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Symmetry Breaking in Soft Clustering
Decoding of Neural Codes

Albert E. Parker, Alexander G. Dimitrov, and Tomáš Gedeon

Abstract—Information-based distortion methods have been
used successfully in the analysis of neural coding problems.
These approaches allow the discovery of neural symbols and the
corresponding stimulus space of a neuron or neural ensemble
quantitatively, while making few assumptions about the nature of
either the code or of relevant stimulus features. The neural code-
book is derived by quantizing sensory stimuli and neural responses
into a small set of clusters, and optimizing the quantization to
minimize an information distortion function. The method of an-
nealing has been used to solve the corresponding high-dimensional
nonlinear optimization problem. The annealing solutions undergo
a series of bifurcations, which we study using bifurcation theory
in the presence of symmetries. In this contribution we describe
these symmetry breaking bifurcations in detail, and indicate some
of the consequences of the form of the bifurcations. In particular,
we show that the annealing solutions break symmetry at pitchfork
bifurcations, and that subcritical branches can exist. Thus, at a
subcritical bifurcation, there are local information distortion so-
lutions which are not found by the method of annealing. Since the
annealing procedure is guaranteed to converge to a local solution
eventually, the subcritical branch must turn and become optimal
at some later saddle-node bifurcation, which we have shown occur
generically for this class of problems. This implies that the rate
distortion curve, while convex for noninformation-based distortion
measures, is not convex for information-based distortion methods.

Index Terms—Annealing, bifurcations, clustering, information
distortion, neural coding, symmetry breaking.

I. INTRODUCTION

A MAJOR unresolved problem in neuroscience concerns
the manner in which a nervous system represents informa-

tion. Important questions being studied currently include: What
information about the external world is represented in patterns
of neural activity? How is this information used by the nervous
system to process sensory stimuli? We have yet to reach a gen-
erally accepted theory of neural coding and computation. Our
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difficulty does not stem solely from lack of data. What we lack
is a deep understanding of the methods used by interacting pop-
ulations of neurons to represent and process sensory informa-
tion.

While we are far from fully answering these deep questions,
the theoretical tool we describe here can provide a first step to-
ward discovering general principles of sensory processing in
biological systems. It is designed to determine the correspon-
dence between sensory stimuli and neural activity patterns

. This correspondence is referred to as a sensory neural code.
Common approaches to this problem often introduce multiple
assumptions that affect the obtained solution. For example, the
linear stimulus reconstruction method [1] assumes linearity and
independence between the neural responses (spikes). The cur-
rent standard in forward models [2]–[4] places assumptions on
either the type of model (for example integrate-and-fire with a
stochastic threshold [3]) or the type of point process with which
the system is characterized (essentially, Markov, with specific
assumptions about the form of the conditional intensity func-
tion [2]).

Any neural code must satisfy several conflicting demands. On
one hand the organism must recognize certain natural objects in
repeated exposures. Failures on this level may endanger an an-
imal’s well-being, for example if a predator is misidentified as
a conspecific mate. On this level, the response of the organism
needs to be deterministic. On the other hand, distinct stimuli
need not produce distinguishable neural responses, if such a
regime is beneficial to the animal (e.g., a wolf and a fox need not
produce distinct responses in a rabbit, just the combined con-
cept of “predator” may suffice.) Thus the representation need
not be bijective. Last, the neural code must deal with uncer-
tainty introduced by both external and internal noise sources.
Therefore the neural responses are by necessity stochastic on a
fine scale. In these aspects the functional issues that confront the
early stages of any biological sensory system are similar to the
issues encountered by communication engineers in their work
of transmitting messages across noisy media. Thus we can view
the input-output relationship of a biological sensory system as
a communication system [5].

We consider the neural encoding process within a proba-
bilistic framework [6], [7]. The input signal to a neuron (or
neural ensemble) may be a sensory stimulus or the activity of
another set of (presynaptic) neurons. We consider the input
signal to be produced by a stochastic source with probability

. The output signal generated by that neuron (or
neural ensemble) in response to is a series of impulses (a
spike train or ensemble of spike trains.) Thus the system is
completely characterized by its joint distribution, .

0018-9448/$26.00 © 2010 IEEE
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We consider the encoding of into to be a map from one
stochastic signal to the other. This stochastic map is the encoder

, which models the operations of this neuronal layer.
The output signal is induced by the encoder by

.
A model of the neural code, which is probabilistic on a fine

scale but deterministic on a large scale, emerges naturally in the
context of Information Theory [8]. The Noisy Channel Coding
Theorem suggests that relations between individual elements
of the stimulus and response spaces are not the basic building
elements of the system. Rather, the defining objects are rela-
tions between classes of stimulus-response pairs. Given the mu-
tual information between the two spaces, , there are
about such codeword (or equivalence) classes. When
restricted to codeword classes, the stimulus-response relation is
almost deterministic. That is, with probability close to 1, ele-
ments of are associated to elements of in the same code-
word class. This framework naturally deals with lack of bijec-
tivity, by treating it as effective noise. We decode an output
as any of the inputs that belong to the same codeword class.
Similarly, we consider the neural representation of an input
to be any of the outputs in the same codeword class. Stimuli
from the same equivalence class are considered indistinguish-
able from each other, as are responses from within the same
class.

The recently introduced Information Bottleneck [9], [10] and
Information Distortion [11], [12] methods approach the neural
coding problem in this probabilistic framework by using tools
from Rate Distortion theory in order to build simplified models
of neural coding and study them in detail. They approximate the
joint distribution of interest, , by clustering the paired
stimulus-response observations into smaller stimulus-
response spaces . The clustering of the data is called a
soft clustering since the assignment of the observations to a
cluster can be stochastic rather than deterministic. An optimal
soft clustering is found by maximizing an information-theo-
retic cost function subject to both equality and inequality con-
straints, in hundreds to thousands of dimensions. This analytical
approach has several advantages over other current approaches:
it yields the most informative approximation of the encoding
scheme given the available data (i.e., it gives the lowest distor-
tion, by preserving the most mutual information between stim-
ulus and response classes); the cost function, which is intrinsic
to the problem, does not introduce implicit assumptions about
the nature or linearity of the encoding scheme; it incorporates an
objective, quantitative scheme for refining the codebook as more
stimulus-response data becomes available; and it does not need
repetitions of the stimulus under mild continuity assumptions,
so the stimulus space may be investigated more thoroughly.

These types of information theoretic optimization prob-
lems also arise in Rate Distortion Theory [8], [13] and the
Deterministic Annealing approach to clustering [14]. These
methods have been used successfully in neural coding prob-
lems [15]–[21] as well as other biological topics [22]–[29] and
general data mining problems [14], [30].

One approach to solving this class of optimization problems
is through the method of annealing: starting at the uniform (un-
informative) soft clustering, one tracks this solution as an an-

nealing parameter varies. The solutions undergo a series of rapid
changes (bifurcations or phase transitions) as the annealing pa-
rameter increases, ultimately reaching a nearly deterministic
clustering of the data. In spite of conjectures about the form of
the bifurcations [10], [14], a rigorous treatment of the bifurca-
tions of the annealing solutions and how they relate to bifurca-
tions of solutions to the original information theoretic optimiza-
tion problem of interest have been lacking. This contribution
offers such a description by examining the bifurcations in a dy-
namical system defined by the gradient flow of the Lagrangian
of the optimization problem.

Well established tools are available for exploiting the sym-
metry of equilibria in a dynamical system. The reason for
switching to the gradient flow is to capitalize on these tools.
The optimal clustering found by the Information Bottleneck
and the Information Distortion methods, which is an equilib-
rium in the gradient flow, has a symmetry: any clustering of the
data gives another equivalent clustering simply by permuting
the labels of the classes. This symmetry is described by

, the algebraic group of all permutations on symbols.
The symmetries of the bifurcating equilibria are dictated by
the subgroup structure of . We describe these symmetry
breaking bifurcations in detail for the gradient flow, relate these
back to bifurcations of the annealing solutions, and finally to
bifurcations of locally optimal soft clusterings of the informa-
tion theoretic cost function of interest.

This paper is organized in the following way. In Section II,
we illustrate the application of the method to the analysis
of neural coding in the cricket cercal sensory system. In
Section III, we give the Information Bottleneck and Informa-
tion Distortion optimization problems, and the results of an
annealing procedure used to solve the Information Distortion
problem on a simple data set which exhibits the generic bifur-
cation structure. Section IV presents some relevant constrained
optimization theory, and an overview of bifurcation theory with
symmetries. Section V is devoted to preparations for applying
the theory of bifurcations with symmetries. We introduce the
gradient flow of the Lagrangian and the reduced bifurcation
problem which, due to the symmetry, determines the directions
of all of the emanating equilibria in the much larger space of all
soft clusterings. Section VI is the central part of the paper. We
present existence theorems for symmetry breaking bifurcating
branches, and we derive a condition which determines whether
these branches are subcritical (first order phase transitions)
or supercritical (second order phase transitions). There are
also symmetry preserving bifurcations, which, generically, are
saddle-nodes. Numerical illustrations of our results occupy
Section VII. In Section VIII, we discuss some of the insights
that the bifurcation structure gives regarding optimal cluster-
ings of the data, and consequences for the rate distortion curve
from Information Theory.

II. A CASE STUDY

To approach the neural coding problem with the Information
Distortion and Information Bottleneck methods [10], [11], [31],
one clusters sensory stimuli and neural responses to small re-
production sets in a way which optimizes an information-based
distortion function [31]. The essential basis for this approach
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is to conceptualize a neural coding scheme as a collection of
stimulus-response classes akin to a dictionary or codebook, with
each class corresponding to a neural response codeword and its
corresponding stimulus feature in the codebook.

A. Finding the Codebook

Given the probabilistic model of neural function, we would
like to recover the codebook. In our context, this means identi-
fying the joint stimulus-response classes that define the coding
relation. We characterize a neural coding scheme by clustering
(quantizing or compressing) the joint stimulus-response space

to a smaller joint reproduction space . consists
of classes of objects in , and consists of classes of objects
in . One way to achieve this goal is by clustering the neural
responses into a coarser representation in a small reproduc-
tion space with elements. This quantization induces
a quantization of the stimulus space into a smaller event set

also with elements. The details of how the clustering is
performed are presented in Section III. This method allows us
to study coarse (i.e., small ) but highly informative models
of a coding scheme, and then to refine them when more data
becomes available. The refinement is achieved by simply in-
creasing the sizes of the reproductions, . We aim to find the
best such clustering of the data with fixed .

Following examples from rate distortion theory [8], [14], the
Information Distortion method assumes that the best clustering
of the data is the one with maximal entropy [11], [32]. The
reason is that, among all clusterings that satisfy a given set of
constraints, the maximum entropy clustering of the data does not
implicitly introduce additional constraints in the problem. Sim-
ilarly, the Information Bottleneck method follows the standard
settings of Rate-Distortion Theory [8], formulating the problem
as a minimal rate at a fixed distortion level.

B. Analysis of Stimulus-Response Relations
in the Cricket Cercal Sensory System

We applied these tools to characterize the encoding charac-
teristics of single identified sensory interneurons in the cricket
cercal sensory system to complex and biologically relevant
stimuli. The goal of the experiments and analyzes were to
discover (jointly) the dynamic stimulus waveform features
encoded by the cells, and the spike train codeword classes
that encoded those features. Most of these results have been
presented elsewhere [18], [20].

1) Experimental Protocols: The preparation we analyze here
is the cercal sensory system of the cricket. In the following
sections, we briefly introduce this system, describe the exper-
imental methods used to collect the data, and then discuss the
application of the Information Distortion approach to analysis
of coding by single sensory interneurons in this system.

Functional organization of the cercal system. This system
mediates the detection and analysis of low velocity air currents
in the cricket’s immediate environment. This sensory system is
capable of detecting the direction and dynamic properties of air
currents with great accuracy and precision [33]–[36], and can
be thought of as a near-field, low-frequency extension of the
animal’s auditory system.

Primary sensory interneurons. The sensory afferents of the
cercal system synapse with a group of approximately thirty
local interneurons [37] and approximately twenty identified
projecting interneurons that send their axons to motor centers in
the thorax and integrative centers in the brain [38]. It is a subset
of these projecting interneurons that we study here. Like the
afferents, these interneurons are also sensitive to the direction
and dynamics of air current stimuli [33]–[36]. Stimulus-evoked
neural responses have been measured in several projecting and
local interneurons, using several different classes of air current
stimuli [34]–[36], [39]. The stimuli that have been used range
from simple unidirectional air currents to complex multi-direc-
tional, multi-frequency waveforms. Each of the interneurons
studied so far has a unique set of directional and dynamic
response characteristics. Previous studies have shown that
these projecting interneurons encode a significant quantity of
information about the direction and velocity of low frequency
air current stimuli with a linear rate code [35], [36], [39]. More
recent studies demonstrate that there is also substantial amount
of information in the spike trains that cannot be accounted
for by a simple linear encoding scheme [18], [40]. Evidence
suggests the implementation of an ensemble temporal encoding
scheme in this system.

