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Additive neural networks and periodic patterns
AbstractIn this contribution we discuss weight selection which allows additive neural networksto represent certain periodic patterns. Given a periodic set of vectors Vl whose componentsare vli = �1 we measure correlation between i-th and j-th components of Vl in time l. Weshow that in the additive neural net with weights chosen based on this correlation, almostall trajectories converge to a periodic orbit, which consecutively visit orthants, determinedby the vectors Vl.We also construct two weights selection processes, one discrete in time and one continuousin time, which construct the desired weights dynamically.
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1 IntroductionIn this paper we will discuss recurrent additive networks with continuous time activationdynamics _xi = �aixi +Xj 6=iwijgj(xj); i = 1; : : : ; n; (1)where n � 3, ai > 0 for all i, dgjdxj > 0 for all j, and functions gj are C1 and bounded.Systems of this type are used as models of short term memory, global pattern formationand content-addressable memory. The study of this model and this interpretation goes backto Grossberg [3, 4] and Hop�eld [9].In an application of system (1) to a problem of content addressable memory one interpretsequilibria of the activation dynamics as a stored memory and the activation dynamics itselfas the retrieval of this memory. In this interpretation, given a memory vector(s) to be storedin the system, the goal is to �nd weights wij such that the system (1) admits asymptoticallystable equilibrium (equilibria) with coordinates given by memory vector(s). Usually thememory vectors consists of 0's and 1's (or, alternatively, �1), and so the desired equilibriaare some of the corners of the hypercube in Rn.2



In this paper we investigate the ability of additive neural networks (1) to represent timedependent patterns. We make two simplifying assumptions. We shall consider only periodicpatterns and each pattern will be represented as a discrete set of vectors, rather then acontinuous, periodic function of time.In the �rst part of the paper we propose a generalization of Hop�eld's [8] weight selection,which assigns a weight wij based on a correlation in time between i-th and j-th componentof the periodic set of vectors.In the second part of the paper we discuss how the weights can be chosen dynamically.We can think of a periodic pattern in two di�erent ways. We may know the whole set ofvectors which form a periodic pattern in advance, or, we can be presented these vectors oneat a time. In the �rst case we can base the construction of the weights on the knowledge ofthe whole pattern, while in the second case we construct weights from the partial informationwhich is available at that time.We construct a continuous time weight selection mechanism which is based on the com-plete knowledge of the pattern and a discrete time weight selection mechanism based on thepartial information.We �rst de�ne this class of patterns and then the choice of weights. A periodic patternis biin�nite sequence of n-vectors fVlg1l=�1, n � 3, where each vector Vl = (v1l ; : : : ; vnl ) hascomponents vil 2 f�1g, and there exists a permutation� : f1; : : : ; ng!f1; : : : ; ng such thatvkl vkl�1 = ( �1 if k = � (l mod n)1 otherwise : (2)This de�nition implies that two consecutive states Vl and Vl�1 of a periodic pattern di�eronly in a single �(l mod n) component. Since � is a permutation, every component has tochange exactly once in the set of states Vl; : : : Vl+n for any l. It follows that the sequencefVlg1l=�1 is 2n periodic. We shall also use the notation fVlg2nl=1.Example. The set of vectorsfVlg6l=1 = f(1; 1; 1); (1;�1; 1); (�1;�1; 1); (�1;�1;�1); (�1; 1;�1); (1; 1;�1)gis a periodic pattern with the permutation � = (1; 2; 3)!(2; 1; 3).We denote the open orthants in RnO(�1; : : : ; �n) := fx 2 Rn j �ixi > 0gwhere �i 2 f�1g. The set (�1; : : : ; �n) is the signature of the orthant O(�1; : : : ; �n). We saythat almost all trajectories converge to a set K if for every bounded set B containing K thefollowing holds: the set of all x 2 B such that the trajectory starting in x converges to K,has the measure of the set B.De�nition 1.1 A periodic pattern fVlg2nl=1 is represented by (1) with a set of weights W =(wij) if almost all trajectories under (1) converge to a trajectory, which consecutively visitsorthants O(Vl); l = 1; : : : ; 2n:3



Let G := �ni=1g0i(0) be product of gains in system (1). The main result of this paper isthe following Theorem.Theorem 1.2 Let fVlg2nl=1 be a periodic pattern, where each Vl is a n-vector with n � 3. LetCij := 12n 2nXl=1 vilvjl�1and w�ij = ( Cij if jCijj = 10 if jCijj < 1 : (3)Then the pattern fVjg2nj=1 is represented by the system_xi = �aixi +Xj 6=iw�ijgj(xj) (4)provided that the functions gj(xj) are such that G > 8 and the origin is hyperbolic. Thus al-most all trajectories of (4) converge to an orbit which consecutively visits orthants O(Vl); l =1; : : : ; 2n.The numbers Cij measure average correlation (in time) of i�th and j�th component ofthe input pattern; the weights w�ij reect this correlation.We want to compare this weight selection to the weight selection of Hop�eld [8] for time-independent patterns. Given a set of constant vectors Vs, s = 1; : : : ; l to be stored in adiscrete time analog of (1), Hop�eld proposed thatwij =Xs (2vsi � 1)(2vsj � 1): (5)Hop�eld assumes that Vs = (vs1; : : : ; vsn) and vsi 2 f0; 1g and so this weight selection measurescorrelation of i-th and j-th entry over the ensemble of vectors Vs. In [9] Hop�eld studiescontinuous time model (1) with functions gj(xj) = �j(�xj), where where � is a sigmoidalfunction and � controls the steepness (gain) of � in such a way that as �!1, �j approachesa step function. He outlines the proof, which was corrected and completed by Troyer [17],that if all the self-weights wii are strictly positive, then for high enough gain of functions gj,at the stable equilibrium point p of (1) the output are saturated. In other words, as �!1,the value gj(pj) is arbitrary close to one of the limiting values of �j at �1. This shows thatfor su�ciently large gain, the long time behavior of the continuous time system is similar tothe long time behavior of the discrete time system.Our weight selection generalizes the choice of weights (5) since if Vl = Vk for all l; k, (3)gives jCijj = 1 for all ij and we recover the weight selection (5). The only di�erence is thatour vectors consist of �1 and not of zeroes and ones.We prove Theorem 1.2 in section 2. In section 3 we propose weight adjustment mecha-nisms (one discrete and one continuous in time) which will generate the weights w�ij dynam-ically. 4



