effects of small perturbations982

on the mean and the covariance983

The expression (A.6) that we obtained for the raw covariance984

matrix is not entirely satisfactory, since it does not allow985

conclusions about the relationship between eigenvectors and986

eigenvalues of Cz and Cx . Furthermore, the matrices Cz, C̄x987

and Ct in Lemma 3 all depend in a complicated way on the988

distribution p(t) and the set of transformations {gt}t∈T . We989

wish to simplify the expression for Cz in such a way that990

this dependence will be on certain characteristics of the set991

{gt }t∈T and distribution p(t), namely the infinitesimal gen-992

erator of the set of transformations and the variance σ 2
t of993

p(t). In order to this we specialize here to the case which994

is most often found in applications, where the effect of the995

transformations gt is small, that is, the value of σt is small.996

In other words we assume that p(t) is sharply peaked around997

its mean, zero. In such case we would like to perform some-998

thing akin to Taylor expansion of he expressions for C̄x and999

Ct on the right-hand side of (A.6), similar to the expansion 1000

discussed by Rao and Ruderman (1999) for the purpose of 1001

invariant learning. In order to do that we need additional 1002

assumptions on the transformations gt, namely, that the col- 1003

lection {gt}t∈T is a one-dimensional Lie group (Hamermesh, 1004

1962). 1005

Lemma 4. Assume all assumptions of Lemma 3. In addition 1006

assume that the distribution of t is symmetric around zero 1007

and that the second moment of this distribution dominates 1008

the fourth moment (σ 2
t 	 E p(t)t4). Furthermore, assume that 1009

the set of transformations gt forms a one-dimensional Lie 1010

group. Then 1011

Cz ≈ Cx + σ 2
t

(
CAx + CA + 1

2
(CA2x + CT

A2x )

)
+� (A.12)

where 1012

CAx : = E p(x) A(x − x̄)(A(x − x̄))T

CA : = (Ax̄)(Ax̄)T ,

CA2x : = E p(x) A2(x − x̄)(x − x̄)T .

1013

This implies that the perturbation to the true covariance 1014

matrix is of the order σ 2
t . 1015

Remark 5. The symmetry assumption on the transforma- 1016

tion distribution is natural in the context of the problem 1017

and it implies that the first and third moments are zero 1018

E p(t)t = E p(t)t3 = 0. The assumption that the second mo- 1019

ment dominates the fourth moment implies that the t dis- 1020

tribution does not have heavy tails. In particular, if the t 1021

distribution is normal with zero mean, then E p(t)t4 = 3σ 4
t 1022

which satisfies the assumption, since σ t is small. 1023

Proof: Since the collection {gt }t∈T forms a one- 1024

dimensional Lie group, we can write gt = eAt , where A is 1025

the infinitesimal generator of {gt }t∈T . For small t we can 1026

approximate 1027

gt ≈ I + At + A2t2

2
, (A.13)

where I represents the identity transformation. With the ap- 1028

proximation (A.13) we write (A.10) as 1029

C̄x = E p(t) E p(x)gt (x − x̄)(x − x̄)T gT
t

≈ E p(x) E p(t)(
I + At + A2t2

2

)
(x − x̄)(x − x̄)T

(
I + At + A2t2

2

)T
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= E p(x) E p(t)(x − x̄)(x − x̄)T

+E p(x) E p(t)t A(x − x̄)(x − x̄)T

+E p(x) E p(t)t(x − x̄)(x − x̄)T AT

+E p(x) E p(t)t
2 A(x − x̄)(x − x̄)T AT

+1

2
E p(x) E p(t)t

2 A2(x − x̄)(x − x̄)T

+1

2
E p(x) E p(t)t

2(x − x̄)(x − x̄)T (A2)T

+1

2
E p(x) E p(t)t

3 A2(x − x̄)(x − x̄)T AT

+1

2
E p(x) E p(t)t

3 A(x − x̄)(x − x̄)T (A2)T

+1

4
E p(x) E p(t)t

4 A2(x − x̄)(x − x̄)T (A2)T

1030 �

We now analyze these expressions one at a time. The first1031

expression is Cx since E p(t)1 = 1. The second expression1032

can be rewritten as (E p(t)t)(E p(x) A(x − x̄)(x − x̄)T ) and the1033

first part is zero by assumption. The same argument applies1034

to the third expression. The fourth expression can be written1035

as1036

(
E p(t)t

2
) (

E p(x) A(x − x̄)(A(x − x̄))T
) = σ 2

t CAx .

and the fifth is1037

1

2

(
E p(t)t

2
) (

E p(x) A2(x − x̄)(x − x̄)T
) = 1

2
σ 2

t CA2x .