Dissection and preparation of specimens All experiments
were performed on adult female crickets obtained from com-
mercial suppliers (Bassett’s Cricket Ranch, Visalia, CA, and
Sunshine Mealworms, Silverton, OR). Specimens were selected
that had undergone their final molt within the previous 24 h.
The legs, wings and ovipositor were removed from each spec-
imen, and a thin strip of cuticle was removed from the dorsal
surface of the abdomen. After removal of the gut, the body
cavity was rinsed and subsequently perfused with hypotonic
saline. Hypotonicity facilitated microelectrode penetration of
the ganglionic sheath.

The preparation was pinned to the center of a thin disc of
silicone elastomer approximately 7 cm in diameter, located
within the central arena of an air-current stimulation device,
described below. Once the preparation was sealed and perfused
with saline, the ganglion was placed on a small platform and
gently raised from the ventral surface of the abdomen. This
increased the accessibility of the ganglion to electrodes while at
the same time improving the stability of electrode penetration
by increasing surface tension on the ganglion.

Electrophysiological recording Sharp intracellular electrodes
were pulled from glass capillary tubes by a model P*97/PC elec-
trode puller (Sutter Instrument Co.) The electrodes were filled
with a mixture of 2% neurobiotin and 3 M KCl, and had re-
sistances in the range from 10 to 30 megohms. During record-
ings the neurobiotin would diffuse into the nerve cell, allowing
for subsequent staining and identification. Data were recorded
using an NPI SEC-05L Intracellular amplifier and sampled at
10 kHz rate with a digital data acquisition system running on a
Windows 2000 platform.

Stimulus generation The cricket cercal sensory system is
specialized to monitor air currents in the horizontal plane. All
stimuli for these experiments were produced with a specially
designed and fabricated device that generated laminar air cur-
rents across the specimens’ bodies. Air currents were generated
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by the controlled, coordinated movement of loudspeakers. The
loudspeakers were mounted facing inward into an enclosed
chamber that resembled a miniature multidirectional wind
tunnel. The set of speakers were sent appropriate voltage sig-
nals to drive them in a “push-pull” manner to drive controlled,
laminar air-current stimuli through an enclosed arena in the
center of the chamber, where the cricket specimens were placed
after dissection.

Stimulus waveforms were constructed prior to the experi-
ment using MATLAB®. During experiments, the stimulus wave-
forms were sent out through a DAC to audio amplifiers and then
to the set of loudspeakers. Stimuli consisted of uninterrupted
waveform, for which the air current velocity was drawn from
a Gaussian White Noise process, band-passed between 5 and
150 Hz. Two independent waveforms were presented along two
orthogonal axes, thus covering all possible planar stimulus di-
rections around the cricket.

2) Results: Stimuli and responses were preprocessed to a
form suitable for the algorithm. The response of a single cell
is represented as a sequence of interspike intervals (ISIs), the
times between impulses that the cell emits in response to sen-
sory stimuli [41]. The sequence analyzed here is broken into
sets of pairs of ISIs, and embedded in two dimensional space
[20], [42]. As described in [18], to be considered a pattern and
further processed, a sequence of spikes must start with a spike
preceded by a quiet period of at least ms. Each ISI is also
limited to no more than ms. The parameters of the initial pro-
cessing, and , may be varied to verify their effects on the
final results. They depend on the cell and system being consid-
ered. Typically we use ms and ms. The
stimulus associated with each response is an airflow waveform
extracted in a range of around the beginning of each
response sequence of ISIs. The stimuli presented to the system
consist of two independent time series of air velocities (“along”
and “across” the cricket’s body), each of length , and so are
embedded in dimensional Euclidean space. The number of
observations, , depends on the recording rate and overall cell
responsiveness to a given stimulus. The choice of specific pa-
rameters is evident in the figures where they are discussed. The
complete data set to be processed by the algorithm consists of
pairs , where is large.

Using the Information Distortion method discussed in
Section III, we found optimal soft clusterings that identified
synonymous classes of stimulus-response pairs. Stimulus fea-
tures are represented as waveforms of the mean airflow velocity
immediately preceding the elicited spike pattern codewords.
The response space was taken to be all pairs of ISIs with

ms, preceded by at least ms of silence.
This was done with the intent of analyzing only well-isolated
codewords, which are assumed to be independent following
this selection process.

Fig. 1 illustrates the application of the algorithm to uncov-
ering the stimulus-response relation in an identified cell in the
cricket cercal sensory system (cell 10-2, nomenclature as in
[38]). The stimulus classes are represented by their class-con-
ditioned means. We suppress showing confidence intervals for
the class conditioned means for reasons of visualization clarity.
Each conditional mean has two channels (Panels A and B).

Fig. 1. A quantization to nine classes of the stimulus-response pairs of cell
10-2 in the cricket cercal sensory system. Panels A and B show the two chan-
nels of the conditional means of the air flow stimulus for each class. Panel C
depicts the two dimensional response space of all pairs of ISIs in the range
��� ��� ms � ��� ��� ms color-coded by their membership in particular classes.
The color labels are consistent among the panels.

The optimal information-based soft clustering produced re-
sponse classes that were physiologically consistent, in the sense
that responses that had similar ISIs were clustered together.
Since there was no explicit similarity criterion for either the
stimuli, or the response, this structure is an important emergent
property of the algorithm that reflects the underlying structure
of the biological system. The stimulus classes are clearly dis-
criminable (Panel A), and associated with features of the clus-
tered responses. For example, the mean of class 2 (green) has
two prominent downward excursions separated by about 15 ms,
which is the average ISI separation of responses combined in
this class. The second trough of the stimulus is consistently re-
lated to the second ISI in the response. In panel C, the classes
starting with a short first ISI (horizontal axis) are 4, 3, 9, and 2 in
order of increasing second ISI (vertical axis). These four classes
effectively break the stimulus into a set of discriminable events
(Panel A). This sequence also demonstrates the main topic of
symmetry in this article: the labels of the clusters are arbitrary.
Permuting the labels of the clusters of responses does not effect
the discovered relationship between the stimuli and these clus-
ters of responses (this symmetry does not refer to properties of
neurons or of the stimulus space).

The information theoretic clustering approach was also used
to directly address questions about the consistency of the neural
code between individuals of the same species. This extends
the approach taken in [21] to select a limited set of neural
activity classes and test for similarity across individuals. The
quantization was performed on 36 identified 10-2 cells, and
40 identified 10-3 cells (nomenclature as in [38]). 10-3 cells
have functionality similar to that of 10-2 cells with directional
selectivity offset by 90 . In Fig. 2 we investigate the position
of the boundary between class 4 of the neural responses and
the neighboring class 7 across a set of individual crickets. This
boundary, indicated by the vertical black line near 5.75 ms
for cell 10-2 in Fig. 2, can be seen between the light blue and
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Fig. 2. The top panel shows the summary for cell 10-2 from 36 different in-
dividuals; the bottom panel shows cell 10-3 from 40 different individuals. For
each animal, the normalized histogram of the first ISI for the neural responses
in classes 4 and 7 was calculated. The mean of these distributions is given (solid
blue line), as well as two standard deviations around the mean (dashed blue
line). The solid black vertical line represents the mean time coordinate of the
boundary between classes 4 and 7, the dashed black vertical lines indicate one
standard deviation around the mean. In both cells, class 4 (shortest first doublets)
is consistently preserved with a precision of about 1 ms between different in-
dividuals!.

black points in panel C of Fig. 1. The standard deviation of the
boundary is less than 1 ms across the set of individuals! That
is, this particular class is very well preserved in the cricket
population we study. This directly addresses universal coding
behavior at the level of individual response codewords.

C. Conclusions

The general goal of this section was to demonstrate the ap-
plication of the Information Distortion method to resolving the
neural coding problem. The essential basis for this approach
was to conceptualize a neural coding scheme as a collection of
stimulus-response classes akin to a dictionary or codebook, with
each class corresponding to a neural response codeword and its
corresponding stimulus feature in the codebook. The analysis
outlined here enabled the derivation of such a neural codebook,
by quantizing stimuli and neural responses into small reproduc-
tion sets and optimizing the quantization to minimize the Infor-
mation Distortion function.

The major advantage of this analytical approach over other
current approaches is that it yields the most informative approx-
imation of the encoding scheme given the available data. That
is, it gives a representation that preserves the most mutual infor-
mation between stimulus and response classes. Moreover, the
cost function, which is intrinsic to the problem, does not intro-
duce implicit assumptions about the nature or linearity of the en-
coding scheme, nor does the maximum entropy soft clustering
introduce additional implicit constraints to the problem.

A major thrust in this area is to find algorithms through which
the relevant stimulus space and the corresponding neural sym-
bols of a neuron or neural ensemble can be discovered simulta-
neously and quantitatively, making few assumptions about the
nature of the code or relevant features. The analysis presented in

the following sections of this manuscript enables this derivation
of a neural codebook by optimizing the Information Distortion
function.

III. ANALYTIC FORMULATION

How can we characterize a relationship between inputs
and outputs , defined by the joint distribution ,
in which both and are large spaces? We approach this
problem by clustering (quantizing) the stimulus and response
spaces to smaller reproduction spaces and [20], [43]. The
joint probability between the reproduction stimulus
and response spaces, , induces an approximation of the
original relationship by

In this section we introduce the Information Bottleneck and
Information Distortion methods, which determine an optimal
soft clustering of the response space to a small
reproduction space by optimizing an information-based dis-
tortion function [10], [11]. In general the stimulus clustering

can be optimized independently [20]. In this manu-
script we do not explicitly cluster the stimulus space, but set

( is the identity), and consider only the one-sided
quantization of , so that is approximated by

The soft clustering is a conditional probability which
assigns each of the elements in the large space to each
of the classes in the small space with some
level of uncertainty. The space of valid conditional probabilities

is

and

The Information Bottleneck method finds an optimal soft
clustering by solving a rate distortion problem of the
form

(1)

where is some information rate. The function is
referred to as the relevance-compression function in [44]. The
mutual information, , is a convex function of

Here, so that the action of the group of symmetries is
clear, the soft clustering has been de-
composed into subvectors so that

.
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The Information Distortion method determines an optimal
soft clustering by solving the maximum entropy problem

(2)

The conditional entropy of the classes given the
neural responses, is a concave function of

Both problems (1) and (2) are of the form

(3)

where

and (4)

and the real valued functions and are sufficiently smooth.
This type of problem also arises in Rate Distortion Theory [8],
[13] and the Deterministic Annealing approach to clustering
[14].

The form of and indicates that permuting the subvectors
does not change the value of and . In other words, and
are invariant to the action of

(and similarly for ) where acts on by relabeling the
classes . In the language of equivariant bifurca-
tion theory [45], and are said to be -invariant, where
is the algebraic group of all permutations on symbols [46],
[47].

The method of annealing has been used to find solutions to
optimization problems of the form (3) [9]–[12], [14], [17]. The
annealing problem is

(5)

where the nonnegative annealing parameter , a function of
for , is the Lagrange multiplier for the constraint

in the optimization problem (3). The reciprocal of
the annealing parameter is usually referred to as temperature, in
analogy to physical annealing. After starting at at ,
for which is maximal, one continues this solution as
increases (temperature decreases) to , creating a sequence

that converges to . We will show that a solu-
tion of the annealing problem (5) is always a solution of the
optimization problem (3) for . However, a solution
of (3) is not necessarily a solution of (5), although the stationary
points (critical points or the set of possible solutions) of (3) and
(5) are the same when (see Section IV-B).

The annealing problem corresponding to (1) is [9], [10], [44]

(6)

and the annealing problem for (2), in analogy with Deterministic
Annealing [14], is

(7)

[11], [12], [17], [48].
The following basic annealing algorithm produces a solu-

tion, , of the annealing problem (5) (and of the optimization
problem (3) for some ) by starting at a maximum of
(at ), and then continuing this solution as increases
from 0 to , creating a sequence that converges to

.

Algorithm 3.1 (Annealing): Let

be the maximizer of

and let . For , let be a solution
to the annealing problem (5). Iterate the following steps until

for some .
1) Perform -step: Let where .
2) Take , where is a small perturbation, as an

initial guess for the solution at .
3) Solve to get the maximizer

, using initial guess .
The purpose of the perturbation in Step 2) of the algorithm

is due to the fact that a solution may get “stuck” at a sub-
optimal solution . The goal is to perturb outside of the
basin of attraction of so that in step 3, we find .

