
Submitted to: Network: Comput. Neural Syst.

Analysis of neural coding using quantization with an

information-based distortion measure

Alexander G. Dimitrov†, John P. Miller†, Tomáš Gedeon‡,
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Abstract. We present an analytical approach through which the relevant stimulus
space and the corresponding neural symbols of a neuron or neural ensemble can
be discovered simultaneously and quantitatively, making few assumptions about the
nature of the code or relevant features. The basis for this approach is to conceptualize
a neural coding scheme as a collection of stimulus-response classes akin to a dictionary
or ’codebook’, with each class corresponding to a spike pattern ’codeword’ and its
corresponding stimulus feature in the codebook. The neural codebook is derived by
quantizing the neural responses into a small reproduction set, and optimizing the
quantization to minimize an information-based distortion function.

1. Introduction

What stimulus features are encoded in neural activity patterns? What aspects of the

neural activity patterns encode that information? Considerable progress has been made

by approaching these questions independently. However, independent treatment of these

interconnected questions often introduces multiple assumptions that prevent their complete

solution. How can we be sure we have discovered the specific features to which an ensemble

of cells is sensitive unless we know, with complete certainty, the symbols they use to represent

those features? And, vice versa, how can we be sure of the symbols unless we know, with

certainty, what stimulus features are being represented by those symbols?

We recently presented an analytical approach [7] that enables the simultaneous solution

to these two interconnected questions. The basis for this approach is to conceptualize a

neural coding scheme as a collection of stimulus-response classes, where each class consists

of a set of stimuli and a synonymous set of neural responses. The stimulus-response classes

form a structure akin to a dictionary or ’codebook’, with each class corresponding to a spike

pattern ’codeword’ (and its corresponding stimulus feature) in the codebook. Our analytical
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approach enables the derivation of this neural codebook, which in turn allows any sequence

of spike patterns in a neural response to be ’deciphered’ into the corresponding sequence of

stimulus features that elicited those responses.

This new approach uses tools from information theory and quantization theory.

Specifically, we quantize the neural responses to a small reproduction set and optimize

the quantization to minimize an information-based distortion function. Fixing the size of

the reproduction set produces an approximation of the coding scheme. The number of

distinguishable codeword classes is related to the mutual information between stimulus and

response. This analytical approach has several advantages over other current approaches:

(i) it yields the most informative approximation of the encoding scheme given the available

data (i.e., it gives the lowest distortion, by preserving the most mutual information

between stimulus and response classes),

(ii) the cost function, which is intrinsic to the problem, does not introduce implicit

assumptions about the nature or linearity of the encoding scheme,

(iii) the maximum entropy quantizer does not introduce additional implicit constraints to

the problem,

(iv) it incorporates an objective, quantitative scheme for refining the codebook as more

stimulus-response data becomes available.

In the following sections, we first summarize the essential theoretical background from

our recent work. Second, we present extensions to this theoretical approach that enable the

analysis of more complex encoding schemes. Third, we present results related to the practical

computational implementation of the core algorithms for the analysis of neurophysiological

recordings. Finally, we demonstrate the application of this approach through an analysis

of coding in sensory interneurons of a simple invertebrate sensory system. We show that,

for some cells in this system, a significant amount of information is encoded in patterns of

spikes that would not be discovered through analyses based on stimulus-response coherence

measures. Specifically, short-interval spike doublets were found to code for stimulus features

that differ significantly from the waveforms predicted by the linear combination single-spike-

based kernels offset by that doublet interval, through the ’stimulus reconstruction’ technique.

2. Theoretical background and previous results

2.1. A model of neural processing

Any neural code must satisfy several conflicting demands. On one hand the organism must

recognize certain natural object in repeated exposures. Failures on this level may endanger

an animal’s wellbeing: e.g., if a predator is misidentified as a con-specific mate. On this

level, the response of the organism needs to be deterministic. On the other hand, distinct

stimuli need not produce distinguishable neural responses, if such a regime is beneficial to

the animal (for example, a wolf and a fox need not produce distinct responses in a rabbit, just

the combined concept of “predator” may suffice.) Thus the representation, albeit possibly
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deterministic, need not be bijective. Lastly, the neural code must deal with uncertainty

introduced by both external and internal noise sources. Therefore the neural responses are

by necessity stochastic on fine scale. In these aspects the functional issues that confront

the early stages of any biological sensory system are similar to the issues encountered by

communication engineers in their work of transmitting messages across noisy media. With

this in mind we represent the input/output relationship present in a biological sensory system

as a communication system [31].

We will therefore consider a neural encoding process within an appropriate probabilistic

framework [1, 19]. The input signal X to a neuron (or neural ensemble) may be a sensory

stimulus or may be the activity of another set of (pre-synaptic) neurons. We will consider

the input signal to be produced by a source with a probability p(x). The output signal Y

generated by that neuron (or neural ensemble) in response to Y will be a spike train (or

ensemble of spike trains.) We will consider the encoding of X into Y to be a map from one

stochastic signal to the other. This stochastic map will be the encoder q(y|x), which will

model the operations of this neuronal layer. The output signal Y is induced by q(y|x) by

p(y) =
∑

x q(y|x)p(x).

This view of the neural code, which is probabilistic on a fine scale but deterministic on

a large scale, emerges naturally in the context of Information Theory [5]. The Noisy Channel

Coding Theorem suggests that, in this context, relations between individual elements of the

stimulus and response spaces are not the basic building elements of the system. Rather,

the defining objects are relations between classes of stimulus-response pairs. There are

about 2I(X;Y ) such equivalence classes (i.e., codeword classes). When restricted to codeword

classes, the stimulus-response relation is almost bijective. That is, with probability close to

1, elements of Y are assigned to elements of X in the same codeword class. This framework

naturally deals with lack of bijectivity, by treating it as effective noise. We decode an output

y as any of the inputs that belong to the same codeword class. Similarly, we consider the

neural representation of an input x to be any of the outputs in the same codeword class.

Stimuli from the same equivalence class are considered indistinguishable from each other, as

are responses from within the same class.

2.2. Finding the codebook

Given this model of neural function, our task is to recover the codebook. In this context, this

equates to identifying the joint stimulus-response classes that define the coding relation. The

approach we use [7] is to quantize (i.e., cluster) the response space Y to a small reproduction

space of finitely many abstract classes, YN . This method allows us to study coarse (i.e.,

small N) but highly informative models of a coding scheme, and then to automatically refine

them when more data becomes available. This refinement is done by simply increasing the

size of the reproduction, N .

The mutual information I(X; Y ) tells us how many different states on the average can

be distinguished in X by observing Y . If we quantize Y to YN (a reproduction with N

elements), we can estimate I(X; YN), which is the mutual information between X and the
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reproduction YN . Our information-preserving criterion will then require that we choose a

quantizer that preserves as much of the mutual information as possible, i.e., to choose the

quantizer q(YN |Y ) which minimizes the difference

DI(Y, YN) = I(X; Y )− I(X; YN). (1)

Following examples from rate distortion theory [5, 28], this problem of optimal

quantization can be formulated as a maximum entropy problem [7, 14]. The reason is

that, among all quantizers that satisfy a given set of constraints, the maximum entropy

quantizer does not implicitly introduce additional constraints in the problem. Within this

framework, the minimum distortion problem is posed as a maximum quantization entropy

problem with a distortion constraint:

max
q(yN |y)

H(YN |Y ) constrained by (2)

DI(q(yN |y)) ≤ D0 and
∑
yN

q(yN |y) = 1 ∀y ∈ Y

More details are presented in Section (3) and Appendix B. Recently the same problem

was reformulated as one of decoding [29], interpreting the quantizer q(yN |y) as a channel

decoder, thus encapsulating this approach in the framework of Information Theory even more.