1038

The sixth term is the transpose of the fifth. By assumption,1039

the cubic terms in t are zero since E p(t)t3 = 0 and the fourth1040

order term is negligible. Therefore1041

C̄x ≈ Cx + σ 2
t

(
CAx + 1

2

(
CA2x + CT

A2x

) )
.

1042

Now we compute the approximation of the matrix Ct ,1043

when we use the approximation (A.13). First observation is1044

that by Lemma 21045

z̄ = E p(t)gt x̄ ≈ E p(t)

(
I + At + A2t2

2

)
x̄ = x̄ + σ 2

t

2
A2 x̄

since E p(t)1 = 1 and E p(t)t = 0. Then, using the fact that1046

the first and third moment vanish and the second moment1047

dominates the fourth, we get1048

Ct = E p(t)(gt x̄ − z̄)(gt x̄ − z̄)T

≈ E p(t)

((
I + At + (At)2

2

)
x̄ − x̄ − σ 2

t

2
A2 x̄

)

×
((

I + At + (At)2

2

)
x̄ − x̄ − σ 2

t

2
A2 x̄

)T

= σ 2
t (Ax̄)(Ax̄)T +

(
σ 4

t

4
− σ 2

t

2
E p(t)t

2 + 1

4
E p(t)t

4

)

×(A2 x̄)(A2 x̄)T

≈ σ 2
t CA.

1049

We collect the results Cz ≈ Cx + σ 2
t (CAx + CA + 1050

1
2 (CA2x + CT

A2x )) + �. 1051

We return to eigenvalue problem with matrix (A.19) 1052

(Cx + εCA)ζ = λζ (A.14)

where we seek a regular expansion of λ and ζ in ε 1053

λ = λ0 + ελ1 + · · · , ζ = ζ0 + εζ1 + · · · .

1054

Plugging these expressions to (A.14) we get the order 1055

O(1) equation 1056

Cxζ0 = λ0ζ0

and the order o(ε) equation 1057

(Cx − λ0 I )ζ1 = −CAζ0 + λ1ζ0. (A.15)

1058

Assume that λ0 is a simple eigenvalue of Cx . The neces- 1059

sary condition for solvability of (A.15) is that the right hand 1060

side is in the range of Cx − λ0 I . Since the matrix Cx − λ0 I is 1061

symmetric, and its kernel is spanned by ζ0, by the Fredholm 1062

alternative the condition of solvability for (A.15) is 1063

〈ζ0,−CAζ0 + λ1ζ0〉 = 0.

1064

This yields 1065

λ1 = 〈ζ0, CAζ0〉
||ζ0||2 = ||ζ0 · v||2

||ζ0||2 (A.16)

where we used the fact that CA = vvT . The Eq. (A.15) for 1066

ζ1 then becomes 1067

(Cx − λ0 I )ζ1 = −CAζ0 + ||ζ0 · v||2
||ζ0||2 ζ0.
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We first observe that the separation of scales we have used1068

assumes that the eigenvalue λ0 of matrix Cx is order 1. As-1069

sume now that the matrix Cx has a few dominant eigenvalues1070

or order 1 and the rest of the eigenvalues are of order ε. This1071

is realistic assumption for Cx a covariance matrix of a spike1072

triggered ensemble in the presence of noise.1073

Assume further that the projection of v onto the dominant1074

eigenvectors of Cx is of order ε. It follows from (A.16) that1075

this assumption implies λ1 = O(ε2) for a dominant eigenpair1076

(λ0, ζ0). Hence these eigenpairs will be perturbed very little1077

by the matrix εCA. On the other hand with this assumption1078

we have that Cxv = O(ε) and thus1079

(Cx + εCA)v = Cxv + εCAv = O(ε) + ε||v||2v.