The discrete time mechanism is based on Hebb's paradigm [6] according to which strengthsof connections are adjusted proportionally to the correlation between the �ring patterns ofthe connected neurons.In the continuous time weights adjustment mechanism we use the periodic pattern fVlgto construct the set of initial weights, which then evolves toward the weights w�ij. We usethe results for cascade of neural nets [7], [16]) to show that the system (1), combined withthe weights selection dynamics, will represent the desired periodic pattern.2 Realization of periodic patternsIn this section we prove Theorem 1.2, while delegating more technical part of the argumentto section 4.Recall that every 2n-periodic pattern fVlg2nl=1 is characterized by a permutation �(l).Lemma 2.1 The quantity jCijj = 1 if and only if (i; j) = (�(s); �(s � 1)) for some s 2f1; : : : ; ng.Furthermore, if jCijj 6= 1 then 1� jCijj � 2=n.Proof. Fix the pair (i; j) and de�ne al := vilvjl�1. With this de�nition Cij = 12n P2nl=1 al. Itfollows that jCijj = 1 if and only if alal�1 = 1 for all l. Observe thatalal�1 = vilvjl�1vil�1vjl�2= vilvil�1 � vjl�1vjl�2:Recall that by the de�nition of the periodic pattern vilvil�1 = �1 if i = �(l), otherwisevilvil�1 = 1. Therefore alal�1 = 1 if and only if bothi 6= �(l) and j 6= �(l � 1):However, as l ranges from 1 to 2n, there must be a value of l, say l = s, such thati = �(s): (6)Since the pattern is 2n periodic, we also have, in addition to (6), that i = �((s+ n)mod n).Now there are two possibilities. If j = �(s � 1), then as = �1 and as�1 = �1 and,consequently, al = al�1 for all l. In this case jCijj = 1.If j 6= �(s � 1) then as = �1 and as�1 = 1, and, by the periodicity, as+n = �1 andas�1+n = 1. In this case it is easy to see that 1� jCijj � 2=n. 2Let us consider system (4). In the light of Lemma 2.1 which weights will be non-zerodepends on the permutation �, which characterizes a simple pattern fVlg2nl=1.In order to simplify discussion, we introduce a change of variables, which puts the system(4) to a standard form. Given a periodic pattern fV �l g2nl=1 in Rn with a permutation �, wede�ne a change of coordinates vi!v�(i): (7)5



Observe that in the new coordinates the periodic pattern becomes fV idl g2nl=1, where id is theidentity permutation. It is straightforward to check that for such a periodic pattern thelimiting weights have the formw�ij = 8><>: �1 if i = 1; j = n1 if i 6= 1; j = i� 10 otherwise . : (8)With these weights the system (4) becomes_xi = �aixi + w�i;i�1gi�1(xi�1); i = 1; : : : ; n; (9)where w�1;n = �1 and all other w�i;i�1 = 1.We call the pattern fV idl g2nl=1 the standard form of a periodic pattern and (9) is thestandard form of the equation (4).Theorem 2.2 Assume that G > 8 and that the origin in (9) is hyperbolic. Then the onlyasymptotically stable invariant sets in (9) are periodic orbits, which visit consecutively 2northants fO(V idl )g2nl=1 with signaturesfV idl )g2nl=1 = f(1; 1; : : : ; 1; 1); (�1; 1; : : : ; 1; 1); (�1;�1; : : : ; 1; 1); : : : ; (�1;�1; : : : ;�1;�1);(1;�1; : : : ;�1;�1); : : : ; (1; 1; : : : ; 1;�1)g: (10)Furthermore, almost all trajectories converge to such a periodic orbit.If we reverse the change of variables (7) Theorem 2.2 implies Theorem 1.2.Proof of the Theorem 2.2 is delegated to section 4.3 Weight selection mechanismsIn this section we present two weight selection mechanisms which compute weights w�ij.The �rst system is discrete time system and the pattern fVlg a�ects the dynamics ofthe system as a non-autonomous input. The adjustment of the weights follows Hebbianparadigm [6]: the strength of the connection wij is proportional to the correlation of theactivity of the neurons i and j.The second system is a continuous time dynamical system. In this case the periodicpattern fVlg gives rise to an initial condition of the weight selection dynamics.Neither the discrete nor the continuous weight selection is exible in a sense that uponpresentation of a new periodic pattern, it will select the weights for the representation of anew pattern without outside adjustment. In both cases the weight selection process must berestarted.
6