A similar approach, termed “The Information Bottleneck”, was independently developed in

[39].

The optimal quantizer q(yN |y) induces a coding scheme from X → YN by p(yN |x) =∑
y q(yN |y)p(y|x) which is the most informative approximation of the original relation p(x|y)

for a fixed size N of the reproduction YN . Increasing N produces a refinement of the

approximation, which is more informative (has lower distortion and thus preserves more of

the original mutual information I(X;Y)).

The elements of YN can be interpreted as the labels of the equivalence classes which

we want to find. The quantizer q(yN |y) gives the probability of a response y belonging to

an equivalence class yN . We have shown in [11] that the optimal quantizer is generically

deterministic, that is, the optimal probability q(yN |y) is 1 or 0 (see also Appendix B). In

this case the responses associated with class yN are YN = {y|q(yN |y) = 1}. The induced

coding scheme from X → YN also induces the quantization X → XN by associating the

class xN ∈ XN with the stimulus set

XN = {x|p(yN |x) ≥ p(yM |x) for all other classes yM}.
Clearly, each x ∈ X belongs to at least one class XN and thus X = ∪NXN . If the inequality

above is strict for each x, then the classes are non-intersecting. Hence the resulting relation

p(yN |xN) is bijective. In general we expect the set {x|p(yN |x) = p(yM |x) for some M,N}
to be of measure zero, and therefore the relation p(yN |xN) is almost bijective. Hence,

we recover an almost complete reproduction of the coding scheme as a relation between

equivalence classes, which we outlined earlier.
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We note that a coding scheme, as defined here, is essentially a set of relations

between a finite number of discrete sets. One may argue, however, that the spaces and

computation that define a neural stimulus/response relation are more naturally represented

as being “continuous”. Different approaches are usually taken for the analysis of discrete vs.

continuous signal processing schemes. Specifically, continuous relations are approached as

signal estimation problems, whereas discrete relations are approached as signal discrimination

problems [15, 30]. In spite of this, we suggest that most or all such ”continuous” cases can

be handled by the signal discrimination scheme we use here, albeit possibly not in the most

natural way. An important feature to notice is that even if the input is continuous, it is

always perturbed by noise and receptor error, so if we discretize (quantize) in such a way

that the discretization error is smaller then the noise perturbation, then there is no practical

way of determining whether the ’true’ system is discrete or continuous.

Examples of the application of this method to synthetic data were presented in [7]. We

reproduce two of the figures here to demonstrate essential asspects of this approach. Details

about applying the method for a case in which the joint probability consisted of a discrete

set of clusters can be seen in Figures 1. Analysis of a relation which may be considered

continuous in nature can be seen in 2.
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Figure 1. (a) A joint probability for a discrete relation between two random variables
X and Y with 52 elements each. (b–e) The optimal quantizers q(yN |y) for different
numbers of classes. These panels represent the conditional probability q(yN |y) of
a pattern y from a) (horizontal axis) belonging to class yN (vertical axis). White
represents zero, and black represents one. Intermediate values are represented by
levels of gray. The behavior of the mutual information with increasing N can be seen
in the log-linear plot (f). The dashed line is I(X;Y ), which is the least upper bound
of I(X; YN ).



Neural coding and decoding 6

Y

X

a

20 40

10

20

30

40

10
0

10
1

0

1

2

N

I(
X

,Y
N

),
 b

its

f

Y

Y
N

b

20 40

1

2

Y

   

c

20 40

1

2

3

4

d

Y
N

 

20 40

2

4

6

e

   

 

20 40

2

4

6

8

Figure 2. (a) A joint probability for a linear continuous relation Y = kX +η between
X and Y . Here η ∈ N (0, σ) is drawn from a normal distribution with zero mean and
variance σ2, and represents measurement noise. The optimal quantization for different
number of classes can be seen in panels (b–e). The behavior of the mutual information
with increasing N can be seen in (f). The dashed line is I(X; Y ).

3. Theoretical Results: Algorithms for quantization with minimal

information distortion

In order to implement this analytical approach for the analysis of real experimental data, we

have devised several algorithms using various reformulations of the following problem:

max
q(yN |y)

H(YN |Y ) constrained by (3)

DI(q(yN |y)) ≤ D0,
∑
yN

q(yN |y) = 1 ∀y ∈ Y, and q(yN |y) ≥ 0.

We have thus turned our problem to an optimization problem, similar to problems which

appear in Rate Distortion Theory [5, 28]. Below we present two distinct approaches, which

use different properties of the cost function and the feasible space to design efficient algorithm

for solving (3). The first (3.1) involves a continuous optimization scheme which uses the

probabilistic formulation of the problem. We present two implementations of this scheme.

The second (3.2) makes use of special properties of the cost function in this space to

replace the optimization with a combinatorial search in the set of vertices of the feasible

region. Both formulation have their strengths and weaknesses. We use them interchangibly

in further analytical work.

3.1. Annealing

Using the method of Lagrange multipliers we can reformulate the optimization problem as

finding the maximum of the cost function as

max
q(yN |y)

F (q(yN |y)) ≡ max
q(yN |y)

(
H(YN |Y )− βDI(q(yN |y))

)
(4)
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constrained by q(yN |y) ∈ ∆,

where ∆ := {q(yN |y) | ∑
yN

q(yN |y) = 1 and q(yN |y) ≥ 0}. This construction removes

the nonlinear parametric constraint from the problem and replaces it with a parametric

search in β = β(D0). For small β the obvious optimal solution is the uniform solution

q(yN |y) = 1/N [28]. It can be shown that as β → ∞, the solution of the problem (4)

converges to a solution of the problem (3) (Lemma 1 in Appendix B). Therefore we need

to track the optimal solution from β = 0 to β = ∞. We can do this by incrementing β

in small steps and use the optimal solution at one value of β as the initial condition for a

subsequent β. To do this we must solve (4) at a fixed value of β. We have implemented

two different algorithms to solve this problem.

The first algorithm is a Projected Newton Conjugate Gradient Line Search with an

Augmented Lagrangian cost function [11]. This is a relatively standard numerical method

for which the convergence property to a local maximum is assured.

The second algorithm is based on the observation that extrema of F can be found by

setting its derivatives with respect to the quantizer q(yN |y) to zero [7]. Solving this system

produces the implicit equation (∇DI depends on q(yN |y))

q(yN |y) =
e−β

∇qDI
p(y)

∑
yN

e−β
∇qDI
p(y)

. (5)

Here ∇q denotes the gradient operator with respect to the quantizer. The expression (5)

can be iterated for a fixed value of β to obtain a solution for the optimization problem,

starting from a particular initial state. In practice this scheme has demonstrated very fast

convergence to a fixed point, and linear to quadratic dependence on the size of the problem.