1080

Both terms on the right hand side are of the order ε. In1081

order for the second term to be of order 1 we must have that1082

||v||2 = O( 1
ε
). Since we assume that the dominant eigen-1083

values of Cx are of order 1, this means that v must be1084

an order of magnitude larger then the largest eigenvalues1085

of Cx .1086

In our example from the data this condition is satisfied:1087

the largest eigenvalue of Cx was 1.7 × 104, the value of1088

σt was 21.5 (2.15 ms at 10 kHz sampling rate), the largest1089

eigenvalue of CAx was 11.2, the largest eigenvalue of C S
A2x1090

was 8.2 and the only nonzero eigenvalue of CA was 234.1091

Thus the largest eigenvalue of Cx is much smaller than the1092

size of σ 2
t ||CA|| ≈ 1.1 × 105. Visual inspection of the leading1093

eigenvector of Cz on Panel C of Fig. 4 reveals that it also1094

strongly resembles the eigenvector of CA.1095

Appendix A.3. Analysis of temporal shifts1096

The expression (A.12) allows us to predict the effect the1097

transformations have on the form and structure of eigenvec-1098

tors of Cz in certain cases. It follows from (A.12) that the1099

distortion depends on the relative size of the eigenvalues of1100

Cx, the variance σt and the eigennvalues of CA, CAx and1101

CA2x . Rather then analyze the general case, we show that1102

in the case when {gt} act as time shifts, and under some1103

additional conditions, one of the leading eigenvectors of Cz1104

resembles a time derivative of the true mean x̄ .1105

The approximation (A.13) for temporal uncertainty takes1106

the form1107

x(τ − t) ≈ x(τ ) − dx

dτ
(τ )t + d2x

(dτ )2
(τ )

t2

2

=
(

I + At + (At)2

2

)
x(τ ). (A.17)

1108

It follows that the action of the linear operator A is de- 1109

fined by Au(θ ) := − du
dθ

(θ ) and A2u(θ ) := d2u
(dθ)2 (θ ). Since ex- 1110

pectations here are computed by integrals for time shifts 1111

we will use integrals instead of general expectation no- 1112

tation used in this section so far. In this case (A.12) 1113

becomes 1114

Cz ≈ Cx +σ 2
t

∫ (
d

dt
(x − x̄

)(
d

dt
(x − x̄)

)T

p(x)dx

+σ 2
t

2

∫ ((
d2

(dt)2
(x − x̄)

)
(x − x̄)T

+(x − x̄)

(
d2

(dt)2
(x − x̄)

)T )
p(x)dx

+σ 2
t

(
dx̄

dt

)(
dx̄

dt

)T

+ �.

(A.18)

1115

Observe that the expressions for CAx and CA2x depend on 1116

the distribution p(x) and hence will change depending on 1117

the problem at hand. Therefore it is very difficult to make 1118

general conclusions that would be valid for all such problems. 1119

However, in our analysis of the cricket cercal system the 1120

norm of these matrices have been an order of magnitude 1121

smaller then that of matrix CA. Therefore we concentrate on 1122

a question how the matrix CA affects the eigenvalue of the 1123

matrix perturbation problem
1124

Cx + σ 2
t CA. (A.19)

1125

In this analysis we set ε := σ 2
t to indicate that σ 2

t is as- 1126

sumed small. We first analyze the term
1127

CA = σ 2
t

(
dx̄

dt

)(
dx̄

dt

)T

.