3.1 Discrete weight selection dynamicsFix a pair i; j. Let �ij(s) := vs+1i vsj for all s:The discrete weight adjustment dynamics iswsij = 12ws�1ij + Uij(s)2 (11)where Uij(s) is de�ned inductively by Uij(1) := �ij(1) andUij(s) := 12�ij(s)Uij(s� 1)(Uij(s� 1)) + �ij(s)):The number s represents the discrete time and the initial condition w0ij for wij is arbitrary.Proposition 3.1 The iterates of the non-autonomous map (11) converge to the weights (3),i.e. for every pair (i,j) wsij!w�ij: as s!1Proof. We �x a pair i; j and drop the subscript from Uij(s) and �ij(s).Since �(s) 2 f�1g, the value of U(s) can only be 0; 1 or �1. We make some simpleobservations. If U(l � 1)�(l) = �1 then U(l � 1) + �(l) = 0 and so U(l) = 0. If U(l) = 0then U(s) = 0 for all s � l. It follows that if U(1) = 1 then either U(s) = 1 for all s, or thereis K such that U(s) = 1 for s = 1; : : : ; K and U(s)) = 0 for all s > K. Similar statement istrue for the case U(1) = �1.Function U(s) serves as a memory; if the last entry U(s�1) matches the input �(s) thenU(s) = U(s� 1), in the opposite case, U(s) = 0. It is easy to see that if the periodic patternhas period 2n, then U(s) = U(n) for all s � n.Thus for s � n equation (11) has three possible forms corresponding to the three possiblevalues of U(s) 2 f�1; 0g. It is easy to see from the form of (11) that if U(s) = �1 for alls � n then wsij!� 1 as s!1, and if U(s) = 0 for all s � n, then wsij!0 as s!1.Observe that if Uij(s) = 1 for all s we must have that �ij(s) = 1 for all s and thus Cij = 1.By selection rule (3), w�ij = 1 which means that wsij!w�ij as s!1. Similarly, if Uij(s) = �1for all s, then Cij = �1 and wsij!w�ij as s!1.If Uij(s) = 0 for s � k we must have that �ij(l)�ij(l � 1) < 0 for some l � k and sojCijj < 1. We see that also in this case wsij!w�ij = 0 as s!1.This proves the Proposition. 2Remark 3.2 To restart the weight selection process for a new pattern, one needs to resetthe function Uij(1) = �ij(1) for all pairs i; j.3.2 Continuous weight selection dynamicsGiven a periodic pattern fVlg2nl=1 we de�ne for every pair i; j 2 f1; : : : ; ng � f1; : : : ; ng a setof 2n variables wlij, l = 1; : : : ; 2n. A periodic pattern fVlg2nl=1 gives rise to a set of initial datawlij(0) := vilvjl�1: (12)7



Let W := (w111; w211; : : : ; w2nnn) 2 R2n3 be the vector of weights and let W (0) be the vector ofinitial weights (12).The weight adjustment dynamics will be given by_wlij = wl�1ij � 2wlij + wl+1ij + �f(wlij) (13)where l = 1; : : : ; 2n is taken mod 2n, the subscript ij 2 f1; : : : ; ng � f1; : : : ; ng andf(u) = �u(u2 � 1)(u2 � (1� 12n)2): (14)The number � is small and will be speci�ed later.Recall that a dynamical system is dissipative if there is a bounded set B such that alltrajectories eventually enter this set. Since for jyj >> 1 we have f(y)y < 0 it is easy to seethat the system (3) is dissipative.Observe that the system (13) involves 2n3 di�erential equations; however equations in-volving wlij, l = 1; : : : ; 2n, and wmqs, m = 1; : : : ; 2n for (i; j) 6= (q; s) are decoupled. So (13)is composed of n2 subsystems of 2n equations each, which are mutually independent. Weshall call a subsystem involving wlij, l = 1; : : : ; 2n the (i; j)-subsystem. Each subsystem willdetermine one weight in (4).Following Proposition is an analog of Proposition 3.1 for continuous time weight selection.Proposition 3.3 There is �0 such that for all � � �0, the trajectory in the system (13) withthe initial condition (12) converges to an asymptotically stable equilibriumW � := (w111; w211; : : : ; w2k11 ; w112; : : : ; w2nnn)where wlij = wmij = w�ijfor all i; j; l;m.To prove Proposition 3.3 we need a few Lemmas.We �rst consider the system (13) with � = 0:_wlij = wl�1ij � 2wlij + wl+1ij : (15)Observe that the system (15) represents a discrete di�usion process. Following considerationsare standard and we include them for the sake of completeness. LetAij(t) := 12n 2nXl=1wlij(t)be the average of the variables wlij, l = 1; : : : ; 2n, at time t under the ow given by (15).Lemma 3.4 Under the ow given by (15), Aij(t) = Aij(0) for all t.8