A. An Example: The Four Blob Problem

To illustrate the behavior of the annealing solutions, consider
the method of annealing applied to (7), for , where

is a discretization of a mixture of four well separated
Gaussians, presented by the authors in [11], [12] (Fig. 3). In
this model, we assume that represents a range
of possible stimulus properties and that repre-
sents a range of possible neural responses. There are four modes
in , where each mode corresponds to a range of re-
sponses elicited by a range of stimuli. For example, the stimuli

elicit the responses with high probability, and
the stimuli elicit the responses with high
probability. One would expect that the maximizer of (7) will
cluster the neural responses into four classes, each of
which corresponds to a mode of . This intuition is justi-
fied by the Asymptotic Equipartition Property for jointly typical
sequences [8].

The optimal clustering for , , and is shown in
panels (b)–(d) of Fig. 3. The clusters can be labeled by

. When as in panel (b), the optimal clustering
yields an incomplete description of the relationship between

stimulus and response, in the sense that responses are
in class 2 and the responses are in class 1. The repre-
sentation is improved for the case shown in panel (c)
since now are in class 3, while the responses
are still clustered together in the same class 2. When as
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Fig. 3. The Four Blob Problem from [11], [12]. (a) A joint probability ���� �� between a stimulus set��� and a response set ��� , each with 52 elements. (b)–(d) The
optimal clusterings � �� � �� for 	 � ���, and � classes respectively. These panels represent the conditional probability ��� � �� of a response being classified
to a class � � 
 . White represents ��
 � �� � �, black represents ��
 � �� � �, and intermediate values are represented by levels of gray. Observe that the data
naturally splits into 4 clusters because of the 4 modes of ���� �� depicted in panel (a). The behavior of �������	��� � with increasing 	 can be seen in (e). The dashed
line is �������	��� �, which is the least upper bound of �������	��� �.

Fig. 4. The bifurcations of the solutions �� � � to the Information Distortion problem (7) initially observed by Dimitrov and Miller in [11]. For a mixture of 4
well-separated Gaussians, the behavior of ���� � �������	��� � as a function of  is shown in the top panel, and some of the solutions � ���� ���� � are shown in the
bottom panels.

in panel (d), the elements of are separated into the classes cor-
rectly. The mutual information in (e) increases with the number
of classes approximately as until it recovers about 90%
of the original mutual information (at ), at which point it
levels off.

The results from annealing the Information Distortion
problem (7) for are given in Fig. 4. The behavior of

as a function of can be seen in the top
panel. Some of the optimal clusterings for different values
of are presented on the bottom row (panels 1–6). Panel 1
shows the uniform clustering, denoted by , which is defined
componentwise by for every and . The
abrupt symmetry breaking transitions as increases (depicted

in panels and ) are typical for annealing
problems of the type (5) [9]–[12], [14].

The action of (where ) on the clusterings can
be seen in Fig. 4 in any of the bottom panels. The action of
permutes the numbers on the vertical axis which merely changes
the labels of the classes . Due to the form of and

given in (4), the value of the annealing cost function (5) is
invariant to these permutations.

The bifurcation diagram in Fig. 4 raises some interesting
questions. Why are there only three bifurcations observed?
In general, are there only bifurcations observed when
one is clustering into classes? In Fig. 4, observe that

. Why should we observe only 3 bifurcations



IE
EE

 P
ro

of

W
eb

 V
er

sio
n

8 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 2, FEBRUARY 2010

Fig. 5. A graph of ��� � (3) for the Information Distortion problem (2).

to local solutions of the annealing problem (5) in such a large
dimensional space? What types of bifurcations should we
expect: pitchfork, transcritical, saddle-node, or some other
type? At a bifurcation, how many bifurcating branches are
there? Are the bifurcating branches subcritical (“turn back”)
or supercritical? When does a bifurcating branch contain so-
lutions of the optimization problem (3) and the corresponding
annealing problem (5)? Do bifurcations of solutions to the
annealing problem (5) reveal properties (such as convexity) of
the original cost function in (3)? How do the bifurcations
of solutions to the annealing problem (5) relate to bifurcations
of solutions to the optimization problem (3), which has no
explicit dependence on the Lagrange multiplier ?

To help answer this last question, one can solve the optimiza-
tion problem (3) directly by annealing in . As in Algorithm
3.1, in step 1, one can initially set and then increment by

; use the same initial guess in step 2; and now
solve (3) in step 3. Using this method, we found solutions of (3)
for a sequence of . We plot over this sequence in Fig. 5.

B. Results in This Contribution

For any annealing problem of the form (5) that satisfies some
regularity conditions, this paper answers many of the questions
just posed about the bifurcations.

1) There are symmetry breaking bifurcations observed
when continuing from the initial solution because
there are only subgroups in the symmetry breaking
chain from (Theorem 6.2), for example

.
2) The annealing solutions in Fig. 4 all have symmetry for

some . There exist other branches with symmetry
when (Fig. 6 and Theorem 6.2). In the

Four Blob problem, these solutions are suboptimal since
they yield mutual information values below the envelope
curve depicted in the figure.

3) Symmetry breaking bifurcations are generically pitchforks
(Theorem 6.3) and derivative calculations predict whether
the bifurcating branches are subcritical or supercritical
(Theorem 6.5), as well as determine optimality (Theorem
6.7). Symmetry preserving bifurcations are generically
saddle-nodes (Theorem 6.9).

4) The relationship between the bifurcations of solutions to
the optimization problem (3) and the annealing problem
(5) is given in Figs. 4 and 5. The Lagrange multiplier
is a function of for : turning Fig. 4 sideways
shows this functional relationship. In fact, the bifurcations
of all stationary points to (3) is much more complicated
(see Fig. 17). The curve in Fig. 5 is nonincreasing
and continuous (Lemma 4.2) and envelopes over
all stationary points of (3). Any curve below the envelope
corresponds to clusterings of the data which are not solu-
tions of the optimization problem (3).

5) A local solution to the annealing problem (5) does not
always continue through a symmetry breaking bifurca-
tion (Theorem 8.1). This would explain why, in practice,
solving (5) after bifurcation incurs significant computa-
tional cost [12], [14]. A solution of the annealing problem
(5) is always a solution of the original optimization
problem (3). The converse is not true.

6) Bifurcations of solutions to the annealing problem (5) dic-
tate the convexity of the curve (3) (Lemma 8.2). In par-
ticular, a subcritical bifurcation of the annealing solutions
to (5) at implies that the curve changes con-
vexity in a neighborhood of (Corollary 8.3). This can be
compared to the rate distortion curve in information theory,

When is linear in , then the rate distortion curve
is nonincreasing, convex, and continuous [8], [13]. This
convexity result does not generalize to either the Informa-
tion Bottleneck (1) or the Information Distortion (2) since

, in both these cases, is not linear, although both of
these curves, under mild regularity conditions, are nonin-
creasing and continuous (Lemma 4.2).

IV. MATHEMATICAL PRELIMINARIES

This section is divided into four parts. First, we define nota-
tions used throughout the rest of this paper. Second, we present
some key results from the theory of constrained optimization. In
the third part we apply the theory to the optimization problem
(3) and the corresponding annealing problem (5). And finally,
we give a primer on bifurcation theory in the presence of sym-
metries.

A. Notation

Let and so that
. There is no further restriction placed on (i.e.,

can be larger than ). Recall that the matrix defining
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Fig. 6. The bifurcations of stationary points to the Information Distortion
problem (7) which exhibit symmetry breaking from � � � � � � �

(color scheme is purple� blue� black� cyan), for which Fig. 4 only shows
solutions.

the conditional probability mass function of the random variable
, is

...
...

...

...
...

where is the row of .
The following notation will also be used throughout the rest of
this contribution:

the th vector component of ,
so that

the vector form of

.

the uniform conditional probability on such
that for every and .

identity matrix when .

the gradient of a differentiable scalar function
with respect to the vector argument .

the multilinear form of the dimensional
array of the th derivatives of the scalar
function . For example,

B. The Two Optimization Problems

In Section III, we considered two different constrained opti-
mization problems, a problem with a nonlinear constraint (3)

and the annealing problem (5)

Let us compare the respective Lagrangians, and the necessary
and sufficient conditions for optimality for each of these prob-
lems.

The equality constraints from the optimization problem (3)
and the annealing problem (5) are the same:

Assigning Lagrange multipliers to the equality con-
straints ( is an annealing parameter), the Lagrangian
for the annealing problem (5) with respect to the equality con-
straints is

(8)

Thus, is the vector of Lagrange multipliers
. The gradient of the Lagrangian

is

where and
. The gradient is a

vector of the equality constraints

...

Since we only consider equality constraints, the first order
necessary conditions for optimality, the Karush-Kuhn-Tucker
(KKT) conditions [49], are satisfied at if and only if

. A soft clustering is a stationary
point of the annealing problem (5) for some if there exists a
vector such that for the Lagrangian

defined in (8).
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The Jacobian of the constraints for the annealing problem is

...

which has full row rank. Since the constraints are linear, then
a stationary point is a solution of the annealing problem (5) if

is negative definite on [49].
Only the optimization problem (3) is encumbered with the

nonlinear constraint . Assigning the Lagrange
multiplier to this constraint, we see that the Lagrangian in this
case is

This shows that the gradient of the Lagrangian is the same for
the optimization problem (3) and the annealing problem (5),

.
The Jacobian of the constraints for the optimization problem

(3) is

...

which is a function of , and, for generic , of full row rank.
By the theory of constrained optimization, a stationary point
of the annealing problem (5) is a local solution of (3) for some

if is negative definite on [49].
If is a solution of the optimization problem (3)

for some , then by the KKT conditions, is unique and non-
negative. This shows that the optimal can be written as a func-
tion of . For , the KKT conditions are satisfied
at if and only if . That is,
the constraint is active and equal to zero. Thus, if

is a stationary point of the annealing problem (5)
for , then for satisfies the KKT
conditions for the optimization problem (3).

We have just proved the following theorem.

Theorem 4.1: Suppose that is a stationary point of
the annealing problem (5) for some such that has
full row rank.

1) If is negative definite on then
is a solution of (3) (for ) and (5).

2) If is negative definite on ,
then is a solution of (3) for .

3) Conversely, if is a local solution of (5) for some ,
then there exists a vector of Lagrange multipliers so

that and
is nonpositive definite on .

4) If is a solution of (3) for some , then there ex-
ists a vector of Lagrange multipliers so that

and is
nonpositive definite on .

The fact that every solution of the annealing problem (5) is
also a solution of the optimization (3) follows from the observa-
tion that contains : if satisfies ,
then . However, there may be solutions of (3) which
are not annealing solutions of (5). This is illustrated numerically
for the Information Distortion problem (7) in Section VIII-A.

Now let us consider for what values of the optimization
problem (3) has a solution. Clearly, one necessary condition is
that . In fact, is a nonin-
creasing curve, and, when defined as in (1) or (2), continuous.
This is what we prove next.

Lemma 4.2: The curve ) is nonincreasing on
, and is continuous if the stationary points

of (i.e., ) are not in for ,
where

Proof: If , then , which shows that
. To prove continuity, take an arbitrary

. Let

where

be in the range (in ) of the function with the domain .
Given an arbitrary , let be an neighborhood of
in . By assumption (4), is continuous on , and so the set

is a relatively open set in . Because by definition
, we see that

(9)

Furthermore, since for , then, by the Inverse
Mapping Theorem, is an open neighborhood of .

The function is also continuous in the interior of .
Observe that is closed, and thus
is closed and hence compact. Thus, by (9) is a rela-
tively open neighborhood of a compact set . Therefore, since

is continuous, there exists a such that the set

is a relatively open set in such that

It then follows that

which means that

whenever
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C. An Overview of Bifurcation Theory With Symmetries

In this section, the general terminology and concepts related
to studying bifurcations of dynamical systems with symmetries
is reviewed. The dynamical system we will study, whose equi-
libria are stationary points of the optimization problem (3)), in
the sequel is the gradient flow of the Lagrangian. For a detailed
treatment, see Golubitsky et al. in [45].

Consider the system of ordinary differential equations

where is sufficiently smooth for some Ba-
nach space , and is a bifurcation parameter. An
equilibrium or steady state of the differential equation is a zero
of . An equilibrium is linearly stable if all of the eigen-
values of the Jacobian, , have a negative real part. If
some eigenvalue has a positive real part, then the equilibrium is
unstable. A bifurcation point is an equilibrium where
the number of equilibria changes as varies in a neighborhood
of . At a bifurcation, the Jacobian is singular,
(i.e., has a zero eigenvalue). Otherwise, the Implicit
Function Theorem could be used to find a unique solution
in a neighborhood of . The bifurcating directions are in
the kernel of the Jacobian, defined as

An equilibrium is a singularity of if is
singular. A singularity is a possible bifurcation point, since it
satisfies the necessary condition for a bifurcation.