We are currently investigating the reasons for this beneficial behavior.

Tracking the solution from small values to large values of β can be also formulated as

a continuation problem [2, 9], which finds efficiently the solution of (4) for the next step in

β given the current solution. Instead of using the optimal solution at the last β value as

the initial condition for the next step (as explained above), the initial condition (as well as

the magnitude of the next β step) can be computed by taking a fixed step along the vector

which is tangent to the curve defined by ∇qF (q, β) ≡ 0.

3.2. Combinatorial search

The special structure of our cost function and feasible region allows us to approach the

optimization from a different perspective and design an optimization scheme which involves a

combinatorial search in a discrete space of events. Applying standard results from information

theory [5] we have shown in previous studies that the function DI is concave in q(yN |y) [7].

The domain ∆ := {q(yN |y) | ∑
yN

q(yN |y) = 1 ∀y ∈ Y and q(yN |y) ≥ 0} is a product

of simplices and therefore convex. We have shown that these two facts [11] imply that

the optimal solution of (3) lies generically in a vertex of ∆ (see Appendix B). Since the set

of vertices may become large, we implemented a local search, bilinear in the sizes of the

spaces Y and YN , which leads, under modest assumptions [11], to a local maximum of (3).



Neural coding and decoding 8

Empirically, this search is very fast for small problem sizes (coarse quantizations with a small

reproduction size N). However the increased computational cost makes it prohibitively slow

for large reproductions. This drawback is offset by its massively parallel nature, which makes

it a prime candidate for implementing on parallel computing environmentns.

4. Analysis of stimulus/response relations in the cricket cercal sensory

system

The preparation we study is the cercal sensory system of the cricket. In the following sections,

we briefly introduce this system, describe the experimental methods used to collect the data,

and then discuss the application of this new approach to analysis of coding by single sensory

interneurons in this system.

Functional organization of the cercal system. This system mediates the detection and

analysis of low velocity air currents in the cricket’s immediate environment. This sensory

system is capable of detecting the direction and dynamic properties of air currents with great

accuracy and precision [12, 13, 17, 18, 22, 33, 32, 34, 38, 36], and can be thought of as a

near-field, low-frequency extension of the animal’s auditory system.

Receptor organs. The receptor organs for this modality are two antenna-like appendages

called cerci at the rear of the abdomen. Each cercus is covered with approximately 1000

filiform mechanosensory hairs, like bristles on a bottle brush. Each hair is constrained to

move along a single axis in the horizontal plane. As a result of this mechanical constraint,

an air current of sufficient strength will deflect each hair from its rest position by an amount

that is proportional to the cosine of the angle between the air current direction and the

hairs movement axis. The 1000 hairs on each cercus are arrayed with their movement axes

in diverse orientations within the horizontal plane, insuring that the relative movements of

the ensemble of hairs will depend on the direction of the air current. The filiform hairs also

display differential sensitivity to aspects of the dynamics of air displacements, including the

frequency, velocity, and acceleration of air currents [24, 27].

Sensory receptor neurons. Each hair is innervated by a single spike-generating

mechanosensory receptor neuron. These receptors display directional and dynamical

sensitivities that are derived directly from the mechanical properties of the hairs [17, 20,

21, 27, 33, 32]. In particular, the amplitude of the response of each sensory receptor cell to

any air current stimulus depends upon the direction of that stimulus, and these directional

tuning curves of the receptor afferents are well-described by cosine functions [20]. The set

of approximately 2000 receptors innervating these filiform hairs have frequency sensitivities

spanning the range from about 5 Hz up to about 1000 Hz.

Primary sensory interneurons. The sensory afferents synapse with a group of

approximately thirty local interneurons and approximately twenty identified projecting
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interneurons that send their axons to motor centers in the thorax and integrative centers in

the brain. It is a subset of these projecting interneurons that we study here. Like the afferents,

these interneurons are also sensitive to the direction and dynamics of air current stimuli

[18, 22, 38, 36]. Stimulus-evoked neural responses have been measured in several projecting

and local interneurons, using several different classes of air current stimuli [4, 22, 38, 36].

The stimuli that have been used range from simple unidirectional air currents to complex

multi-directional, multi-frequency waveforms. Each of the interneurons studied so far has a

unique set of directional and dynamic response characteristics. Previous studies have shown

that these projecting interneurons encode a significant quantity of information about the

direction and velocity of low frequency air current stimuli with a linear rate code [4, 38, 36].

More recent studies demonstrate that there is also substantial amount of information in

the spike trains that cannot be accounted for by a simple linear encoding scheme [26, 7].

Evidence suggests the implementation of an ensemble temporal encoding scheme in this

system.

Experimental approach. Stimulus-response properties of sensory interneurons were

measured using intracellular electrodes. Stimuli consisted of controlled air currents directed

across the animals’ bodies, and the responses consisted of the corresponding spike trains

elicited by those air currents. The preparations were mounted within a miniature wind

tunnel, which generated laminar air currents having precisely controlled direction and velocity

parameters. Details of the dissection, stimulus generation, and electrophysiological recording

procedures are presented in Appendix A.

4.1. Analysis of simple stimulus/response relations

In some cases the relationships between sensory stimuli and neural responses are simple

enough to be captured relatively easily in a non-parametric manner. Here we demonstrate

one such case. Consider the relation between stimulus direction and neural response in one of

the cercal sensory interneurons. For this experiment, the set of stimulus waveforms consisted

of a set of simple uni-directional air current ”puffs” of identical shape and duration, presented

sequentially from a variety of directions around the animal’s body. Stimulus angle can be

represented as a one-dimensional variable. The neuron’s response in this simple case was

represented by the number of elicited spikes in a 50ms window. The particular cell studied

here shows pronounced directional selectivity, i.e., the number of spikes it fires depends on

the direction from which the air puff originates. This directional tuning has been measured

and analyzed in earlier studies, and shown to be well approximated by a truncated sine wave

function [22, 38].

Using the approach presented here, this relation has been captured in the series of

quantizations shown in Figure 3. Panel a) shows the histogram of the raw data, where the

horizontal axis is the stimulus direction (here called ’Y, deg’) and the vertical axis plots

the distribution of the spike rates elicited at each stimulus direction. We use this as the

estimate of the joint probability p(x, y), which is used explicitly in estimating the information
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distortion DI . Panels b) through e) show successive steps in the refinement of the quantizer

as the number of classes increases from 2 to 5, respectively. The quantizer in panel e)

corresponds to the point N = 5 on the plot in panel f), which shows the mutual information

yielded by this scheme. This case, with N=5 different distinguishable classes, yields over 1.5

bits of information. This is close to the theoretical maximum, and corresponds closely to

the value calculated in earlier studies based on an alternate approach [38]. It is interesting

to note that what is usually referred to as the “preferred” direction of the cell (the stimulus

direction eliciting maximum activity) is actually less-well discriminable than the neighboring

directions. In particular, the finest reproduction in Figure 3e discriminates the “preferred”

direction of 45o with a uncertainty of more than 60o (class 1), while the direction near 120o

can be discriminated much better, with uncertainty of less than 20o (class 4).
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Figure 3. (a) The joint probability for the relation between stimulus angle (Y, degrees)
and neural response (X, spikes / 50 msec). (b–e) The optimal quantizers q(yN |y) for
different numbers of classes, from 2 classes in b) to 5 classes in e). These panels
represent the conditional probability q(yN |y) that a stimulus y from a) (horizontal
axis) belongs to class yN (vertical axis). White represents a probability of zero, black
represents a probability of one, and intermediate probabilities are represented by levels
of gray. The behavior of the mutual information with increasing N can be seen in the
log-linear plot (f). The dashed line is I(X;Y ).