Proof. ddtAij(t) = 12n 2nXl=1 _wlij(t)= 12n 2nXl=1 wl�1ij � 2wlij + wl+1ij = 0;since l is taken mod 2n. 2Lemma 3.5 Under the ow given by (15), wlij(t) converges to an equilibrium �wij(l) for anyi; j and l. Furthermore, �wlij = Aij is independent of l.Proof. Consider the functionVij(t) := 12 2nXl=1(wlij(t)� Aij)2:We show that this is a Lyapunov function for every pair i; j._Vij(t) = 2nXl=1(wlij � Aij) _wlij= 2nXl=1(wlij � Aij)(wl�1ij � 2wlij + wl+1ij )= 2nXl=1 wlij(wl�1ij � 2wlij + wl+1ij )= 2nXl=1 wlijwl�1ij � 2(wlij)2 + wlijwl+1ij= � 2nXl=1(wlij)2 � 2wlijwl�1ij + (wl�1ij )2= � 2nXl=1(wlij � wl�1ij )2where we used repeatedly the fact that l is taken mod 2n. We see that _Vij(t) � 0 for allt. Further, _Vij(t) = 0 if and only if wlij = wl�1ij for all l i.e. when wlij = wmij for all l; m. Itfollows from Lemma 3.4 that this common value is Aij. 2For every (i; j)-subsystem we denote by Rij := fwlij j � 1 � wlij � 1g the cube cen-tered in the origin of R2n. We observe that the initial vector of (i; j)-weights wij(0) =(w1ij(0); w2ij(0); : : : ; w2nij (0)) is one of the corners of this cube, since wlij 2 f�1g. Let usdenote 1 := (1; : : : ; 1) 2 R2n, �1 := (�1; : : : ;�1) 2 R2n and 0 := (0; : : : ; 0) 2 R2n.Let J be the set of corners inRij with the following property. If w 2 J , w = (w1; : : : ; w2n),then �1 + 2=n � Aw � 1� 2=nwhere Aw := 12nP2ni=1wi. 9



Lemma 3.6 Fix a pair (i; j). There exists an �0 such that for all � � �0 every trajectory of(13) with initial value in J converges to 0.Proof. Assume that w(0) 2 J and so Aw(0) 2 [�1 + 2=n; 1 � 2=n]. It follows fromLemma 3.5 that there is a time T such that w(t) 2 [�1 + 1=n; 1� 1=n] for all t � T underthe ow (15). By the continuity of the ow there is � > 0 such thatw(t) 2 [�1 + 1=n; 1� 1=n]for t � T under the ow (13).Let M(t) := maxi=1;:::;2n wi(t) and m(t) := mini=1;:::;2n wi(t):Let wl(t) is an element maximizing M(t) at time t. Then_M(t) = _wl(t) = wl+1 � 2wl + wl�1 + �f(wl) < 0since f(wl) < 0 and wl+1 � 2wl(t) + wl�1 � 0 by the fact that wl(t) maximizes M(t). ThusM(t) is a monotone decreasing function. Analogous argument shows thatm(t) is a monotoneincreasing function.It follows that all wl(t) converge to the same value and that this value is in the interval[�1 + 1=n; 1� 1=n]. It follows from the form of the function f(x) that wl(t)!0 for all l andso w(t)!0 as t!1. 2Proof of Proposition 3.3 Let wij(0) be the initial weight vector for (i; j) subsystem.Observe that Aij(0) = Cij where the later quantity is used in (3) to select weights w�ij. FromLemma 2.1 we get that jAij(0)j = 1 if and only if i; j 2 Il and i = �l(s); j = �l(s � 1) forsome s and where �l is the permutation for simple periodic pattern on Il. If jAij(0)j 6= 1then again by Lemma 2.1 we have that 1� jAij(0)j � 2=k. In other words, wij(0) 2 J .Thus, for each pair i; j either wij(0) is such that jAij(0)j = jCijj = 1, in which casewij(t)!Cij = w�ijor wij(0) 2 J , in which case by Lemma 3.6wij(t)!0 = w�ij:Since there are �nitely many (i; j)- subsystems where wij(0) 2 J , there is an � > 0 such thatall subsystems converge for � � �0.It remains to be shown that the vector W � is an asymptotically stable equilibrium. Itis enough to show that the vectors 1, �1 and 0 are asymptotically stable equilibria in any(i; j) subsystem. Observe that for small � the linearization of (15) in each of these equilibriahas 2n � 1 eigenvalues with negative real part and a zero eigenvalue with the eigenvector(1; 1; : : : ; 1). For � small enough the linearization of (13) still has 2n � 1 eigenvalues withnegative real part. However, from the form of the equation (13) follows that the last eigen-value is �f 0(q) for q = 0;�1. Since f 0(q) < 0 for q = 0;�1 the vectors 1, �1 and 0 areasymptotically stable equilibria in any (i; j) subsystem. 210