1128

Notice that this is a matrix of the size N × N where N is 1129

the size of vector dx̄
dt , with N − 1 dimensional null space and 1130

one dimensional range. Let v := dx̄
dt . Then 1131

dx̄

dt

(
dx̄

dt

)T

v =
∣∣∣∣dx̄

dt

∣∣∣∣
2

v

and so v is the unique eigenvector of dx̄
dt ( dx̄

dt )T with eigenvalue 1132

| dx̄
dt |2. 1133
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Appendix B: Deconvolution parameters1134

Appendix B.1. Form of the deconvolution kernel1135

As a starting point we assume that time shifts are distributed1136

with a normal distribution with standard deviation σt around1137

a mean spike arrival time: p(t) = N (t ; 0, σt ). However, if1138

better models of the shift distribution are available, they can1139

be used instead. For use with the dejittering algorithm, the1140

assumed distribution of time shifts can be modified to match1141

the empirically recovered distribution after dejittering.1142

Appendix B.2. Regularization parameters1143

For deconvolution we use standard deconvolution routines1144

from Matlab r©’s Image Processing toolbox (deconvwnr, de-1145

convreg). In both cases, a regularization parameters is esti-1146

mated based on information about signal and noise power in1147

the target to be corrected. In our case, the target is an average1148

of multiple samples, so we have a direct way to estimate1149

signal and noise power. The noise power is estimated as the1150

average (per coordinate) squared standard error of stimulus1151

far from a registered response. This can be estimated directly1152

as 〈V ar (x)〉/n, or computed from know statistical proper-1153

ties of the stimulus (e.g., if a GWN stimulus is generated,1154

the variance of the stimulus can be used). The signal power1155

is estimated as the average (per coordinate) sum of squares1156

in a region where a feature was evident. A single trial will1157

tend to under-estimate the signal power, since it is based on1158

the blurred raw mean. However, this can be amended by per-1159

forming several re-estimates of the signal power based on1160

results from prior deconvolutions, until a stable estimate of1161

both signal power and deconvolved target is reached.1162

Appendix C: Model selection1163

To test whether dejittering improves our understanding of1164

the data, we compare two models on different representa-1165

tion of the observations. The first model is the true process1166

model p(x)p(t) = N (x ; x̄, Cx )N (t ; 0, σt ) (Eq. (12)) in the1167

joint space X × T . This model explicitly takes the trans-1168

formations into account. The second model is the model of1169

the observables gt x = z ∈ X with p(z) = N (z; z̄, Cz). This1170

operates in a smaller space (X vs X × T) and accounts for1171

the transformations only implicitly, through the covariance1172

matrix in the smaller space. The stimulus portions of the1173

two models (p(x), p(z)) have the same dimensionality and1174

number of parameters; the true process model has a single1175

additional parameter: the variance σt of the distribution of1176

transformations N (t ; 0, σt ).1177

To evaluate which of the models explains the observa-1178

tions better, we fit the two models to the equivalent repre-1179

sentations yi = (xi , ti ) and yi = gti xi correspondingly. We 1180

evaluate the likelihood function L = ∏
i P(yi ) (Krzanowski 1181

and Marriott (1995), p. 100) on the same set of obser- 1182

vations and then evaluate the log of the likelihood ratio 1183

log Lxt ({yi }) − log Lz({yi }) between the two models. Here 1184

{yi } denotes the set of observations. A positive value here 1185

implies that the true process model explains the observa- 1186

tions better than the model of observables. A negative value 1187

implies the reverse. To compare between cases with differ- 1188

ent number of samples, we report the average (per sam- 1189

ple) log likelihood ratio. The actual value can be obtained 1190

by multiplying the average ratio by the reported number of 1191

samples. 1192

As the first model has one extra parameter, it could be 1193

argued that it would be a priori favored by the log likelihood 1194

ratio test. To address this, we apply Akaike’s Information 1195

Criterion (AIC) to each model and subtract the observables 1196

AIC from the true model AIC. As smaller value of the AIC 1197

is indicative of a better model, a positive difference will 1198

select the true model, and vice verse. Since AIC criterion for 1199

a model with m parameters is defined as (Krzanowski and 1200

Marriott (1995), p. 101) 1201

AI C({yi }) = −2 log L({yi }) + 2m,

for our case the difference AI Cz − AI Cxt = 2(log Lxt ({yi }) 1202

− log Lz({yi })) − 2, that is, twice the log likelihood ration 1203

minus two. Hence the two criteria yield almost identical 1204

results when the number of observations is large. Again, we 1205

report the average AIC difference (AIC per sample). 1206
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