Let be a compact Lie group which acts on ( is a spe-
cific case of such a group). The vector function is -invariant
if

for every . is -equivariant if

for every . The isotropy subgroup of is
defined as

In other words, has symmetry . The fixed point space of a
subgroup is

A symmetry breaking bifurcation is a bifurcation for which the
isotropy group of the bifurcating equilibria is a proper subgroup
of the group which fixes the bifurcation point. A symmetry pre-
serving bifurcation is one for which the symmetry of the bifur-
cating equilibria is the same as the group which fixes the bifur-
cation point.

The Equivariant Branching Lemma, attributed to Vander-
bauwhede [50] and Cicogna [51], [52], relates the subgroup

structure of with the existence of symmetry breaking bifur-
cating branches of equilibria of . For a proof see
[45, p. 83].

Theorem 4.3 (Equivariant Branching Lemma): Let be a
smooth function, which is -equivariant for
a compact Lie group , and a Banach space . Let be an
isotropy subgroup of with . Suppose that

, the Jacobian , and the crossing
condition is satisfied for .
Then there exists a unique smooth solution branch
to with isotropy subgroup .

Remark 4.4: For an arbitrary -equivariant system where bi-
furcation occurs at , the requirement in Theorem 4.3
that the bifurcation occurs at the origin is accomplished by a
translation. Assuring that the Jacobian vanishes, ,
can be effected by restricting and projecting the system onto
the kernel of the Jacobian. This transform is called the Lia-
punov–Schmidt reduction (see [53]).

Definition 4.5: The branch is transcritical if
. If then the branch is degenerate. If
and then the branch is a pitchfork.

The branch is subcritical if for all nonzero such that
for some . The branch is supercritical if

.
Subcritical bifurcations are sometimes called first-order

phase transitions or jump bifurcations. Supercritical bifurca-
tions are also called second order phase transitions.

An Example: Pitchforks and Saddle-Nodes: To illustrate
some of the concepts just introduced, let us consider the fol-
lowing -equivariant differential equation

whose equilibria are shown as a function of in Fig. 7 (see
also [54]). This simple problem illustrates both types of bifurca-
tions which we expect to see for any -equivariant annealing
problem of the form (5) such that (4) holds.

The group acts on a scalar by multiplica-
tion by either or . Equivariance is established since

. For all is an equilibrium. Since
, then is a singularity. Observe

that is the only scalar invariant to the action of (i.e.,
) and is an isotropy subgroup

with a one dimensional fixed point space, . Since
the crossing condition is satisfied, then the
Equivariant Branching Lemma gives the existence of a bifur-
cating solution emanating from , with direction

. Parameterizing the bifurcating branch as , we
have that

for . As a consequence of the symmetry, we actually
have two bifurcating branches, one for positive , and one for
negative . Since , then the bifurcation at the origin is
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Fig. 7. The bifurcation diagram of equilibria of �� � ���� �� � ���� �� .
A subcritical pitchfork bifurcation occurs at �� � �� � � ��, and saddle-node

bifurcations occur at �� �� �. The branches drawn with dots are composed
of unstable equilibria, and the branches drawn with a solid line are composed
of stable equilibria.

degenerate, and implies that the bifurcation is in
fact a subcritical pitchfork bifurcation.

The bifurcating branches emanating from the origin are un-

stable since the Jacobian for all and
. As increases, the higher order quintic term of even-

tually dominates and causes the branches to turn around and be-

come stable at the saddle-node bifurcations at

.
The methodology we have applied in this simple example is

how we will proceed to analyze bifurcations of stationary points
to arbitrary annealing problems of the form (5) when (4) holds.

V. SYMMETRIES

Why do the optimization problem (3) and the annealing
problem (5) have symmetry? How can we capitalize on this
symmetry to solve these problems? These are the questions
which are addressed in this section.

The symmetries of the optimization problems (3) and (5) arise
from the structure of and from the form of the functions

and given in (4): permuting the subvectors does
not change the value of and : this is the symmetry, -in-
variance.

We will capitalize upon the symmetry of by using the
Equivariant Branching Lemma to determine the bifurcations of
stationary points, which includes local annealing solutions, to
(5)

As we pointed out in Section IV-B, this also yields the bifurca-
tion structure of stationary points of the optimization problem
(3) with respect to .

In this section we lay the groundwork necessary to give the
bifurcation structure for a larger class of constrained optimiza-
tion problems of the form

as long as satisfies the following assumption.

Assumption 5.1: The function is of the form

for some smooth scalar function , where the vector
is decomposed into subvectors .

The annealing problem (5) satisfies Assumption 5.1 when

(10)

and and are of the form given in (4). This includes the
Information Bottleneck problem (6), and the Information Dis-
tortion problem (7).

It is straightforward to verify that any satisfying Assump-
tion 5.1 has the following properties.

1) is -invariant, where the action of on permutes
the subvectors of .

2) The Hessian is block diagonal, with
blocks.

The rest of this section is divided into three parts. In the first
part, we define the gradient flow of the Lagrangian, whose equi-
libria are stationary points to the annealing problem (5), and
show how the symmetries manipulate the form of its Jacobian
(i.e., the Hessian of the Lagrangian). In the second, we classify
the equilibria of the gradient flow according to their symmetries.
In the third, we give a detailed description of the kernel of the
Hessian at a bifurcation. This space is determined by consid-
ering the reduced problem: one only needs to compute the one
dimensional kernel of a single block of . The form of
the larger kernel, as well as the many bifurcating directions, fol-
lows from applying the symmetries.

A. The Gradient Flow

We now formulate a dynamical system whose equilibria cor-
respond to the stationary points of the annealing problem (5).
This system is the gradient flow of the Lagrangian.

With as in (10) such that and
satisfy (4), the Lagrangian of the annealing problem (5), which
we derived in (8), can be written as

The gradient of the Lagrangian is
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where . The
Hessian of the Lagrangian is

(11)

where is . The matrix is the block
diagonal Hessian of

...
...

...

where (see Assumption 5.1) are
matrices for .

The dynamical system whose equilibria are stationary points
of the optimization problem (3) and the annealing problem (5)
can now be posed as the gradient flow of the Lagrangian

(12)

for . Recall that equilibria of (12) are points

where

The Jacobian of this system is the Hessian from
(11).

The methodology we applied to the simple example in
Section IV-C is how we will proceed to analyze bifurcations of
equilibria of the gradient flow (12). The Equivariant Branching
Lemma gives the existence of branches of equilibria at sym-
metry breaking bifurcations. At such a bifurcation, we will
show that , so that the bifurcations are degenerate.
When , then the bifurcations are pitchforks, and the
sign of determines whether the bifurcating branches are
subcritical or supercritical. We will determine the stability of
these equilibria by considering the eigenvalues of the Hessian

.
Yet, by Theorem 4.1, it is the Hessian which de-

termines whether a given equilibrium is a solution of the op-
timization problem (3) or of the annealing problem (5). We
will show how stability relates to optimality in the optimization
problems (3) and (5) in Section VIII-A.

B. Equilibria With Symmetry

Next, we categorize the equilibria of the gradient flow (12)
according to their symmetries, which allows us to determine
when we expect symmetry breaking bifurcations versus sym-
metry preserving bifurcations.

Recall that is the vector form of
the soft clustering of the responses into the classes

. Let be a partition of the classes of
such that if and only if . That is,
for and . If is the order

of (so that ), then we have that has isotropy
group

where acts on by permuting the vector subcomponents
for every . For example, in bottom panel 2 of Fig. 4,

, and . So has
isotropy subgroup , or, more simply, . In panels 3, 4
and 5, and , and the associated
clustering has isotropy group . It is clear from Assumption
5.1 that if , then : the th and th
blocks of are equal. So, has blocks, for

, that are equal for each .
Suppose that is a singularity such that has

isotropy group . By definition,
is singular. Additionally, only one of the following is

also true:
1) is singular;
2) is nonsingular.
In the first case we expect to get a symmetry breaking bifur-

cation (Theorem 6.2). In the second case we get a symmetry
preserving bifurcation (Theorem 6.9).

Let us investigate case 1 and assume that is singular,
and that is singular, with only singular blocks
for . To ease the notation, we set

To distinguish between singular blocks and nonsin-
gular blocks . We will write

(13)

The type of symmetry breaking bifurcation we get from a sin-
gular equilibrium only depends on , the number
of blocks which are singular. This motivates the following
definition.

Definition 5.2: An equilibrium of the gradient
flow (12) is -singular (or, equivalently, is -singular) if:

1) .
2) for every (i.e., Fix ).
3) For , the block(s) of the Hessian defined in (13)

has dimension with basis vector (14)

4) The block(s) of the Hessian are nonsin-
gular.

5) The matrix

(15)

is nonsingular. When is empty, and in this case
we define .

We wish to emphasize that when is singular, that
the requirements 3–5 in Definition 5.2 hold generically [31].
The technical requirement 5 is crucial for a symmetry breaking
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bifurcation to occur. We will see later that the matrix becomes
singular at symmetry preserving bifurcations.

From Assumption 5.1, it is clear that and are
-invariant, and that and are -equivariant.

It is straightforward to show that every block of the Hessian
of the Information Bottleneck cost function (6) is always sin-
gular. At a bifurcation point which is in ,
the blocks of referred
to in requirement 3 of Definition 5.2 have a two dimensional
kernel, requirement 4 is not met, and the matrix in require-
ment 5 is not even defined. A similar theory to that presented
here, which projects out the “perpetual kernel,” explains the bi-
furcation structure of solutions for the Information Bottleneck
problem (6). Some details will be discussed in Section VIII-B.

C. The Kernel of the Hessian

Here, we see how the symmetry of and eases the compu-
tation of multiple equilibria of the gradient system
(12) at a bifurcation. As reviewed in Section IV-C, the Jaco-
bian from (11) is singular, and the bifurcating branches
are tangent to . To describe these bi-
furcating branches when is -singular, we need only work
with a reduced space, the kernel of from (14), which is a one
dimensional subspace of with basis vector . By the sym-
metry, this one vector explicitly determines the larger spaces

and (Theorem 5.3), and yields the bi-
furcating branches (Lemma 5.5).

Intuitively, it is the vector which specifies how
each of the responses of ought to split at a bifurcation
in order to increase the value of on . It is the symmetry
which specifies how the responses are explicitly assigned to the
classes, and these assignments are the bifurcating directions.

We first determine a basis for at an -singular
. Recall that in the preliminaries, when , we defined

to be the th vector component of . Using this no-
tation, the linearly independent vectors in can be
defined by

if is the th uniform class of
otherwise

(16)

where . Since is -singular, then
, which implies that

is a basis for . For example, consider the
bifurcation where symmetry breaks from to in Fig. 4
(see panels 2 and 3 in the bottom row). At this bifurcation,

, and is
three dimensional with basis vectors

where is .
The basis vectors of can be used to construct a

basis for when . Let

(17)

Fig. 8. The lattice of the isotropy subgroups� � � for� � � and the cor-
responding basis vectors of the fixed point spaces of the corresponding groups.

for where . Using (11), it is easy to see
that , which shows that are in .
Thus, if is singular and is -singular for

, then is singular.
The fact that the vectors are linearly independent is

straightforward to establish. To show that they actually span
(and so are a basis) relies on the assumption that

is -singular, which assures that the matrix
, introduced in Definition 5.2, is nonsingular.

We have the following Theorem. The proof of the first two
parts is above, and a proof of the third part can be found in [31].

Theorem 5.3: If is -singular for some ,
then

1) The vectors defined in (16) are a basis for
.

2) If is singular then is singular.
3) The vectors defined in (17) are a basis for

.

Observe that the dimensionality of is one
less than . This insight suggests that when

, then is nonsingular. This
is indeed the case.

Corollary 5.4: If is -singular, then is nonsin-
gular.

D. Isotropy Groups

The isotropy group of an equilibrium
of the gradient system (12) is a

subgroup of which fixes . If for all of the
classes , then is the isotropy group of ,
where freely permutes the subvectors if , but
holds fixed the subvectors if .

The isotropy groups of for the soft clusterings
pictured in Fig. 4 are clear. In panel 1 of the bottom row,

, and the isotropy group is . In panel 2,
and the isotropy group is . In panels 3 and 4,

and the isotropy group is .
Restricted to , the fixed point space of the sub-

group is one dimensional (see Corollary 5.6 and
Fig. 8). Golubitsky and Stewart [55] show that all of the isotropy
subgroups in with one dimensional fixed point spaces are
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Fig. 9. A bifurcating solution from the soft clustering � � ��� � � �� � � �� � � �� � � � ����� � at � � �����	 (panel 3 in the bottom row of Fig. 4)
where � acts on � by freely permuting the three subvectors � � � � � . Note that � is a scalar. The bifurcating direction is 
� � ������� � ���� ����� � � ����� �,
which is invariant under � permuting 
��� and 
��� . The new soft clustering � � �
� after the bifurcation has isotropy group � .

of the form , where . The following
Lemma which follows from this result will allow us to use the
Equivariant Branching Lemma (Theorem 4.3 and Remark 4.4)
to ascertain the existence of explicit bifurcating solutions.