3.3 Real time weight selectionWe now turn to the question of real time weight adjustment. We consider weight adjustmentsystem (13) and the activation system (1) together and study the dynamics of the combinedsystem. Recall, that the system (13) contains 2n copies wlij, l = 1; : : : ; 2n of the weight wij;we need to chose which weight will appear in the system (1). In the light of Theorem 3.3this choice does not matter, since all wlij, l = 1; : : : ; 2n, converge to the same value w�ij. Welet wij := w1ij for all pairs i; j. Consider a cascade of neural nets ([7], [16])_wlij = wl�1ij � 2wlij + wl+1ij + �f(wlij)_xi = �aixi +Xj 6=iw1ijgj(xj); (16)where i; j 2 f1; : : : ; ng; l 2 f1; : : : ; 2ng.We studied both systems separately; the weight adjustment system converges to anasymptotically stable equilibrium W � by Theorem 3.3 and the activation dynamics withweights �xed at the value given by W � is considered in Theorem 1.2.Theorem 3.7 Consider a periodic pattern fVlg2nl=1 of n-vectors, n � 3. Assume that thesystem _xi = �aixi +Xj 6=iw�ijgj(xj)with weights W � = (w�ij) satisfy the assumption of Theorem 1.2 and that f(x) is as in (14).Then for almost all vectors x = (x1; : : : ;xn) 2 Rn the system (16) with initial data(x;W (0)), where the initial weights W (0) are given by (12), converges to a periodic orbit,which generates periodic pattern fVlg2nl=1.The proof is postponed to section 5.4 Convergence to a periodic orbitWe shall prove all results in this section for the equation in the standard form (9). One canget the results for the general equation (4) by reversing the change of coordinates (7).The system (9) is a cyclic feedback system which was studied in [2], [10] and [13]. Earlyresults were given in [5]. Since the nonlinearities gi are monotone this is a monotone cyclicfeedback system. The cyclic feedback systems fall into two large categories; those with positiveand those with negative feedback. Since the product Qni=1w�i;i�1 = �1 is negative, (9) is anegative feedback system.Theorem 4.1 (Mallet-Paret and Smith, [13]) Consider a monotone cyclic feedback sys-tem in Rn. For any bounded trajectory x(t), its omega limit set !(x) is one of the following:i) a �xed pointii) a limit cycleiii) a set H = E [ C where E is set of equilibria and C is the set of connecting orbitsbetween the equilibria in E. 11



Furthermore, for any i the projection �i : Rn!R2, given by (x1; : : : ; xn)!(xi; xi�1), isinjective on the invariant set.Last part of the Theorem 4.1 implies that the following de�nition makes sense.We say that invariant set S surrounds invariant set �S if for all i we have �i( �S) � �i(S).We shall use this de�nition later in Theorem 4.5.Theorem 4.1 is proved using a discrete Lyapunov function . The construction of this func-tion can be found in Mallet-Paret and Smith [13]. We recall main points of this constructionin our notation.De�nition 4.2 Let x(t) = �x(t)� ~x(t) or x(t) = _�x(t) for any two solutions �x(t); ~x(t) of thesystem (9). De�ne N(x) = cardfi j wi;i�1xixi�1 < 0gif xi 6= 0 for all i (here we use convention x1 = xn+1). We can extend the domain of de�nitionof N by continuity toN = fx 2 Rn j xi = 0 implies wi+1;iwi;i�1xi+1xi�1 < 0gon which N is continuous. If x 2 Rn n N we leave N unde�ned.Observe also, that for those x 2 Rn with each xi 6= 0; 1 � i � n(�1)N(z) = sign nYi=1wi;i�1xixi�1 = nYi=1wi;i�1 = �1 (17)and so N takes only odd values.A geometrical view of N may be enlightening. We observe that [O � N and on eachorthant the value of N is constant. LetXi := fx 2 Rn j xi = 0; wi+1;iwi;i�1xi+1xi�1 < 0gdenote those parts of coordinate hyperplanes, which are the boundaries of two open orthantson which N has the same value. ThenN = ([Xi) [ ([O):One can use discrete Lyapunov function N to de�ne a Morse decomposition of the attractor.A Morse decomposition M(A) = fM(p) j p 2 (P;�)g of an invariant set A is a decom-position of A into at most a �nite number of disjoint compact invariant subsets M(p), calledMorse sets, indexed by a partially ordered set (P;�), such that1. given x 2 A if !(x) 2M(p) and �(x) 2M(q) then q � p2. if !(x) 2 M(p) and �(x) 2 M(p) then '(x; t) 2 M(p) for all t, where ' : A� R!Adenotes the ow. 12