This way of applying the method is similar in its use of data to the “direct method”

of estimating mutual information [35]. The optimal quantization makes our approach less

demanding than the direct method regarding the amount of data needed to achieve equivalent

significance, since it quantizes the large response space to a relatively small reproduction

space. In addition, the quantization also produces a simple functional relation between

stimulus and response classes, while the direct method produces only an estimate of the

mutual information. We do, however, obtain a lower bound of the mutual information,

albeit with higher precision.

There are several drawbacks to attempting direct estimates of the joint probability,

as used here in our analysis and also in applications of the direct method [35, 25, 23].

In principle, estimating the joint probability with a histogram is feasible only for relatively
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small stimulus and response spaces. For this reason we used a single-dimensional stimulus

space (angle), and a small response space (number of spikes in a small temporal window, a

number between zero in nine for Figure 3). This allows us to to estimate the joint probability

directly, but limits us to relatively uninteresting cases. The other attempts to use estimates

of the joint or conditional probabilities [35, 25, 23] try to do so in relatively complex spaces

(high dimensional white noise [35, 25], or naturalistic stimuli [25, 23]). However, the direct

method’s reliance on repeated stimulus presentations means that just a tiny portion of the

whole input space can be sampled. This may bias the responses and corresponding estimates

of the mutual information quite dramatically, even when enough data is avaliable for the

estimates to be performed precisely.

4.2. Dealing with complex stimuli

In general, we want to analyze the operation of any sensory system under conditions which

are close to its natural set of conditions. This usually entails observing rich stimulus sets of

high dimensionality. Characterizing such a relationship non-parametrically is very difficult,

and usually requires prohibitively large datasets [16]. To cope with this regime, we choose

to model the stimulus/response relationship. The formulation as an optimization problem

suggests certain classes of models which are better suited for this approach. We shall look

for models that give us strict upper bounds D̃I to the information distortion function DI .

In this case, when we minimize the upper bound, the actual value of DI is also decreased,

since 0 ≤ DI ≤ D̃I . This also gives us a quantitative measure of the quality of a model: a

model with smaller D̃I is better.

We start the modeling process by noting that DI can be expressed as

DI(Y, YN ; X) = H(X)−H(X|Y )− (H(X)−H(X|YN)) (6)

by using standard equalities from information theory [5]. The only term in (6) that depends

on the quantizer q(yN |y) is H(X|YN), so minimizing DI is equivalent to minimizing

Deff := H(X|YN).

Thus the models we need to consider should produce upper bounds of H(X|YN). One

way to achieve this is by constructing a maximum entropy model [14] of the corresponding

probability.

We can further express H(X|YN) as H(X|YN) = EyN
H(X|yN) [6, 8], where each term

H(X|yN) is the entropy of X conditioned on yN being the observed response class. Here

EyN
denotes the expectation in YN . As a first attempt, we constrained the class conditional

mean and covariance of the stimulus to the ones observed from data:

xN =
∑
x

p(x|yN) x (7)

CX|yN
=

∑
x

p(x|yN)(x− xN)2.
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Here and later we use x2 as a shorthand for x xT (direct product, non-commutative). The

maximum entropy model under such constraints is a Gaussian N(xN , CX|yN
). with the

estimated mean and covariance. Each entropy term is then bounded by

H(X|yN) ≤ HG(X|yN) ≡ 1

2
log(2πe)|X| det CX|yN

where |X| is the dimensionality of the stimulus space X. This produces and upper bound

D̃eff of Deff by

Deff ≤ D̃eff ≡ EyN
HG(X|yN) = EyN

1

2
log(2πe)|X| det CX|yN

. (8)

The class conditioned covariance CX|yN
can be expressed explicitly as a function of the

quantizer. Since p(x|yN) =
∑

y p(x|y)p(y|yN), equation (7) implies

xN =
∑
xy

p(x|y)p(y|yN)x =
∑
y

p(y|yN)
∑
x

p(x|y)x =
∑
y

p(y|yN)xy (9)

and

CX|yN
=

∑
xy

p(x|y)p(y|yN)(x− xN)2 (10)

=
∑
y

p(y|yN)
∑
x

p(x|y)
(
(x− xy) + (xy − xN)

)2

=
∑
y

p(y|yN)
(
CX|y + (xy − xN)2

)

=
∑
y

p(y|yN)
(
CX|y + x2

y

)
−

( ∑
y

p(y|yN)xy

)2
.

Since p(yN) =
∑

y q(yN |y)p(y) and p(y|yN) = q(yN |y) p(y)
p(yN )

by Bayes’ theorem, the last

expression (10) is a function of the quantizer (through p(y|yN)). The parameters (CX|y, xy),

independent of the quantizer and can be estimated from data. When substituted back in

(8), this yields an explicit formula for the upper bound of the effective distortion

D̃eff =
∑
yN

p(yN)
1

2
log(2πe)|X| det

[ ∑
y

p(y|yN)
(
CX|y+x2

y

)
−

( ∑
y

p(y|yN)xy

)2]
(11)

which can be used in place of DI in the optimization scheme (3). The stimulus model

obtained in this manner is effectively a Gaussian mixture model (GMM), with priors p(yN)

and Gaussian parameters (xN , CX|yN
). Each element of the mixture is determined by L

parameters for the class conditioned mean xN and L(L+1)/2 parameters for the symmetric

class conditioned covariance matrix CX|yN
, for a total of L(L + 3)/2 parameters per class.

Here L is the size |X| of the input space. Hence the number of parameters for this model

is NL(L + 3)/2. The number of parameters grows linearly in the reproduction size N , but

quadratically in L.
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4.3. Reduced models

The full covariance model may quickly become infeasible because of the large number of

parameters. In practice we detect this by observing the error bars of the cost function

estimates and stop if these increase too much. These complex models often gives us

very good estimates of the cost function, but they limit the level of refinement we can

achieve in practice. For that reason we also developed several reduced GMMs with fewer

parameters: probabilistic Principal Components Analysis (PCA) model, spherical covariance

model, common covariance model and common PCA model.

Probabilistic PCA model A model closest to the full Gaussian above is the probabilistic

PCA (PPCA) model [3]. It is essentially the same GMM, but the covariance matrix is

restricted in the following way: The largest K eigenvalues and corresponding principal

component (PC) eigenvectors of CX|yN
are preserved, the remaining L − K eigenvalues

are forced to have the same value. This takes the original covariance structure and preserves

the first K principal directions, while modeling the remaining directions with a spherical

noise model. In effect, the class conditioned covariance CX|yN
is restricted to the class of

block diagonal matrices of the form CX|yN
= [CK σ2

NIL−K ], that is, it is block diagonal,

with covariance CK along the first K principal components, and covariance σ2
NI along the

rest. Each class is determined by L parameters for the mean xN , K(K + 1)/2 for the

preserved covariance matrix CK , and one additional parameter for σN along the orthogonal

noise dimensions. The total number of parameters for this model is N(L+K(K +1)/2+1),

which is linear in N , linear in L, and quadratic in K. The number of preserved dimensions,

K, is a free parameter for this model. The full Gaussian model can be seen as the limiting

case K = L.