Lemma 5.5: Let such that and .
Let be a set of classes, and let be a set of classes such
that and . Now define
such that

if
if
otherwise

where is defined as in (14), and let

(18)

where . Then the isotropy subgroup of is
, where acts on when and acts

when . The fixed point space of restricted to
is one dimensional.

Without loss of generality, one can assume that con-
tains the first classes of , and that contains the
other classes. Now it is straightforward to verify that

, confirming that
as claimed.

Letting and yields the following corollary.

Corollary 5.6: Let such that

th

where is defined as in (14), and let

(19)

where . Then the isotropy subgroup of is .
The fixed point space of restricted to is one
dimensional.

Fig. 8 gives the lattice of isotropy subgroups of when
, and the corresponding basis vectors of the fixed point

spaces.
Fig. 9 depicts a soft clustering where

acts on by permuting
the three subvectors . Also depicted is a vector

where permutes
and .

VI. BIFURCATIONS

There are two types of bifurcations of equilibria in any dy-
namical system with symmetry: symmetry breaking bifurca-
tions and symmetry preserving bifurcations. We next address
each of these bifurcation types for the flow (12), and conclude
with a generic picture of the full bifurcation structure.

Equilibria of the gradient flow of the Lagrangian (12) are sta-
tionary points of the optimization problem (3) and of the an-
nealing problem (5). Thus, this section gives the bifurcation
structure of these stationary points.

A. Symmetry Breaking Bifurcations

We have laid the groundwork so that we may ascertain the
existence of explicit bifurcating branches of equilibria of (12)

from an equilibrium when is -singular for
(Theorem 6.2). We will show that these symmetry

breaking bifurcations are always degenerate (Theorem 6.3), that
is, . If , which is a generic assumption, then
these bifurcations are pitchforks. We will provide a condition,
called the bifurcation discriminator, which ascertains whether
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the bifurcating branches with isotropy group are sub-
critical or supercritical (Theorem 6.5). Lastly, we also provide a
condition which determines whether branches are stable or un-
stable (Theorem 6.7).

Throughout this section we assume that is an
-singular point for . The reduced problem, finding

the vector in the kernel of the singular blocks of
, specifies how the data ought to split. Thus

and is both singular. The vectors are
constructed from the vector , and they form a basis for
which has dimension . The vectors
are particular vectors in which have isotropy group

. Since these belong to , they are in the span of
the vectors and hence are also constructed using the vector

. The vectors determine which classes of the data is
split into.

1) Crossing Condition: Before presenting the existence the-
orem for bifurcating branches, it is first necessary to address
when the crossing condition (“ ”), required by
Theorem 4.3, is satisfied. Observe that when

as in (10), then . For annealing prob-

lems of the form (5), we have shown [31] that the crossing con-
dition in Theorem 4.3 is satisfied if and only if

(20)

where is any of the basis vectors of (see (16)).
This result is illuminating: if is either positive or neg-
ative definite on , then the crossing condition is sat-
isfied. We have the following Theorem.

Theorem 6.1: Suppose that is -singular for
.
1) If is either positive or negative definite on

, then is a singularity of the gra-
dient flow of the Lagrangian (12) if and only if
is a bifurcation point.

2) If is either positive or negative definite on
, then is a singularity of (12) if

and only if is a bifurcation point.
Proof: The first part of the Theorem follows from the

claim that the crossing condition is equivalent to (20). To
prove the second part, observe that if , then

implies that
. Since (or ), then

(or ). Now apply the first
part of the Theorem.

By Theorem 6.1, for annealing problems where is
strictly concave, is positive definite on ,
so every singularity is a bifurcation point. For the Information
Distortion problem (7), is strictly concave,
so every singularity of is a bifurcation. For the Infor-
mation Bottleneck problem (6), is concave,
but not strictly concave, and is convex, but
not strictly convex.

2) Explicit Bifurcating Branches: By Lemma 5.5 and the
Equivariant Branching Lemma, we have the following existence
theorem.

Theorem 6.2: Let be an equilibrium of the gra-
dient flow (12) such that is -singular for , and
the crossing condition (20) is satisfied. Then there exists bi-

furcating solutions, , where is

defined in (18), for every pair such that and
, each with isotropy group isomorphic to . Of

these solutions, there are of the form ,

where is defined in (19), for , each with isotropy
group .

Fig. 8 depicts the lattice of subgroups of of the form
for , as well as the bifurcating directions from a
bifurcation at guaranteed by Theorem 6.2. Observe
that , which is true for any vector in by
(17). This assures that for small enough is in .

Fig. 9 depicts a symmetry breaking bifurcating solution from
to at .

Figs. 6 and 10 show some of the bifurcating branches guaran-
teed by Theorem 6.2 when for the Information Distortion
problem (7) (see Section VII, for details). The symmetry of the
clusterings shown depict symmetry breaking from

.
Fig. 11 depicts symmetry breaking from to . The

first bifurcation occurs at , as does the symmetry
breaking bifurcation from to given in Fig. 10. The subse-
quent two bifurcating branches given in Fig. 11 correspond to
bifurcations at and .

Theorem 6.2 does not exclude the existence of other bifur-
cating directions with symmetry other than or
(consider for example the symmetry where

). To our best knowledge, for the Information Dis-
tortion, Information Bottleneck, and Deterministic Annealing
methods, such bifurcating solutions have never been observed
[10], [11], [14]. However, rigorous results in this direction are
still lacking.

3) Pitchfork Bifurcating Branches: Suppose that a bifurca-
tion occurs at where is -singular. This section
examines the structure of the bifurcating branches

(21)

whose existence is guaranteed by Theorem 6.2. The proofs to
the results which follow rely on the explicit computation of the
derivatives of the Liapunov–Schmidt reduction referred to in
Remark 4.4. We will cite the Theorems, and the interested reader
is referred to [31] for the proofs.

Theorem 6.3: If is -singular for , then all
of the bifurcating branches (21) guaranteed by Theorem 6.2 are
degenerate (i.e., ).

From Definition 4.5, the sign of determines whether a
bifurcating branch (21) is a pitchfork and subcritical

or a pitchfork and supercritical . Without further
restrictions on generically, as in the case study
presented in Section II-B, and the four blob Gaussian mixture
model in Section III-A. Thus, symmetry breaking bifurcations
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Fig. 10. Bifurcation diagram of stationary points of (7) when � � �. Fig. 4 showed an incomplete bifurcation diagram for this same scenario since the algorithm
in that case was affected by the stability of the branches. The panels illustrate the sequence of symmetry breaking bifurcations from the branch �� � �� �� with
symmetry � , to a branch with symmetry � (blue), then to � (black), and finally, to � (cyan).

are generically pitchforks. Next, a condition is given which de-
termines the sign of for the bifurcating branches with a
given isotropy group.

Definition 6.4: The bifurcation discriminator of the bifur-
cating branches (21) with isotropy group is

where

The matrix is the Moore-Penrose generalized inverse [56]
of a block of the Hessian (13), from
(15), and is the basis vector of from (14).

When is -singular, then , and so in
this case the bifurcation discriminator is

(22)

The discriminator is defined purely in terms
of the constitutive function of (see
Assumption 5.1). This follows since the blocks of are
written as is a function of these blocks, and

for . The fourth derivative
in can be expressed as

and the vector has th component

The next theorem shows that the sign of is determined
by the sign of .

Theorem 6.5: Suppose is -singular for
and that is positive definite on . If

, then the bifurcating branches (21) guar-
anteed by Theorem 6.2, are pitchforks and subcritical. If

, then the bifurcating branches are pitch-
forks and supercritical.

This theorem is in contrast to the behavior of generic in-
variant functions, such as the model for speciation in [57], [58],
where the symmetry breaking bifurcations are transcritical. The
difference is due to the constraints imposed by and the
form of given in Assumptions 5.1.

A result similar to Theorem 6.5 holds when is neg-
ative definite on , but now predicts supercrit-
ical branches, and predicts subcritical branches.

In Section VI-A1, we showed that for the Information Dis-
tortion problem (7), the condition in Theorem 6.5 that
be positive definite on is always satisfied for every
singularity. Thus, for the Information Distortion, Theorem 6.5
can always be applied to determine whether pitchforks are sub-
critical or supercritical. To calculate for the In-
formation Distortion problem, we have the following lemma.

Lemma 6.6: For the Information Distortion problem (7),
is equal to

where . The expression

is equal to
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Fig. 11. Symmetry breaking bifurcations from the branch �� � �� �� with symmetry � to branches which have symmetry � � � .

Fig. 12. A close up, from Fig. 10, of the branch with � symmetry (in black)
which connects the� symmetric branch below (blue branch in the lower left) to
the � symmetric branch (cyan branch in the upper right). The soft clusterings
on the suboptimal � symmetric branch (lower black branch) are investigated
further in Fig. 15. By Theorem 6.3, the symmetry breaking bifurcations from
� � � and from � � � are degenerate, and, since � ��� �� �, a pitch-
fork.

where

Proof: Direct computation of the derivatives of
and .

Consider the bifurcation at in Fig. 10
where symmetry breaks from to . The value of the discrim-
inator at this bifurcation is (see
Section VII for details), which predicts that this bifurcation is a
pitchfork and subcritical. Fig. 13, a close-up of the bifurcation
diagram at this bifurcation, illustrates the subcritical bifurcating
branch.

Fig. 13. A close-up of Figs. 6 and 10 at � � ������. Illustrated here is a
subcritical pitchfork bifurcation from the branch �� � ��, a break in symmetry
from� to� . This was predicted by the fact that ��� � ����������� � �. It is
at the symmetry preserving saddle node at � � �����	 that this branch changes
from being composed of stationary points to local solutions of the problem (7)
(see Section VIII-A).

4) Stability: We now address the stability of the bifurcating
branches. We will relate the stability of equilibria to optimality
in the optimization problem (3) and the annealing problem (5)
in Section VIII-A.

As illustrated in Section IV-C, to ascertain stability, one de-
termines whether or not , evaluated at the equilibria on a bi-
furcating branch, has positive eigenvalues ( is a symmetric
matrix, so it only has real eigenvalues). The next theorem, whose
proof is in [31], provides a condition to determine when this oc-
curs.

Theorem 6.7: Suppose is -singular for
and that is positive definite on . All of the
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subcritical bifurcating branches (21) guaranteed by Theorem 6.2
are unstable. If the bifurcating branch is supercritical and if

then the branch consists of unstable solutions. The component
functions of are

where all of the derivatives are taken with respect to
is the Moore-Penrose inverse of , and is a basis vector from
(17).

The expression from Theorem 6.7 can be sim-
plified to a form which only uses derivatives of the constituent
functions of (as we did in Definition 6.4),

where are scalars which depend only on and .
By Theorem 6.7, the subcritical bifurcating branch depicted

in Fig. 13 is unstable.

B. Symmetry Preserving Bifurcations

We now turn our attention to bifurcations which are not sym-
metry breaking bifurcations of equilibria of (12),

We show that, generically, these bifurcations are saddle-node
bifurcations, which we have illustrated numerically in Fig. 13
for the Information Distortion problem (7).

In contrast to the conditions which led to a symmetry
breaking bifurcation in Section VI.A, where had a
high dimensional kernel (see Definition 5.2), for a symmetry
preserving bifurcation, is (generically) nonsingular.

Lemma 6.8: At a generic symmetry preserving bifurcation
, the Hessian is nonsingular.

Proof: If is singular, then at least one of the blocks
is singular. If there are multiple blocks equal to , then

Theorem 6.2 implies that undergoes a symmetry breaking
bifurcation. Thus is the only block that is singular, and now
Corollary 5.4 shows that is nonsingular. This leads to a
contradiction since we assume that a bifurcation takes place at

.

If is a singularity of the gradient flow (12) such
that is nonsingular, then looks very dif-
ferent than the form of when symmetry breaking
bifurcation occurs (see Section V-C). In fact, when is

nonsingular, it can be shown [31] that is one di-
mensional, with basis vector

where are the blocks of , and is in ,
where (see (15)). At a symmetry
breaking bifurcation, the matrix is generically nonsingular.

Now we provide a sufficient condition for the existence of
saddle-node bifurcations. The first assumption given in the fol-
lowing theorem is satisfied generically at any symmetry pre-
serving bifurcation (Lemma 6.8), the second assumption is a
crossing condition, and the third condition assures that

.