Using the Lyapunov function, described above, we can de�ne a Morse decompositionM(A) = fM(p) j p = 0; 1; : : : ; Pg of the invariant set of (9). Let~M(p) := fx 2 Rn jN('(x; t)) = 2p+ 1 for all t 2 Rg:This de�nition has a geometric interpretation: ~M(p) is a maximal invariant set which lies inthe union of open orthants on which the function N assumes constant value k. Notice thatf0g is also an invariant set and as such it must be included in some Morse set. However,since N(0) is not de�ned it is not included in any set ~M(p) and so these sets do not form aMorse decomposition. We want to add f0g to one of the sets ~M(p) and construct a Morsedecomposition. Let us consider x such that �(x) = f0g and !(x) = S � ~M(r). By thede�nition of the Morse decomposition we have to include 0 to some set ~M(q) with q � r.Since x is an arbitrary element from the unstable manifold of the origin W u(0), we musthave q � p for every p such that there is x with �(x) = f0g and !(x) � ~M(p). Similarargument applies to the stable manifoldW s(0) of the origin: if x 2 W s(0) and �(x) � ~M(s)then s � q. It can be shown by analyzing the linearization of (9) at the origin ([13]),that N(W s(0) \ B�) > N(W u(0) \ B�) for a small ball B� around the origin. Since N isnonincreasing along the trajectories this rules out the existence of a homoclinic orbit to theorigin. Therefore we can lump together the set f0g with the sets ~M(p) \above" f0g into oneMorse set and let the sets ~M(p) \below" f0g be the other Morse sets. Thus we de�neM(p) := ~M(p) p < PM(P ) = f0g [ f[p�P ~M(p)g:The value of P , not surprisingly, will depend on the dimension J of the unstable manifoldof the origin ([10]): If J = 2i; 2i + 1 then P = i � 1 and if J = n then P = n + 1=2 if n isodd and P = n=2 if n is even.Lemma 4.3 For the system (9) we have J � 2 and so P > 0.Proof. It is straightforward to compute the characteristic polynomial of the linearizationof (9) at zero. We get(�+ 1)n = �ni=1wi;i�1g0i(0) = �ni=1wi;i�1�ni=1g0i(0) = �Gby de�nition of gain G. It is easy to check that the assumptions n � 3 and G > 8 implythat there are at least two eigenvalues in the right half plane. Thus J � 2 and P > 0 usingthe formulas above. 2Remark 4.4 Note that this is the only place where we use the assumption G > 8.The Morse decomposition exhibits the gradient-like properties of the ow on A andcon�nes all recurrent dynamics into individual Morse sets. It also gives a rough idea aboutthe stability of various invariant sets; the most stable sets should be in the lowest Morseset i.e. the set on the bottom of the partial order. However, one must be cautioned thatthe asymptotic stability of an invariant set S is in general not related to the Morse orderingof the Morse set, in which S lies. In fact there may be an asymptotically stable invariant13



set in other then the lowest Morse set. This was shown for the Morse decomposition of theattractor of the scalar delay equation with negative feedback by Ivanov and Losson [11].However, for the monotone cyclic feedback systems J. Mallet-Paret [14] recently proveda remarkable theorem:Theorem 4.5 (Theorem 1, [14]) Consider a monotone cyclic feedback system. Let q(t)be a non-constant periodic solution, E 2 Rn be an equilibrium and assume that solutionq(t) surrounds the equilibrium E. Let � = N(q(t) � E), where N is the discrete Lyapunovfunction described above. Then the dimension of the center-unstable manifold W cu(q(�)) ofthe periodic solution q(�) satis�es� � dimW cu(q(�)) � � + 1:Consider a periodic orbit q and let �1 � �2 � : : : �n be norms of Floquet multipliers forthe linearization of (9) about q. Let F� be the corresponding generalized eigenspace of theperiod map.Theorem 4.6 (Theorem 2.6, [13]) The norms of Floquet multilpiers satisfy�1 � �2 < �3 � �4 < : : : < �n�2 � �n�1 < �n (18)and the value of N on F�2p+1 + F�2p+2 is 2p+ 1 for p = 0; 1; : : :.Note that whether the last inequality is strict or not depends on the parity of n; the case ofn odd is illustrated in (18).Corollary 4.7 For every periodic orbit q(t) 62M(0) in a monotone negative cyclic feedbacksystem, the dimension of center-unstable manifold dim W uc(q) � 3. Furthermore, there areat least two Floquet multipliers with modulus larger than one and so such an orbit is unstable.Proof. From the de�nition of Morse decomposition for negative cyclic feedback systemfollows that the value of function N on M(p) is 2p + 1. If q(t) 2 M(p), p � 1 thenN(q(t)) = N(q(t)� 0) � 3. Using Theorem 4.5 with E = 0 it follows that dim W uc(q) � 3.Using (18) this in turn implies that �1 > 1 and �2 > 1. 2The set M(0) is characterized by the fact that N(x(t)) = 1 for all x 2 M(0) and all t.This is a geometrical condition saying that M(0) must be a subset of family of orthants, onwhich N(x) = 1. We have the following Proposition.Proposition 4.8 Consider system (9). The function N(x) has value 1 on the 2n orthantsO(Vl) where fVlg2nl=1 is given in (10).Proof. We have to show that N has value 1 on all the orthants fOl(V idl )g2nl=1 wherefV idl g2nl=1 is given in (10).Let us consider x 2 O(Vl) for some l. We want to show that N(x) = 1. By de�nitionN(x) = cardf#i j w�i;i�1xixi�1 < 0g = cardf#i j w�i;i�1(sign xi) (sign xi�1) < 0g:14