We now show that the PPCA model gives an upper bound of the function D̃I modeled by

a full Gaussian. Recall that D̃I ∝ ∑
N log det CX|yN

=
∑

N log
∏

s σN,s and denote by D̃PCA
I

the distortion function obtained from the PCA model. We fix the last L − K eigenvalues

of the matrix CX|yN
to be the eigenvalue σL−K . In this case, σs ≤ σPCA

s = σL−K for all

s ≥ L − K and σs = σPCA
s for all s ≤ L − K. Therefore

∏
s σs ≤ ∏

s σPCA
s . Since the

logarithm is a monotonically increasing function and this computation holds for all classes

N the result

D̃I ≤ D̃PCA
I

follows. Moreover, if K1 < K2 then

D̃
PCAK1
I ≥ D̃

PCAK2
I .

Spherical model Another limiting case for the above model is the spherical Gaussian model,

for which K = 0, that is, all principle directions are forced to have the same variance. In this

case, CX|yN
= σ2

NIN is proportional to the identity matrix IN . Each class is determined by L

parameters for xN and one parameter for σN . The total number of parameters is N(L+1),

linear in N and L.
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Common covariance model In the full covariance model and variants, every class-

conditioned stimulus may have a different covariance matrix CX|yN
. Here we impose a

different type of restrictive structure on the input, by requiring that all class-conditioned

stimuli have the same covariance structure

CX|N = EyN
CX|yN

(12)

This produces the following estimate of the cost function

D̃C
eff =

1

2
log(2πe)|X| det CX|N (13)

By a result of Ky Fan [10], the function log det is concave, implying that D̃eff ≤ D̃C
eff and

hence the common Gaussian model produces an upper bound to the full Gaussian bound

D̃eff , and to the cost function DI as well. The number of parameters for each class is L for

xN , and there is a common covariance structure with L(L + 1)/2 parameters, independent

of the number of classes. The total number of parameters is L(L + 1)/2 + NL, linear in

N , quadratic in L, but the quadratic part is independent of N .

Common PPCA model Similarly to the previous PPCA model, we can restrict the common

covariance CX|N even further, by imposing the PPCA structure on it: we preserve the K

highest eigenvalues and corresponding principal directions, and force the remaining L −K

eigenvalues to have the same value, thus modeling the orthogonal subspace with a spherical

Gaussian. The total number of parameters is K(K + 1)/2 + 1 + NL.

Common spherical model For completeness we also present the K = 0 limiting case of

the above model, which represents the whole variance structure with a single parameters,

σ. In this case CX|N = σ2I and the total number of parameters is 1 + NL, linear both in

N and L. We have found this model to be too restrictive for the case of the cricket cercal

sensory system and have not used it, except in few test cases. It may prove to be useful for

other sensory systems.

4.4. Analysis of complex stimulus/response relations

We applied this analytical approach to characterize the encoding characteristics of single

identified sensory interneurons to stimuli that were more complex and biologically relevant

than simple unidirectional air puffs. The goal of the experiments and analyses were to

discover (jointly) a) the dynamic stimulus waveform features encoded by the cells, and

b) the spike train ”codeword” patterns that encoded those features. Within the jargon

of our approach, the goal was to discover the ”codeword classes” for these cells. For

this analysis, a variety of complex air current stimulus waveforms were used, ranging from

bandlimited (5-400Hz) Gaussian white noise (GWN) to waveforms that combined stochastic

and deterministic components that are suspected to be of more behavioral relevance [37].

Using the algorithms presented above, we then proceeded to derive quantizers that identified

synonymous classes of feature/spike-pattern pairs. In the illustrations below, the stimulus
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features are represented as the mean voltage waveforms, and voltage ranges of the stimulus

that drove the air currents immediately preceding the elicited spike pattern codewords, and

the response codewords are represented as the actual spike patterns that corresponded to

those stimulus features. Specifically, we use a representation of spike patterns that is similar

to a peristimulus time histogram (PSTH). We call this representation a Class Conditioned

Time Histogram (CCTH.)

The procedure is illustrated for a relatively simple case in Figure 4.4, for which the

stimulus-response space has been quantized into three classes (i.e., N=3). The response

space Y in panel a) consists of spike patterns yi. Here each yi is a spike doublet

with a certain interspike interval (ISI). Each dot in the panel represents the time of

occurrence of a single spike in a doublet. All doublets start with a spike at time 0, hence

the verticle line along the left border at t=0. For this figure, the doublets have been

arranged in order of descending inter-spike interval. (In the more general case, the spike

codewords can be any arbitrary sequence of spikes in time, and might be distributed across

several or many cells in an ensemble.) In b) and c) we see the two probabilities that

completely define the quantization: p(y) in b) and q(yN |y) in c). Using Bayes’ Theorem,

we obtain p(y|yN) from p(y) and q(yN |y) (not shown). The final result in d) is the

expectation
∑

y yip(yi|yN). The pattern yi can be considered as the conditional probability

p(tj|yi) = p( spike occurs at time tj| the observed pattern is yi). This probability is 1 at

times when a spike occurs and zero otherwise. In this case, panel d) can be interpreted as

showing p(tj|yN) =
∑

y p(tj|yi)p(yi|yN) - the conditional probability of a spike at time ti
given class yN . The similarity to a PSTH is that we present the distribution of spikes in time,

conditioned on the occurrence of an event. For the PSTH, the event is a particular stimulus.

For this representation, the event is a certain response class, hence the name CCTH.

This representation has problems similar to the PSTH, since it assumes that spike at

different times are independent†. Hence it cannot discriminate whether the spikes are from

two different patterns ( an ’or’ event, denoting combined patterns) from the possibility that

there are two spikes from the same pattern (an ’and’ event, denoting a different pattern).

However, since there is a refractory period, and since different patterns occur with different

frequencies, it is relatively easy to discriminate the signature of a triplet from that of a

doublet. For example, in Figures 5, 6C, the darker regions are due mostly to the second

spike in a doublet, while the lighter regions preceding or following them are due to more rare

triplets, for which one of the spikes is in the corresponding dark region.

How do we know when to stop the process of model refinement? The model of

a coding scheme we use suggests that I(X; YN) ∝ log N for N ≤ Nc ≈ 2I(X;Y ) and

I(X; YN) ≈ const for N ≥ Nc. Since we in general don’t know I(X; Y ), in practice we

stop the refinement at an Nc for which the rate of change of DI with N appears ”empirically”

to decrease dramatically. The estimate of I(X; YNc) is the best lower bound estimate of

I(X; Y ) at this level of detail.

If there is not enough data to support such refinement, the algorithm is stopped earlier.