Theorem 6.9: [31] Let . Suppose that
is a singularity of the gradient system (12) such

that:
1) The Hessian is nonsingular.

2) The dot product .

3) .
Then, generically, is a saddle-node bifurcation.

C. Generic Bifurcations

We have described the generic bifurcation structure of sta-
tionary points to problems of the form

as long as . Symmetry breaking bi-
furcations are pitchforks, and symmetry preserving bifurcations
are saddle-nodes. The type of bifurcation which occurs depends
on three types of singular points, which depend on

, and the matrix (see (15))
which we have depicted in Fig. 14.

The first type of singular point is where the blocks
of , for , are singular. By Theorem 5.3, must be
singular. Generically, the blocks, , of are nonsin-
gular, and is nonsingular. Theorem
6.2 shows that this is the type of singularity that exhibits sym-
metry breaking bifurcation.

The second type of singular point is a special case in which
no bifurcation occurs. If only a single block, , of is sin-
gular (i.e., ), and if the generic condition that the corre-
sponding is nonsingular holds, then we show in Corollary 5.4
that is nonsingular. Thus, generically, no bifurcation occurs
for this case.

The third type of singular point is when is singular, but
when is nonsingular. In this case, the matrix must be
singular [31]. This singular point manifests itself as a saddle-
node bifurcation (Theorem 6.9). Fig. 14, which summarizes the
preceding discussion, indicates how the singular points of
and affect the bifurcations of equilibria of the flow (12).

Another way to categorize the bifurcations of the annealing
solutions to (5) is to consider the derivatives of . The
second condition in Theorem 6.9, which guarantees the ex-
istence of a symmetry preserving saddle-node bifurcation, is
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Fig. 14. A hierarchical diagram showing how the singular points of � � and � � affect the bifurcating branches of stationary points of the optimization problem
(3) and stationary points of the annealing problem (5).

equivalent to requiring that . For

symmetry breaking bifurcations, .

In fact, whenever is nonsingular, by the Implicit Func-
tion Theorem, taking the total derivative of

shows that is always in range . Furthermore,

(20) shows that the crossing condition depends on , and
Theorems 6.5 and 6.7 show that influences whether bifur-
cating branches are subcritical or supercritical, as well as stable
or unstable.

VII. NUMERICAL RESULTS

We created software in MATLAB® to implement pseudoar-
clength continuation to numerically illustrate the bifurcation
diagram of stationary points to the optimization problem (3)
and the annealing problem (5) as guaranteed by the theory of
Section VI.

This continuation scheme, due to Keller [59]–[61],
uses Newton’s method to find the next equilibrium,

, from by allowing both
and to vary. The advantage of this approach over Algorithm
3.1 is twofold. First, the step size in ,
changes automatically depending on the “steepness” of the
curve at and so this method allows for
continuation of equilibria around a saddle-node bifurcation.
Secondly, this algorithm is able to continue along unstable
branches.

All of the results presented here are for the Information Dis-
tortion problem (7),

where is the mixture of four Gaussian blobs introduced
in Fig. 3, and we optimally cluster the responses into
clusters.

Figs. 6 and 10 are analogous to Fig. 4, using the same mixture
of Gaussians and the same Information Distortion cost
function. The difference is that Fig. 4 was obtained using the
Basic Annealing Algorithm, while we used the continuation al-
gorithm in Figs. 6 and 10. The continuation algorithm shows that
the bifurcation structure is richer than shown in Fig. 4. In Fig. 6
we show bifurcating branches which emanate from the uniform

invariant branch at , and
. In the bottom row of Fig. 10, panels 1–5 show that the

clusterings along the branches break symmetry from to to
, and, finally, to . An “*” indicates a point where

is singular, and a square indicates a point where is sin-
gular. Notice that there are points denoted by “*” from which no
bifurcating branches emanate. At these points a single block of

is singular, and, as explained by Corollary 5.4, is
nonsingular, and so no bifurcation occurs. Notice that there are
also points where both and are singular (at the
symmetry breaking bifurcations) and points where just
is singular (at the saddle-node bifurcations). These three types
of singular points are depicted in Fig. 14.

Fig. 11 illustrates symmetry breaking from to .
The clusterings depicted in the panels are not found when using
an algorithm which is affected by the stability of the equilibria
(such as the Basic Annealing Algorithm).

Theorem 6.5 shows that the bifurcation discriminator,
, can determine whether the bifurcating branches

guaranteed by Theorem 6.2 are subcritical or super-
critical . We considered the bifurcating branches from

with isotropy group . The numer-
ical results obtained by calculating for
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Fig. 15. The symmetry breaking bifurcating branches from the solution branch �� � �� �� (which has symmetry � ) at � � ������, as in Fig. 10, but now we
investigate further the branches which have � symmetry.

Fig. 16. Depicted here are bifurcating branches with � symmetry from the � branch at the � values 1.133929 and 1.390994 shown in Fig. 6. The bottom
panels show some of the clusterings along these branches.

TABLE I
THE BIFURCATION DISCRIMINATOR: NUMERICAL EVALUATIONS OF THE

BIFURCATION DISCRIMINATOR ��� � � � �	 ��� � � � �������
�� 	

�� 	 	 
 � �� AS A FUNCTION OF 
 FOR THE FOUR BLOB PROBLEM (SEE

FIG. 3(A)) WHEN � IS DEFINED AS IN (7). A SUPERCRITICAL BIFURCATION

IS PREDICTED WHEN 
 	 �, AND SUBCRITICAL BIFURCATIONS FOR


 � ������
�

and 6 at are shown in Table I.
Supercritical branches are predicted when . Subcritical
branches with symmetry are predicted when .
The subcritical bifurcation predicted by the discriminator for
the Information Distortion problem (7) for is shown in

Fig. 13. This change from supercritical to subcritical branches
as increases is discussed in more detail in Section VIII-B.

Fig. 15 explores some of the soft clusterings on one of the
secondary branches after symmetry breaks from to .

Fig. 16 illustrates clusterings along branches which bifurcate
from at at the first bifurcation (see
Fig. 6). By Theorem 4.1, these branches do not give solutions of
(7) after a bifurcation. However, we cannot at the moment reject
the possibility that these branches continue to a branch that leads
to a global maximum of both the optimization problem (3) and
the annealing problem (5) as .

Now let us examine how the bifurcations of stationary points
to the annealing problem (5), given with respect to the annealing
parameter , yields the bifurcation structure of stationary points
of the optimization problem (3) with respect to . Fig. 5 de-
picts a realization of the curve which we produced by
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Fig. 17. The bifurcation diagram of stationary points to the problem (2) with
respect to � .

solving (3) for and as defined for the Information Distor-
tion problem (2)

for different values of using the data set from a mixture of four
Gaussians given in Fig. 3. Although it appears that the curve is
concave, this is not the case, which we show in Section VIII.B.
The curve is an envelope for the full structure of all sta-
tionary points of (2), which we give in Fig. 17. All curves below
this envelope correspond to clusterings of the data which are not
maxima of the optimization problem (3).

In Section IV-B, we showed that at a solution of the op-
timization problem (3) for some , that the Lagrange multi-
plier for the constraint is unique and nonneg-
ative, . For solutions where

. When solving (2) for each (as we did to pro-
duce Fig. 5), we computed the corresponding Lagrange mul-
tiplier , which is the subcritical curve shown in Fig. 13.
Turning the Figure sideways shows as a function of . The
existence of the subcritical bifurcation indicates that is not a
one-to-one function of . To produce the bifurcation diagram
depicted in Fig. 17, we simply plotted versus

for the stationary points we
found when annealing in as in Fig. 6.

VIII. CONSEQUENCES OF THE BIFURCATIONS

We have provided a theoretical analysis of the bifurcation
structure of stationary points for the optimization problem (3)
with respect to , and for the corresponding annealing problem
(5) with respect to the Lagrange multiplier . In this section, we
turn our attention to consequences of these bifurcations.

First, we relate how the structure and stability of bifurcating
branches affects the optimality of stationary points in the prob-
lems (3) and the corresponding annealing problem (5). In the

second part, we address implications for the convexity of the
curve in (3), which includes the rate distortion curve from
Information Theory.

A. Stability and Optimality

We now relate the stability of the equilibria in the
flow (12) with optimality of the stationary points in each of
the optimization problem (3) and the corresponding annealing
(5).

First, we give a general theorem which determines when
equilibria are not annealing solutions of (5). We
will show that, if a bifurcating branch corresponds to an
eigenvalue of changing from negative to positive,
then the branch consists of stationary points which
are not annealing solutions of (5). By Theorem 4.1, positive
eigenvalues of do not necessarily show that is
not an annealing solution of (5), unless the projection of the
corresponding eigenvector is in . For example, consider
the Information Distortion problem (7) applied to the Four Blob
problem presented in Fig. 3. In this scenario, for the equilibrium

of the gradient system (12), always has
at least positive eigenvalues, even when is
negative definite. In fact, for arbitrary annealing problems of
the form (5) and for any data set always has
at least positive eigenvalues.

Theorem 8.1: For the bifurcating branch (21) guaranteed by

Theorem 6.2, is an eigenvector of

for sufficiently small . Furthermore, if the corresponding eigen-
value is positive, then the branch consists of stationary points
which are not annealing solutions to (5).

Proof: We first show that is an eigenvector of

for small . Let so that

Thus, a bifurcation of solutions to occurs at .
For ,
where the first equality follows from Lemma 5.5, and the second
equality follows from -equivariance. Hence, is in

, which is one dimensional with basis vector
, showing that for some scalar function

. Taking the derivative of this equation with respect to ,
we get

(23)

which shows that is an eigenvector of
, with corresponding eigenvalue . Using (11)

and letting , we see that (23)
can be rewritten as

which shows that and . Thus, is
an eigenvector of with corresponding
eigenvalue . If , the desired result now follows from
Theorem 4.1.
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Theorem 8.1 can be used to show that the subcritical bifur-
cating branch depicted in Fig. 13 is not composed of solutions
to the annealing problem (7). The condition in Theorem 8.1 is
easy to check when using continuation along branches, since the
Hessian is available from the last iteration of Newton’s
method (see Section VII).

At first glance, the fact that the stationary points on the sub-
critical branch in Fig. 13 are not solutions of (7) may be wor-
risome, since we showed in Lemma 4.2 that in (2) is
continuous for all . By the continuity of

, for these , there is a solution of (7) and a vector of La-
grange multipliers such that is a stationary
point of the annealing problem (5) (KKT conditions).

However, recall from Theorem 4.1 that there may be solutions
of the optimization problem (3) which are not solutions of the
corresponding annealing problem (5). Thus, Theorem 8.1 does
not address when a stationary point is not optimal for problems
of the form (3). Theorem 4.1 indicates how to check for opti-
mality in this case explicitly: a stationary point is optimal for
(3) if the Hessian is negative
definite on , and it is not optimal if is not
nonpositive definite on .

We next illustrate stationary points of the Information Dis-
tortion problem (7) which are not solutions of (2). Consider
the subcritical bifurcating branch of stationary points of (7) at

depicted in Fig. 13. By projecting the Hessian
onto and also onto , we

determined the following (see Fig. 13).
1) The clusterings on the “flat” branch before the

bifurcation at are solutions to both (2) and
(7).

2) The clusterings on the “flat” branch after the bi-
furcation at are not solutions of either (2) or
(7).

3) The clusterings on the subcritical bifurcating branch are
solutions of (2) but are not solutions of (7).

4) After the branch turns at the saddle-node, the associated
clusterings are now solutions of both (2) and (7).

Clearly, the existence of subcritical bifurcations is tied to the
existence of saddle-node bifurcations, where the branches turn
around and regain optimality in the annealing problem (5). Gen-
erally speaking, the generic existence of saddle-node bifurca-
tions (Theorem 6.9) is why annealing does not (necessarily) give
a globally optimized clustering of the data for the optimization
problem (3) and the corresponding annealing problem (5). It is
possible that the global maximum at is not connected to
the maximum at , but that it vanishes in a saddle-node
bifurcation at some finite . If saddle-nodes were not possible,
then the global optimizer would be connected by a continuation
of stationary points to the uniform solution used as a starting
point for the annealing problem.

Using the Information Distortion, Information Bottleneck,
and Deterministic Annealing, the solutions corresponding to the
symmetry breaking chain from are
observed to be optimal, while branches with symmetry
are suboptimal [10], [11], [14]. This is in contrast to a model of
speciation given in [57], [58]. We do not have a general theoret-
ical result which explains this difference.