We have sign xi = vil and sign xi�1 = vi�1l . Furthermore, since the weights w�i;i�1 arenonzero we have w�i;i�1 = vikvs�1s�1 for any s, in particular for s = l. SoN(x) = cardf#i j wi;i�1xixi�1 < 0g = cardf#i j (vil)2vi�1l vi�1l�1 < 0g:We observe that if i � 1 = l then vi�1l vi�1l�1 = vllvll�1 = �1 (see (2)). For all other i theproduct vi�1l�1vi�1l = 1. Since (vil)2 = 1 we have that N(x) = 1. The choice of the orthantO(Vl) was arbitrary, and so N(x) = 1 on all the orthants O(Vl). 2It is clear that for the understanding of a global behavior of a cyclic feedback system itis important to know the structure of the lowest Morse set. We will call a periodic orbitx(t) large if, for all i = 1; : : : ; n, there are times ti and t0i such that [x(ti)]i > 0; [x(t0i)]i < 0,where [x]i denotes the i-th coordinate of x. Large periodic orbits describe oscillations withthe property, that each variable changes sign twice during one period of oscillation.We shall use following results from Gedeon and Mischaikow [10]:Theorem 4.9 (Theorem 1.4, [10]) Consider a negative monotone cyclic feedback system.Let p = 0; : : : ; P � 1. If M(p) contains no �xed points then M(p) contains a large periodicorbit.Lemma 4.10 (Lemma 5.1, [10]) Given a monotone cyclic feedback system, assume thatM(p) contains no �xed points. Let O = O(�1; : : : ; �n) be an orthant such that O\M(p) 6= ;.Then InvO = ;.Lemma 4.11 (Corollary 5.3, [10]) For any recurrent set S of a cyclic feedback systemone of the following holds:� S � O(�1; : : : ; �n) for some collection f�ig� S is large.Proof of Theorem 1.2We prove the Theorem for the standard form (9). We �rst show that there are no �xedpoints in (9) besides the origin. Indeed, the xi component of such a �xed point satis�es _xi = 0which means xi = w�i;i�1gi�1(xi�1). Since the same holds for xi�1; xi�2; : : : ; xi+1 componentswe get xi = w�i;i�1gi�1(w�i�1;i�2gi�2(: : : w�i+1;igi(xi))) =: h(xi):Observe that dhdxi =Yi w�i;i�1Yi dgidxi�1 < 0since dgidxi�1 > 0 for all i and Qiwi;i�1 = �1. Also h(0) = 0 by the assumptions on thefunctions gi and so the only solution of xi = h(xi) is xi = 0. Since i was arbitrary, the only�xed point is the origin.It follows from Theorem 4.1 that the Morse sets M(p), p = 0; : : : ; P � 1 consist ofperiodic orbits and the connecting orbits between them. The set of large periodic orbits isnon-empty by Theorem 4.9. By Lemma 4.10 and Lemma 4.11 all periodic orbits are large.15



By Corollary 4.7 all periodic orbits not in the Morse set M(0) are unstable. We now showthat almost all trajectories converge to a periodic orbit in M(0).We �rst show that the system (9) is dissipative. By assumption all functions gi arebounded and so there is a constant c such thatmaxi=1;:::;n;x2R jgi(x)jai < c:Consider any box in Rn with side r > 2c centered at the origin. Then on the boundaryof the box the term �aixi will dominate the term wi;i�1gi(xi�1) and the vector �eld pointsinward. It follows that the vector �eld generated by (9) is dissipative and the set of initialdata whose orbits escape to in�nity is empty.Fix a bounded set B, such that all the invariant set is in the interior of B. Let U bethe union of periodic orbits which do not belong to M(0) ant the origin. Observe thatCorollary 4.7 implies that all periodic orbits in U have at least two Floquet multipliers withthe modulus larger then 1. Also, by Lemma 4.3, the origin has at least two eigenvalues witpositive real part.For any invariant set q we denote the center-stable manifold of the set q by W cs(q). Weshow that the set of pointsQ := fx(0) 2 B \W cs(q); x(t)!q as t!1 j q 2 Ughas measure zero. It then follows that almost all trajectories in B converge to an invariantset in M(0).Since Morse sets are disjoint the set U \M(i) is disjoint from the set U \M(j) for i 6= j.Since the origin is hyperbolic it is not a limit point of the set U . It follows that U \M(i) iscompact for all i.Consider now an isolated component P of the set U \M(i). This means that there existsa neighborhood N�(P ) such that the maximal invariant set in N�(P ) is P . Observe thatthe origin is hyperbolic, and so it itself is an isolated component of U \M(P ). We �rstconcentrate on periodic orbits and so we assume that P consists of periodic orbits.Since U \M(i) is compact and U is isolated, U is compact. Let q be a periodic orbitin P such that there is a sequence of other periodic orbits converging to q. Then q has atleast two multipliersm1; m2 with modulus 1. It follows from (18) that in fact it has preciselytwo multipliers with modulus 1. Observe that m1 = 1 since it corresponds to the trivialeigenvector _q and so m2 must be real. This implies that m2 = 1 or m2 = �1. It is easy tosee that the second case implies existence of another periodic orbit p in the neighborhoodof q, with the period approximately twice the period of q, whose projection to x1; x2 planeintersect projection of q. This contradicts Theorem 4.1 and so m2 = 1.We restrict ourself to a Poincar�e section � to the set P . From (18) and the standardtheory of invariant manifolds ([1]) we have that the �xed point ~q of the Poincar�e map,corresponding to q, has a one dimensional center manifold W c(~q), at least two dimensionalmanifold W u(~q) and and codimension at least 2 manifold W s(~q). Any invariant set underthe Poincar�e map in N�(~q) \ � is a subset of W c(~q). Locally, W c(~q) is a curve tangent tothe eigenvector of the Poincar�e map corresponding to eigenvalue m2 = 1 at ~q.If q 2 P is isolated, then W c(~q) = ;. 16