† Note that this was used only for visualization purposes and nowhere in our analysis we assume that
spike occurrences are independent events!
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Figure 4. The response space and its probabilistic representation. a) The

response space for this example consists of patterns of doublets, which always

start with a spike at time 0. The second spike follows with a delay between 2.5

ms (lower left) and more than 10 ms (upper right, only single spike visible). The

patterns are ordered according to decreasing interspike interval. The vertical

scale is the consecutive number of a spike pattern. b) The log probability

of occurrence of a particular pattern, estimated by counting frequency of

occurrence (histogram). c) A particular quantizer, as in Figure 3, groups

several of the patterns in a) in a single class. In this case, all doublets with

ISI ∈ [6.9 10]ms are grouped in class 1, doublets with ISI ∈ [3.1 6.9]ms and

single spikes are grouped in class 2, and doublets with ISI< 3ms are in class

3. d) The CCTH of a spike at time T given the pattern is in a certain class.

See details in text explaining the CCTH. We plot the conditional probability

of spike occurrence vs. time for each pattern on a logarithmic scale, with black

indicating a probability of one for the occurence of a spike, and a lighter shade

of gray representing a lower probability.

The criterion we use in such a case is that the estimate of DI does not change with N within

its error bounds (obtained analytically or by statistical re-estimation methods like bootstrap,

or jack-knife). Then N < Nc, and the quantized mutual information is at most log N . We

can recover at most N classes, and some of the original classes will be combined. Thus we

can recover a somewhat impoverished picture of the actual input/output relationship which

can be refined automatically as more data becomes available, by increasing N and repeating

the optimization procedure.

Below we present equivalent analyses of several other indentifiable interneurons from

the cricket’s cercal sensory system to illustrate specific aspects of the procedures. In Figure

6 we present a full quantization sequence for one cell. For later examples, we present only

the finest reprduction supported by data for the particular cell. We also suppress showing

confidence intervals to the class conditioned means for reasons of visualisation clarity. Details

of the procedures and results are in the figure captions.

Figures 5 through 11 illustrate this analytical approach, and show results for several

different cell classes. Figures 8, 9 and 11 also illustrate the different results obtained with

this approach vs. the ’stimulus reconstruction’ approach. Estimation of a stimulus waveforms
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with these class-conditioned means would be significantly more accurate than estimates based

on a linear stimulus reconstruction kernel.

−20 −15 −10 −5 0 5 10
−1.5

−1

−0.5

0

0.5

1

1.5

00.41 2 4 8 10
0

0.5

1

1.5

2

2.5

N

I, 
bit

s

I
max
I
G

    

Figure 5. A quantization with 4 classes. The top panel shows four class-

conditioned mean stimulus waveforms, corresponding to the four spike pattern

codewords derived through this quantization. The 4 mean waveforms are each

plotted in the color of the corresponding class. The horizontal axis of this top

plot denotes time, in ms, relative to the occurrence of the first spike in a class.

That is, time 0 is the time at which the first spike on the codeword pattern

occurred. The dashed lines denote 95% confidence intervals of the means,

which depend on the reproduction size, N . The lower right panel plots the

CCTH spike codewords for these four classes, as decribed in Figure 4.4. These

patterns are aligned in time with the mean stimulus waveforms that elicited

them, in the panel directly above. These are the classes of spike patterns that

served as the basis for extracting the corresponding mean stimulus waveforms.

Every class starts with a spike (line at 0ms). The amplitudes of the colored

bars in the panel to the left of these CCTH plots show the relative proportion

of spike patterns belonging to the different classes, as GMM priors (weights).

These bars are color-coded to indicate the class-conditioned mean stimulus

waveform to which the spike pattern to the right corresponds. This particular

quantization groups the spike patterns roughly according to interspike intervals:

The top class (brown) consists mostly of doublets with a second spike 7-10 ms

after the initial spike (dark gray range to the right), and a few triplets (light

gray bars in front), for which the third spike is in the same range. The 4th

class (dark blue) consists mostly of short doublets, with a second spike 2.5-3.3

ms after the first spike, and a range of triplets with a third spike 6-10ms after

the first spike. The lower left panel shows the estimate of the lower bound to

the mutual information (green), and the absolute upper bound for the same

level of quantization (blue, log2 N). The errorbars mark the uncertainty of the

estimate, which depend on the reproduction size. The estimate for the current

quantization level is denoted with a red marker.

Figure 10 demonstrates the appicability of the method to analyzing multi-cell ensembles.

The data for this case was actually obtained from intracellular recording of a single cell, to
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which we presented a GWN stimulus followed by the identical but sign-inverted stimulus.

The responses of the cell to the second stimulus were taken to represent the activity of

its complementary cell, which is sensitive to stimuli from the opposite direction. In this

way we have a synthetic two-cell ensemble, in which the cells are forced to be conditionally

independent (i.e., their activity is not related except through the common stimulus). Figure

10A demonstrates the appearence of this independence in the analysis: the first two classes

contain isolated single spikes from one cell irrespective of the activity of the other cell. The

class conditioned means (which are also the linear reconstruction kernels) also show that the

cells are rectifying the stimulus.

An interesting case which needed a more detailed model is shown in Figure 11. In

this case, the single class/single Gaussian model that we outlined in Section 4.2 was too

restrictive, and we had to use a 2 component GMM to explain the stimulus conditioned

on a single class. This is a minor extension of the quantization method. The stimulus

reconstruction method cannot handle this case in principle, since the nonlinearity is not in

the interaction between spikes, but in the generation of a single spike.

5. Conclusions

The general goals of the research presented here were a) to develop algorithms through which

the relevant stimulus space and the corresponding neural symbols of a neuron or neural

ensemble could be discovered simultaneously and quantitatively, making no assumptions

about the nature of the code or relevant features, and b) to test the algorithms on an

experimental preparation. The approach presented here makes a significant step in these

directions. The essential basis for this approach is to conceptualize a neural coding scheme

as a collection of stimulus-response classes akin to a dictionary or ’codebook’, with each

class corresponding to a spike pattern ’codeword’ and its corresponding stimulus feature in

the codebook. The analysis outlined here enables the derivation of this neural codebook, by

quantizing the neural responses into a small reproduction set and optimizing the quantization

to minimize an information-based distortion function.

The major advantage of this analytical approach over other current approaches is that

it yields the most informative approximation of the encoding scheme given the available

data. That is, it gives the representation with the lowest distortion, by preserving the most

mutual information between stimulus and response classes. Moreover, the cost function

(which is intrinsic to the problem) does not introduce implicit assumptions about the nature

or linearity of the encoding scheme, nor does the maximum entropy quantizer introduce

additional implicit constraints to the problem.

Many of the current analytical approaches for studying coding schemes can be seen as

special cases of the method we present here. A rate code can be described as a deterministic

quantization to the set of integers within an encoding window. The quantizer assigns all

spike patterns with the same number of spikes to the same equivalence class. A spike latency

code can be seen as a quantization to classes determined by the latency and jitter of the

spike’s timing. In this case, a stimulus feature is decoded as in the rate code case, based
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on which latency “class” a spike falls into. The metric space approach [40] uses an explicit

cost (distortion) function to determine which different sequences are identical: they are

equivalent if, according to the cost function, their difference is below a certain threshold.

The cost function and identification threshold induce a deterministic quantization of the

response space to a smaller reproduction space of equivalent classes.