B. Convexity of the Rate Distortion Curve

We have proved the generic existence of saddle-node bifur-
cations of stationary points to annealing problems of the form
(5). We illustrated subcritical pitchfork and saddle-node bifur-
cations for the Information Distortion problem (7) in Fig. 13. A
natural question arises in the mind of the information theorist:
Are there implications for the rate distortion curve, defined in
[8], [13] as

(24)

where is a distortion function. This constrained
problem is of the form (3), where . We now
investigate the connection between the existence of saddle-node
bifurcations and the convexity of the rate distortion function
for . This is precisely the rel-
evance-compression function, , defined in (1), in which the
constant is ignored. Observe that there is a one-to-one
correspondence between and via .
For the Information Distortion problem the analogous function
is , defined in (2).

It is well known that if the distortion function is
linear in , then is continuous, strictly decreasing and
convex [8], [13]. Since the distortion

is not a linear function of , the convexity proof given
in [8], [13] does not generalize to prove that either (1) or (2) is
convex. This is why we proved the continuity of both (1) and
(2) using other means in Lemma 4.2.

In [10], [44], using variational calculus, it is shown that
. Since is a function of (KKT conditions),

then it seems reasonable to consider where is
differentiable. We have the following lemma.

Lemma 8.2: If the functions , and are
differentiable, then,

and

The relationship between the bifurcations of the stationary
points of the annealing problem (5) and the convexity of the
curves and is now clear.

Corollary 8.3: If there exists a saddle-node bifurcation of so-
lutions to the Information Bottleneck problem (6) at ,
then is neither concave, nor convex in any neighborhood
of . Similarly, the existence of a saddle-node bifurcation of
solutions to the Information Distortion problem (7) at
implies that is neither concave, nor convex in any neigh-
borhood of .

Proof: The result follows from Lemma 8.2 and the fact that
changes sign at the saddle-node bifurcation at .

Since we have explicitly shown the existence of saddle-node
bifurcations for the Information Distortion problem (7) (see

in Fig. 13), then the Corollary
shows that in Fig. 5 is neither concave nor convex. The
convexity of changes at ).
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Bachrach et al. [62] show that whenever , that
is convex. By Corollary 8.3, this shows that when

solving (6) for when , that saddle-node
bifurcations of stationary points can not exist: only supercritical
bifurcating branches are possible.

As mentioned in the preliminaries, we have assumed no con-
straint in the number of clusters . Letting allows each
of the objects of to be classified into its own class, so
that there is potentially no compression of the data. One way
to find the soft clustering which maximizes either the optimiza-
tion problem (3) or the annealing problem (5) is by brute force,
and to explicitly consider for . For the
problem in Fig. 3, this is at least a dimensional space. An-
other, more computationally feasible approach is to anneal as is
done in [9], [44]. This amounts to “space jumping”, where one
first considers clusters (i.e., ), and then
larger after each bifurcation is detected. At before
jumping, the bifurcation in is a break of symmetry from
to . Once the number of potential clusters is increased (to, say,

), the bifurcation, now imbedded in , corresponds to
a break in symmetry from either to or from to

, depending on how the newly introduced clusterings in
are defined.

Let us consider the brute force approach, where we explicitly
consider the bifurcations, when , and let us compare
this to the bifurcations when , such as with the numer-
ical results we presented in Section VII, where we set .
Finding clusterings for such an can be
construed as an additional constraint. Perhaps when computing
the bifurcation structure for , the subcritical bifurca-
tions and the saddle-nodes will not occur for general annealing
problems of the form (5), mere mathematical anomalies, and not
possible when is large enough, as is the case for the Informa-
tion Bottleneck.

The argument which Bachrach et al. use to show convexity
of [62] relies on the explicit form of

and a geometric proof given by Witsenhausen
and Wyner in [63]. This argument does not hold for the Informa-
tion Distortion curve , since in this case ,
and therefore Witsenhausen’s result does not apply.

In fact, the saddle-nodes and subcritical bifurcations which
we have shown explicitly for the Information Distortion at

still occur when , which is what we show next.
Consider the bifurcation of stationary points to the Informa-

tion Distortion problem (7) at from the uninfor-
mative branch depicted in Fig. 13. This is a bi-
furcation point for any . In Table I, we computed the dis-
criminator when

. When , the branch is supercritical
(since ), but for , the branch becomes subcrit-
ical, and then becomes “more” subcritical as increases (i.e.,

becomes more negative). This trend continues for
arbitrarily large . To prove this, we note that
depends on , and on (see Definition 6.4),
all of which depend on only through , which follows from
the following Lemma.

Lemma 8.4: For the Information Distortion problem (7),

Proof: Direct computation using the derivatives in Lemma
6.6.

By Lemma 8.4, we have that

The subscripts show whether the matrices are evaluated at
for or at . Substituting these into (22), and noting
that and have the same eigenpairs, then we can write

in terms of functions of for arbitrarily large
, as

This shows that if and if
as in the case for the Information Distortion at ,
then for and , the branch with
symmetry is supercritical. But for large enough,
the bifurcating branches with symmetry (Theorem
6.2) will become subcritical pitchforks. In a similar scenario, it
could be that branches switch from subcritical to supercritical
as increases.

We have demonstrated that even for the case , subcrit-
ical pitchforks and saddle-nodes exist for the Information Dis-
tortion. Thus, a potential advantage for using the Information
Bottleneck over the Information Distortion method (or any an-
nealing scheme (5)) for clustering data is that for ,
one is guaranteed that only supercritical bifurcations exist, and
no saddle-nodes. This is relevant for the computationalist, since
the existence of subcritical bifurcations and saddle-nodes can
incur significant computational cost when one attempts to find
optimal clusterings when using the Basic Annealing Algorithm
3.1.

IX. CONCLUSION

We have argued that the minimal set of assumptions that con-
strain the neural coding problem is that it has to be stochastic
on a fine scale (due to inherent noise in the neural processing),
but deterministic on a large scale (because of the evolutionary
enforced need for a consistent response). Therefore a general
model for the neural code, which is the correspondence between
the inputs and the outputs, is a stochastic map. This map, how-
ever, becomes (almost) deterministic, when viewed on a coarser
scale, that is, as a map from clusters of inputs to clusters of out-
puts. This model of a neural code has a clear advantage over
other models of not needing any additional assumptions on the
character of the code. In this sense it is the most general such
model. There are two main challenges of this approach. First,
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we needed to find an algorithm that would find the optimal de-
terministic “skeleton” of the stochastic coding map, or, equiv-
alently, the optimal soft clustering of the set of inputs and the
set of outputs that best approximates the (almost) determin-
istic code. The second challenge is the need for large data sets
that contain the rare signals and responses in sufficient number
for the stochastic map to be well represented by the data. This
second challenge is not particular to our approach. More im-
portantly, our method allows iterative refinement of the coarse
groups as more data becomes available and so it scales well with
data availability.

The optimality criterion for the best soft clustering comes
from information theory. We seek clusters of inputs and outputs
such that the induced relationship between the two clustered
spaces preserves the maximum amount of the original mutual
information between the inputs and outputs. It has been shown
that the globally optimal solution is deterministic [12] and that
the combinatorial search for the solution is NP-complete [64]
and therefore computationally not feasible for large data sets.
The lack of a fast algorithm that would compute the global max-
imum of the mutual information cost function led to the imple-
mentation of annealing as the standard algorithm for such opti-
mization problems [9]–[11], [14].

Even though the implementation is straightforward and an-
nealing usually finds biologically feasible solutions, our goal
was to understand the annealing algorithm in more detail, the
reasons for this success, and the potential for failure.

Using bifurcation theory with symmetries we have shown that
the soft clustering which optimizes the cost function of interest
is not an annealing solution after a subcritical bifurcation. Thus,
although the curve of optimal solutions to the cost function is
continuous with respect to the annealing parameter, the curve of
annealing solutions is discontinuous at a subcritical bifurcation.
However, since the annealing procedure is guaranteed to find a
local solution eventually, the subcritical branch must turn and
become optimal at some later saddle-node bifurcation, which
we have shown occur generically for this class of problems.

We also discuss the number and the character of refinements
that the annealing solutions undergo as a function of the an-
nealing parameter. Generically occurring symmetry breaking
pitchforks are in contrast to the symmetry breaking transcritical
bifurcations of solutions to an invariant model for speci-
ation in [57], [58]. For the Information Distortion, Information
Bottleneck, and Deterministic Annealing methods, the solutions
corresponding to the symmetry breaking chain from

are observed to be locally optimal, while
branches with symmetry are not [10], [11], [14]. This
is another difference with the model of speciation given in [57],
[58].

Previously we have shown that the annealing solution
converges to a deterministic local maximum [12]. The main
problem of whether the globally optimal solution can always
be reached by the annealing process from the uniform solution
remains open. This is because we can not rule out either the ex-
istence of saddle-node bifurcations which do not connect to the
original uniform solution, or the existence of locally suboptimal
bifurcating branches which do connect the uniform solution to
the global one. To our best knowledge, for the Information Dis-

tortion, Information Bottleneck, and Deterministic Annealing
methods, such bifurcating branches have never been observed
[10], [11], [14], although rigorous results are still lacking. We
hasten to add that proving that the globally optimal solution can
always be reached by the annealing process from the uniform
solution would be equivalent to an statement and
therefore such a proof is unlikely. Despite this, the relatively
straightforward annealing problem can be a fruitful method
for approaching NP-hard problems. Although each iteration
of annealing is more computationally intensive than the cost
function evaluation needed by the combinatorial search to solve
the NP-hard deterministic clustering, the overall complexity
of the locally optimal annealing solution branch grows only
linearly with the number of classes. We have shown here that
there are only bifurcations for clusters. Compare this
to the combinatorial explosion of the size of the search space
in the deterministic clustering. Thus, even though we believe it
unlikely that it can be proven that a branch of locally optimal
annealing solutions connects from the uniform solution to the
global deterministic optimum in all cases, the profoundness of
such a result should still encourage work in this area.

In addition our results can be of interest for Information
Theory. In contrast to rate distortion theory where the rate dis-
tortion curve is always convex, the analogous function for the
Information Bottleneck and Information Distortion methods is
nonconvex when a saddle-node bifurcation occurs. The differ-
ence stems from the fact that both in the Information Bottleneck
and Information Distortion methods the distortion function is
the mutual information, which is a nonlinear function of the
quantizer. In Deterministic Annealing and Rate Distortion
theory, the distortion function is an expectation of a pair-wise
distance function and hence linear in the quantizer.
Future work

Future works involves expanding these analytic results in two
directions. We would like to extend the results from the current
one-sided clustering or quantization to joint quantization of both
stimulus and response spaces [20]. Joint quantization, which
clusters both sides of a system jointly, has a cost function that is
invariant to , where acts on the space of clus-
tered stimuli, and acts on the space of clustered responses.
This added complexity poses different challenges in the analytic
development. Initial observations in this area show that the sim-
plest symmetry breaking is of the kind

and not for example to or .
This is easy to understand intuitively—if either soft clustering
is uniform, the cost function does not increase as no classes are
resolved. However, subsequent bifurcations of the joint problem
are not well understood. Specifically, we do not know at what
stages a finer quantization of one space occurs relative to the
other and why. Multi-quantization, another extension of the In-
formation Bottleneck problem [65], [66], used for network anal-
ysis, has an even richer symmetry structure, with the cost func-
tion being invariant under the symmetry group , and its
bifurcation structure is completely unknown.

The approach could be further extended as a model of brain
development. It shows a very definite and dramatic way in
which parts of the sensory world that were previously unre-
solved can be separated into discriminable portions, by taking
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a part of a system that is uniform in its properties and splitting
it into portions that perform different functions, while maxi-
mizing the information between the sensory environment
and the neural representation . This is similar to the latest
ideas of how a portion of the brain, previously dedicated to the
same task, bifurcates into distinct parts delegated to different
tasks [67], [68]. This could be accomplished by the duplication
of a homeobox gene which causes a replication of a whole
neural subsystem, which that gene regulates. For example, it is
hypothesized that the multitude of primate visual cortices [69]
emerged in this manner. Applying the distortion-based methods
described here to questions about evolutionary development
of brain structures could provide firm quantitative foundations
to such theories of brain evolution. If, for instance, the Right
Fusiform Gyrus (RFG) area and the Inferior Temporal (IT)
cortex emerged by duplication of a single cortical region, both
cortices likely performed the same function of visual object
recognition. Given enough time and evolutionary pressure, they
eventually bifurcated to the current state, in which the IT cortex
performs general visual object recognition, while the RFG is
specialized to face discrimination.