Let S�(P ) := fx(0) 2 N�(P ); x(t)!q as t!1; q is a periodic orbit in Pgand let ~S�(P ) := S�(P ) \ �:Every periodic orbit p 2 P corresponds to a �xed point ~p 2 �. Observe that~S�(P ) � [~p2W c(~q)W cs(~p):Since W cs(~p) is a manifold of a codimesion at least 2 for all ~p and W c(~q) is a 1-dimensionalmanifold the measure of ~S�(P ) in N�(P )\� is zero. It follows that the measure of S�(P ) inN�(P ) is zero.Therefore the stable set of PS(P ) := fx(0) 2 B; x(t)!q as t!1 and q is a periodic orbit in Pghas measure zero in B being a subset of a countable union of sets of measure zero:S(P ) � 1[n=0'�n(S�(P )) \ B:Since the origin is hyperbolic, it is an isolated invariant set and a similar argument as aboveimplies that the stable set of the origin has measure zero in B.Finally, we note that there at most countably many isolated sets P in the bounded setU \B. Hence Q = [P�(U\B)S(P )has measure zero. Since B is arbitrary bounded set almost all trajectories converge to astable, large periodic orbit q in S �M(0).We remark, that in general the center-stable manifold W cs(~p) is not unique. However,the part of the center-stable manifold which interests us, which is the set of all x 2 W cs(~p)which converge in forward time to ~p, is unique (see [1] for the discussion of center-stablemanifolds for ows and [15] Theorem III.7 for maps).By Proposition 4.8 every large periodic orbit q in S � M(0) is a subset of the interiorof the set of orthants O(Vj). There is 2n such orthants and since the orbit is large it mustgo through all 2n orthants before it can close up. Therefore this orbit must go from orthantto orthant through the common faces. We used Xs to denote the common face betweenO(Vs�1) and O(Vs). Recall that Xs is a part of hyperplane xs = 0.The only thing left to show is that the orbit goes through the orthants in the order of aperiodic pattern fVlg2nl=1. On the face Xs we have xs = 0 and so from (9)_xs = w�s;s�1gs�1(xs�1):We determine the sign of _xs. Note that sign xs�1 = vs�1s�1 and the limiting weight w�s;s�1 =vsjvs�1j�1 for any j and so in particular for j = s. Thereforesign _xs = vss(vs�1s�1)2 dgs�1dxs�1 :17



Since vss = sign xs in O(Vs) and dgs�1dxs�1 > 0 we get that sign _xs = sign xs. This shows thatthe only admissible transition is O(Vs�1)!O(Vs). This proves the Theorem 1.2. 25 Cascade of netsWe identify the �rst equation in (16) as net M0 and the second equation as net M1. Thisnotation is in agreement with notation used in [7]. These two nets form a cascade of netsM0!M1.M. Hirsch [7] considered a cascade of nets where each net has a convergent dynamics. Hisresults are not directly applicable since the netM1 does not have a convergent dynamics. H.Smith [16] considered a case when the net M1 has convergent dynamics (and has a specialform) while the dynamics of M0 can be convergent or oscillatory. His results are also notdirectly applicable. In order to use a result of K.Mischaikow, H.Smith and H. Thieme ([12])below, we need a de�nition.De�nition 5.1 An (�; �)-chain from x to y under the ow ' in Rn is a �nite sequencef(xi; ti)gki=1 such thatf(xi; ti) 2 Rn � [0;1) j x = x1; j'(xi; ti)� xi+1j < � and j'(xk; tk)� yj < �g:If there is a chain from x to y for every � we write x � y.A chain recurrent set under the ow ' is de�ned byR := fx 2 Rn j x � xg:The union of an equilibrium and a homoclinic orbit to that equilibrium is an example of achain recurrent set.Theorem 5.2 (Theorem 1.8, [12]) Let � denotes the ow given by cascade (16) and let' denotes the ow of (4). Assume that the forward trajectory �+(t; x) is bounded. Then! = !�(x) has the following properties:1. ! is non-empty, compact and connected2. ! is invariant under the ow '3. ! is chain recurrent for 'We now prove the main result.Proof of Theorem 3.7. Let � be the !-limit set of trajectory through (x;W (0)).By Theorem 5.2 set � is connected, chain recurrent set of (4). Thus � has the form(w�; q) where q is a chain recurrent set of (4). Since the origin is the only equilibrium of thesystem (4), by Theorem 4.1 the only chain recurrent sets are periodic orbits, the origin or apossible homoclinic to the origin. Since we assume that the origin is hyperbolic the existenceof the homoclinic orbit can be ruled out using discrete Lyapunov function argument (see [13]and Appendix I). 18



Recall that the equilibriumW � is asymptotically stable in the netM0. The dimension ofthe center-stable manifold of � in (16) is r+2n3 where r is the dimension of the center-stablemanifold of q in system (4) and 2n3 is the dimension of the stable manifold of the equilibriumW �. Thus if the invariant set q 2 U then any center-stable manifold of q has codimensionat least two in the combined system (16).Recall, that system (1) is dissipative. It is easy to see that the system (13) is alsodissipative. Therefore the combined system (16) is dissipative and there is a bounded set B,which contains the invariant set. Fix such a bounded set B � R2n3 �Rn. Arguing as in theproof of Theorem 1.2, the set of pointsQ := f(y; x) 2 B \W cs(w�; q); (y; x)!(w�; q) as t!1 j q 2 Ughas measure 0. It follows that for almost all x 2 Rn, the trajectory in the system (16)with initial data (x;W (0)) converges to a stable, large periodic orbit exhibiting the periodicpattern fVlg2nl=1. 2
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