We chose to formulate the problem explicitly in the language of information theory, so

that we could use the powerful methods developed in this context for putting all these ideas

in a unified framework. By doing so, we immediately realized one problem with this general

approach: the distortion functions impose an assumed structure on the neural response

(albeit a very natural one in the case of [40]) that may or may not be there in reality. Therein

lies on important benefit of the method we present here: the information distortion cost

function in (1) is intrinsic to the system, and does not introduce any additional assumptions

about its function or structure. This benefit is somewhat decreased from the point at which

we introduce models of the stimulus in Section 4.2, since now the models implicitly impose

assumptions about the structure of the stimulus-response space. We partially resolve this

issue by allowing for flexible models, that can partition the input space on small enough

chunks, so that the distortions that the models introduce are small compared to the relevant

structures in the space (Figure 11).

Appendix A. Experimental protocols

Appendix A.1. Dissection and preparation of specimens

All experiments were performed on adult female crickets obtained from commercial suppliers

(Bassett’s Cricket Ranch, Visalia, CA, and Sunshine Mealworms, Silverton, OR). Specimens

were selected that had undergone their final molt within the previous 24 h. The legs, wings

and ovipositor were removed from each specimen, and a thin strip of cuticle was removed

from the dorsal surface of the abdomen. After removal of the gut, the body cavity was rinsed

and subsequently perfused with hypotonic saline. Hypotonicity facilitated microelectrode

penetration of the ganglionic sheath.

The preparation was pinned to the center of a thin disc of silicone elastomer

approximately 7 cm in diameter, located within the central arena of a air-current stimulation

device, described below. Once the preparation was sealed and perfused with saline, the

ganglion was placed on a small platform and gently raised from the ventral surface of the

abdomen. This increased the accessibility of the ganglion to electrodes while at the same

time improving the stability of electrode penetration by increasing surface tension on the

ganglion.

Appendix A.2. Electrophysiological recording

Sharp intracellular electrodes were pulled from glass capillary tubes by a model P*80/PC

electrode puller (Sutter Instrument Co.) The electrodes were filled with a mixture of 2%

neurobiotin and 1 M KCl, and had resistances in the range of 30 to 50 megohms. During
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recordings the neurobiotin would diffuse into the nerve cell, allowing for subsequent staining

and identification. Data were recorded using an NPI SEC-05L Intracellular amplifier and

sampled at 10 kHz rate with a digital data acquisition system running on a Windows 2000

platform.

Appendix A.3. Stimulus generation

The cricket cercal sensory system is specialized to monitor air currents in the horizontal plane.

All stimuli for these experiments were produced with a specially-designed and fabricated

device that generated laminar air currents across the specimens’ bodies. Air currents were

generated by the controlled, coordinated movement of loudspeakers. The loudspeakers were

mounted facing inward into an enclosed chamber that resembled a miniature multi-directional

wind tunnel. The set of speakers were sent appropriate voltage signals to drive them in a

”push-pull” manner to drive controlled, laminar air-current stimuli through an enclosed arena

in the center of the chamber, where the cricket specimens were placed after dissection.

Stimulus waveforms were constructed prior to the experiment using Matlab. During

experiments, the stimulus waveforms were sent out through a DAC to audio amplifiers and

then to the set of loudspeakers. Stimuli for determining directional selectivity consisted

of half-cosine waves interspersed with silent periods, which created unidirectional air puffs.

Additional stimuli consisted of 30 minute Gaussian white noise voltage waveforms, low passed

below 500 Hz. Stimuli were either played along a single axis relative to the cricket, or were

allowed to change angle at a maximum rate of 50 Hz.

Appendix B. Definitions and proofs

Appendix B.1. Optimization problem

In this Appendix we show how solutions of various problems we introduced in sections 2 and

section 3 relate to each other. Recall that our main objective is to minimize (1) i.e. to solve

minimization problem

I minq(yN |y)∈∆DI(Y, YN)

where

∆ := {q(yN |y) | ∑
yN

q(yN |y) = 1 and q(yN |y) ≥ 0 ∀y ∈ Y }

and

DI = I(X; Y )− I(X; YN).

The only term in DI that depends on the quantization is I(X; YN), so we can replace DI

with the effective distortion

IN := I(X; YN)

in our optimization schemes.
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Following examples from rate distortion theory [5, 28], in [7] we formulated the problem

of optimal quantization as a maximum entropy problem [14]. As we will see below this

amounts to regularization of problem (I). If problem (I) has multiple solutions then we

select the solution with maximum entropy as the optimal solution. The reason is that,

among all quantizers that satisfy a given set of constraints, the maximum entropy quantizer

does not implicitly introduce additional constraints in the problem. In this framework, the

minimum distortion problem is posed as a maximum quantization entropy problem with a

distortion constraint:

II max
q(yN |y)

H(YN |Y ) constrained by

DI(q(yN |y)) ≤ D0 and
∑
yN

q(yN |y) = 1 and q(yN |y) ≥ 0 ∀y ∈ Y.

Since the only part of DI which depends on the quantizer is IN = I(X; YN), this is equivalent

to

III max
q(yN |y)

H(YN |Y ) constrained by

IN(q(yN |y)) ≥ I0 and
∑
yN

q(yN |y) = 1 and q(yN |y) ≥ 0 ∀y ∈ Y.

The goal is to find the maximal entropy solution for a maximal possible value of IN .

Using the method of Lagrange multipliers we can reformulate the optimization problem

(III) as finding the maximum of the cost function

IV max
q(yN |y)

F (q(yN |y)) ≡ max
q(yN |y)

(
H(YN |Y ) + βIN(q(yN |y))

)

constrained by q(yN |y) ∈ ∆.

We now compare the optimal solution of problems I - IV. Clearly, problems (II) and (III)

are equivalent as we just replaced DI by IN .

In [11] we showed that DI is a concave function of q(yN |y), that the domain ∆ is convex

and therefore the solution of problem (I) is either a vertex of ∆ or, in a degenerate case, a

product of simplices Di which lie on the boundary of ∆. More precisely, for a fixed size of

X and Y we let P to be the set of all joint probability distributions p(X, Y ). Since both X

and Y are discrete spaces, the set P can be identified with the set of all |X| × |Y | matrices

A with all elements summing to one. This allows us to put on P a subspace topology from

R|X|×|Y |. Then there is an open and dense set D ⊂ P such that if p(x, y) ∈ D, then

the solution of the problem (I) is in the vertex of ∆. We say that this is a generic case.

This means that, unless p(x, y) has a special symmetry, the solution will be a vertex. The

presence of noise in the system and the finite ammount of data should break any symmetries,

and so for all practical purposes one can assume that indeed the solution of (I) is a vertex

of ∆.

Problems (I) and (II) are equivalent if the optimal solution of (I) lies on the vertex.

However, if the optimal solution of (I) is the product of boundary simplices of ∆ then the
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optimal solution of (II) is the product of barycenters of these simplices (Theorem 5 [11]).

This is why we think of reformulation (II) as a regularization of problem (I). We now compare

problems (III) and (IV). We start with an observation that IN , as a continuous function

on compact domain ∆, has a maximal value I∗. Therefore, for values of the parameter

I0 > I∗, problem (III) has no solution. On the other hand, problem (IV) has a solution for

all values of β, since F is a continuous function on compact set ∆, and as such it always

has a maximum in ∆. We have the following result

Lemma 1 ([11]) Let q(β) be a solution of problem (IV) as a function of the annealing

parameter β. Then

limβ→∞IN(q(β)) → I∗

and

limβ→∞q(β) = q∗

where q∗ is a local maximum of (III) with I0 = I∗.

Proof. As β →∞ the solution q(β) converges to a solution of the problem

max IN ,

which is equivalent to problem minDI , that is, a problem (I). The maximum of IN is I∗. If

the local maximum of IN is achieved at a vertex then this point is also a solution of problem

(III). Assume now that the local maximum is achieved at a product of boundary vertices. In

this case the maximum entropy solution (i.e. solution of (III)) is the product of barycenters

q∗. It follows from continuity of the function in (IV) that q(β) converges to q∗. 2

Appendix B.2. Models of the input data

By results of ([11]) the cost function

D̃eff = H(X)− H̃(X|YN)

is concave in q(yN |y) for the most general model of the data, i.e. the full Gaussian model.

More restrictive models, described in section 4.3, are special cases of the general model. This

means that some of the parameters estimated from the data are forced to have common

values, but the overall structure of the model (i.e. Gaussian) remains the same. Therefore

the results of ([11]) extend to reduced models and we have

Theorem 2 The optimal solution of the problem (III) with IN replaced by D̃eff with any

of the four models of the input classes, lies generically on the vertex of ∆. In other words

the optimal quantizer is generically deterministic.
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Appendix B.3. Stability of the optimal solution

An important question which needs to be addressed is how stable our quantizer is with

respect to small changes in the data. These small changes can come from a variety of

sources, among them recording errors, adaptation, round off errors when handling the data,

etc. The function F which we optimize is a continuous function of the joint probability

p(x, y), and, in the case of function D̃eff , continuous function of the estimated quantities

CX|yN
and xN . These estimates depend in turn continuously on the colected dataset. This

means that small difference in collected data will yield function F only slightly different

from the original function. The assignment of the optimal solution of the optimization

problem (III) can be thought of as a continuous function from the space of possible values

of estimated quantities CX|yN
and xN to a discrete set of vertices of ∆. Every continuous

function whose range is discrete must be locally constant. In other words, if values of the

quantities CX|yN
and xN change slightly, then the new optimal quantizer will be not only

close to the old one, but actually the same. Clearly this is the strongest possible stability

statement one can make. This stability property is another attractive feature of our approach.
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Figure 6. Six steps in refining the quantizations. The format for each

panel is equivalent to that described in Figure 5. A) The coarsest nontrivial

quantization, containing only 2 classes. (B–E) Increased levels of refinement,

from 3 (B) to 8 (E) classes. The structure evident in the initial coarse

quantizations (Figure 5) remains unchanged: The patterns are grouped mostly

according to the ISI of a doublet, with additional spikes appearing infrequently

with a relatively uniform distribution (light gray region in the lower right

corner, and light gray stripe at about 2.5 ms). F) A refinement in which the

triplets were isolated in separate classes (class 2 and 4 from the bottom). All

the uncertainty previously associated with the light gray range of the third spike

is now almost completely collapsed in the triplet classes. The corresponding

class conditioned stimulus reflect this class structure as well (light blue and red

classes). The confidence ranges of (E,F) are not displayed in order to show the

means more clearly. In general, the uncertainty increases with N .
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Figure 7. A set of quantizations for a fixed reproduction size N = 4
derived with three different models. A)PPCA model with K = 10 dimensions

preserved. B) common PPCA model with K = 25 dimensions preserved.

C) Spherical Gaussian model. The resulting clustering is mostly consistent

between the models (lower right panel in (A-C). The class conditioned means

are also practically identical. The estimate of the mutual information (lower

left panel in (A-C)) changes with the complexity of the model used. A)

provides a relatively tight lower bound of IN (green trace) closest to the

absolute upper bound (blue trace), but the uncertainty grows rather rapidly

(errorbars). B) produces a lower estimate of IN (green trace), which is less

uncertain (errorbars). The lower bound to IN in C) is very poor (note different

vertical scale). However, the estimate of this bound is very precise (again,

different vertical scale makes the errorbars look big). The complexity of the

models also affects the maximum reproduction size N that can be used. The

more complex model in A) allows refinements with N ≈ 7 − 8 classes. The

intermediate model in B) allows refinements with N ≈ 12 − 14 classes. The

simplest model in C) allows additional refinements in excess of N = 16 classes.

For this model, we can also observe the decreased rate of change of IN with N

around 8 classes.
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Figure 8. Comparison to the stimulus reconstruction method. In the top

panel, we show the 8th class-conditioned means (green trace), superimposed

on a histogram of the stimulus (grayscale background). For each time t on the

horizontal axis there is a histogram of the amplitudes V on the vertical axis at

that time. This gives a visual representation of the variance around this class

conditioned mean. The red trace shows the linear stimulus reconstruction for

this class. It lies outside the confidence ranges of the class conditioned mean for

T ∈ [−10 − 8] ms. The rest of the time it is inside the confidence limits of the

green trace. The yellow trace was obtained by calculating the linear stimulus

reconstruction when the set of second spikes were moved 0.4ms closer to the

first spike.
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Figure 9. Eight-class reproduction for another type of interneuron. This cell

has a stimulus signature quite different from the previous cell: for short ISIs

(last 3 classes) the class-conditioned means differ mainly in amplitude. For

long ISIs, similarly to the previous cell, each spike seems to be associated

with a biphasic sine-like input. The stimulus density around one of the

class-conditoned means (purple) is shown in the lower panel. The linear

stimulus reconstruction for this class is show in red. In this case, the stimulus

reconstruction kernel is very different than any class-conditioned mean, and

would yield a very poor stimulus estimate.
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Figure 10. Quantization of a synthetic two-cell ensemble (see text for

explanation). A) The coarsest quantization to two classes recovers the single

spike-conditioned average. The class-conditioned spike histogram in the lower

right corner now has two traces for each class (labeled lines), showing the

activity of the two cells in cyan and magenta, respectively. Class 1 consists of

a single spike in cell 2 (magenta) and any activity from cell one (cyan). Class

2 consists of a single spike in cell 1 and any activity from cell 2. B) One of the

finest quantizations supported by the available data. Classes continue isolate

the activity of each individual cell. However, the activity of the other cell can

now be discriminated better. For example, class one consists of cell 1 firing,

followed by cell 2 firing 5-10 ms later, while class 2 has cell 1 firing and cell

2 firing 3-5 ms later. The class conditioned means follow roughly the same

relation: there is a stimulus deviation associated with the first spike, and an

anti-phase deviation associated with the second spike (for example, consider

the green trace). The stimulus density around one of the classes is shown in

the lower panel.
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Figure 11. A single class from another cell. This class consists of one spike

at 0 ms with no activity before or after it for 10 ms. This dataset supported

only the coarsest quantization to two classes, with everything but the isolated

single spike combined in class two. There was not enough data for additional

refinements. The single spike conditioned mean, which coincides with the linear

reconstruction kernel, is shown in brown. A more careful examination of the

data revealed that there were actually two distinct stimulus conditions which

lead to a single spike. These are shown with yellow and blue densities (green

denotes overlap of the densities). We used a two-component GMM for this class

to explain the data (black traces overlayed over the corresponding densities).