More generally, specific realizations of this general method
have been used in very diverse fields with the same goal in
mind: break down a complex system into simpler components
in a manner that is consistent with the structure of the complex
system, then study the components separately. This is essen-
tially the process of reductionism, used successfully in the sci-
ences, but posed here in a formal manner, and supplied with
tools that can automate it. This implies that the distortion based
procedures outlined here could be used as a general system iden-
tification and analysis methodology. These methods are general
enough to be used for models of arbitrary input-output systems:
quantize to a simpler system, characterize the simpler system,
then refine the quantization for a finer description.
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Symmetry Breaking in Soft Clustering
Decoding of Neural Codes

Albert E. Parker, Alexander G. Dimitrov, and Tomáš Gedeon

Abstract—Information-based distortion methods have been
used successfully in the analysis of neural coding problems.
These approaches allow the discovery of neural symbols and the
corresponding stimulus space of a neuron or neural ensemble
quantitatively, while making few assumptions about the nature of
either the code or of relevant stimulus features. The neural code-
book is derived by quantizing sensory stimuli and neural responses
into a small set of clusters, and optimizing the quantization to
minimize an information distortion function. The method of an-
nealing has been used to solve the corresponding high-dimensional
nonlinear optimization problem. The annealing solutions undergo
a series of bifurcations, which we study using bifurcation theory
in the presence of symmetries. In this contribution we describe
these symmetry breaking bifurcations in detail, and indicate some
of the consequences of the form of the bifurcations. In particular,
we show that the annealing solutions break symmetry at pitchfork
bifurcations, and that subcritical branches can exist. Thus, at a
subcritical bifurcation, there are local information distortion so-
lutions which are not found by the method of annealing. Since the
annealing procedure is guaranteed to converge to a local solution
eventually, the subcritical branch must turn and become optimal
at some later saddle-node bifurcation, which we have shown occur
generically for this class of problems. This implies that the rate
distortion curve, while convex for noninformation-based distortion
measures, is not convex for information-based distortion methods.

Index Terms—Annealing, bifurcations, clustering, information
distortion, neural coding, symmetry breaking.

I. INTRODUCTION

A MAJOR unresolved problem in neuroscience concerns
the manner in which a nervous system represents informa-

tion. Important questions being studied currently include: What
information about the external world is represented in patterns
of neural activity? How is this information used by the nervous
system to process sensory stimuli? We have yet to reach a gen-
erally accepted theory of neural coding and computation. Our
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difficulty does not stem solely from lack of data. What we lack
is a deep understanding of the methods used by interacting pop-
ulations of neurons to represent and process sensory informa-
tion.

While we are far from fully answering these deep questions,
the theoretical tool we describe here can provide a first step to-
ward discovering general principles of sensory processing in
biological systems. It is designed to determine the correspon-
dence between sensory stimuli and neural activity patterns

. This correspondence is referred to as a sensory neural code.
Common approaches to this problem often introduce multiple
assumptions that affect the obtained solution. For example, the
linear stimulus reconstruction method [1] assumes linearity and
independence between the neural responses (spikes). The cur-
rent standard in forward models [2]–[4] places assumptions on
either the type of model (for example integrate-and-fire with a
stochastic threshold [3]) or the type of point process with which
the system is characterized (essentially, Markov, with specific
assumptions about the form of the conditional intensity func-
tion [2]).

Any neural code must satisfy several conflicting demands. On
one hand the organism must recognize certain natural objects in
repeated exposures. Failures on this level may endanger an an-
imal’s well-being, for example if a predator is misidentified as
a conspecific mate. On this level, the response of the organism
needs to be deterministic. On the other hand, distinct stimuli
need not produce distinguishable neural responses, if such a
regime is beneficial to the animal (e.g., a wolf and a fox need not
produce distinct responses in a rabbit, just the combined con-
cept of “predator” may suffice.) Thus the representation need
not be bijective. Last, the neural code must deal with uncer-
tainty introduced by both external and internal noise sources.
Therefore the neural responses are by necessity stochastic on a
fine scale. In these aspects the functional issues that confront the
early stages of any biological sensory system are similar to the
issues encountered by communication engineers in their work
of transmitting messages across noisy media. Thus we can view
the input-output relationship of a biological sensory system as
a communication system [5].

We consider the neural encoding process within a proba-
bilistic framework [6], [7]. The input signal to a neuron (or
neural ensemble) may be a sensory stimulus or the activity of
another set of (presynaptic) neurons. We consider the input
signal to be produced by a stochastic source with probability

. The output signal generated by that neuron (or
neural ensemble) in response to is a series of impulses (a
spike train or ensemble of spike trains.) Thus the system is
completely characterized by its joint distribution, .

0018-9448/$26.00 © 2010 IEEE
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We consider the encoding of into to be a map from one
stochastic signal to the other. This stochastic map is the encoder

, which models the operations of this neuronal layer.
The output signal is induced by the encoder by

.
A model of the neural code, which is probabilistic on a fine

scale but deterministic on a large scale, emerges naturally in the
context of Information Theory [8]. The Noisy Channel Coding
Theorem suggests that relations between individual elements
of the stimulus and response spaces are not the basic building
elements of the system. Rather, the defining objects are rela-
tions between classes of stimulus-response pairs. Given the mu-
tual information between the two spaces, , there are
about such codeword (or equivalence) classes. When
restricted to codeword classes, the stimulus-response relation is
almost deterministic. That is, with probability close to 1, ele-
ments of are associated to elements of in the same code-
word class. This framework naturally deals with lack of bijec-
tivity, by treating it as effective noise. We decode an output
as any of the inputs that belong to the same codeword class.
Similarly, we consider the neural representation of an input
to be any of the outputs in the same codeword class. Stimuli
from the same equivalence class are considered indistinguish-
able from each other, as are responses from within the same
class.

The recently introduced Information Bottleneck [9], [10] and
Information Distortion [11], [12] methods approach the neural
coding problem in this probabilistic framework by using tools
from Rate Distortion theory in order to build simplified models
of neural coding and study them in detail. They approximate the
joint distribution of interest, , by clustering the paired
stimulus-response observations into smaller stimulus-
response spaces . The clustering of the data is called a
soft clustering since the assignment of the observations to a
cluster can be stochastic rather than deterministic. An optimal
soft clustering is found by maximizing an information-theo-
retic cost function subject to both equality and inequality con-
straints, in hundreds to thousands of dimensions. This analytical
approach has several advantages over other current approaches:
it yields the most informative approximation of the encoding
scheme given the available data (i.e., it gives the lowest distor-
tion, by preserving the most mutual information between stim-
ulus and response classes); the cost function, which is intrinsic
to the problem, does not introduce implicit assumptions about
the nature or linearity of the encoding scheme; it incorporates an
objective, quantitative scheme for refining the codebook as more
stimulus-response data becomes available; and it does not need
repetitions of the stimulus under mild continuity assumptions,
so the stimulus space may be investigated more thoroughly.

These types of information theoretic optimization prob-
lems also arise in Rate Distortion Theory [8], [13] and the
Deterministic Annealing approach to clustering [14]. These
methods have been used successfully in neural coding prob-
lems [15]–[21] as well as other biological topics [22]–[29] and
general data mining problems [14], [30].

One approach to solving this class of optimization problems
is through the method of annealing: starting at the uniform (un-
informative) soft clustering, one tracks this solution as an an-

nealing parameter varies. The solutions undergo a series of rapid
changes (bifurcations or phase transitions) as the annealing pa-
rameter increases, ultimately reaching a nearly deterministic
clustering of the data. In spite of conjectures about the form of
the bifurcations [10], [14], a rigorous treatment of the bifurca-
tions of the annealing solutions and how they relate to bifurca-
tions of solutions to the original information theoretic optimiza-
tion problem of interest have been lacking. This contribution
offers such a description by examining the bifurcations in a dy-
namical system defined by the gradient flow of the Lagrangian
of the optimization problem.

Well established tools are available for exploiting the sym-
metry of equilibria in a dynamical system. The reason for
switching to the gradient flow is to capitalize on these tools.
The optimal clustering found by the Information Bottleneck
and the Information Distortion methods, which is an equilib-
rium in the gradient flow, has a symmetry: any clustering of the
data gives another equivalent clustering simply by permuting
the labels of the classes. This symmetry is described by

, the algebraic group of all permutations on symbols.
The symmetries of the bifurcating equilibria are dictated by
the subgroup structure of . We describe these symmetry
breaking bifurcations in detail for the gradient flow, relate these
back to bifurcations of the annealing solutions, and finally to
bifurcations of locally optimal soft clusterings of the informa-
tion theoretic cost function of interest.

This paper is organized in the following way. In Section II,
we illustrate the application of the method to the analysis
of neural coding in the cricket cercal sensory system. In
Section III, we give the Information Bottleneck and Informa-
tion Distortion optimization problems, and the results of an
annealing procedure used to solve the Information Distortion
problem on a simple data set which exhibits the generic bifur-
cation structure. Section IV presents some relevant constrained
optimization theory, and an overview of bifurcation theory with
symmetries. Section V is devoted to preparations for applying
the theory of bifurcations with symmetries. We introduce the
gradient flow of the Lagrangian and the reduced bifurcation
problem which, due to the symmetry, determines the directions
of all of the emanating equilibria in the much larger space of all
soft clusterings. Section VI is the central part of the paper. We
present existence theorems for symmetry breaking bifurcating
branches, and we derive a condition which determines whether
these branches are subcritical (first order phase transitions)
or supercritical (second order phase transitions). There are
also symmetry preserving bifurcations, which, generically, are
saddle-nodes. Numerical illustrations of our results occupy
Section VII. In Section VIII, we discuss some of the insights
that the bifurcation structure gives regarding optimal cluster-
ings of the data, and consequences for the rate distortion curve
from Information Theory.

II. A CASE STUDY

To approach the neural coding problem with the Information
Distortion and Information Bottleneck methods [10], [11], [31],
one clusters sensory stimuli and neural responses to small re-
production sets in a way which optimizes an information-based
distortion function [31]. The essential basis for this approach
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is to conceptualize a neural coding scheme as a collection of
stimulus-response classes akin to a dictionary or codebook, with
each class corresponding to a neural response codeword and its
corresponding stimulus feature in the codebook.

A. Finding the Codebook

Given the probabilistic model of neural function, we would
like to recover the codebook. In our context, this means identi-
fying the joint stimulus-response classes that define the coding
relation. We characterize a neural coding scheme by clustering
(quantizing or compressing) the joint stimulus-response space

to a smaller joint reproduction space . consists
of classes of objects in , and consists of classes of objects
in . One way to achieve this goal is by clustering the neural
responses into a coarser representation in a small reproduc-
tion space with elements. This quantization induces
a quantization of the stimulus space into a smaller event set

also with elements. The details of how the clustering is
performed are presented in Section III. This method allows us
to study coarse (i.e., small ) but highly informative models
of a coding scheme, and then to refine them when more data
becomes available. The refinement is achieved by simply in-
creasing the sizes of the reproductions, . We aim to find the
best such clustering of the data with fixed .

Following examples from rate distortion theory [8], [14], the
Information Distortion method assumes that the best clustering
of the data is the one with maximal entropy [11], [32]. The
reason is that, among all clusterings that satisfy a given set of
constraints, the maximum entropy clustering of the data does not
implicitly introduce additional constraints in the problem. Sim-
ilarly, the Information Bottleneck method follows the standard
settings of Rate-Distortion Theory [8], formulating the problem
as a minimal rate at a fixed distortion level.

B. Analysis of Stimulus-Response Relations
in the Cricket Cercal Sensory System

We applied these tools to characterize the encoding charac-
teristics of single identified sensory interneurons in the cricket
cercal sensory system to complex and biologically relevant
stimuli. The goal of the experiments and analyzes were to
discover (jointly) the dynamic stimulus waveform features
encoded by the cells, and the spike train codeword classes
that encoded those features. Most of these results have been
presented elsewhere [18], [20].

1) Experimental Protocols: The preparation we analyze here
is the cercal sensory system of the cricket. In the following
sections, we briefly introduce this system, describe the exper-
imental methods used to collect the data, and then discuss the
application of the Information Distortion approach to analysis
of coding by single sensory interneurons in this system.

Functional organization of the cercal system. This system
mediates the detection and analysis of low velocity air currents
in the cricket’s immediate environment. This sensory system is
capable of detecting the direction and dynamic properties of air
currents with great accuracy and precision [33]–[36], and can
be thought of as a near-field, low-frequency extension of the
animal’s auditory system.

Primary sensory interneurons. The sensory afferents of the
cercal system synapse with a group of approximately thirty
local interneurons [37] and approximately twenty identified
projecting interneurons that send their axons to motor centers in
the thorax and integrative centers in the brain [38]. It is a subset
of these projecting interneurons that we study here. Like the
afferents, these interneurons are also sensitive to the direction
and dynamics of air current stimuli [33]–[36]. Stimulus-evoked
neural responses have been measured in several projecting and
local interneurons, using several different classes of air current
stimuli [34]–[36], [39]. The stimuli that have been used range
from simple unidirectional air currents to complex multi-direc-
tional, multi-frequency waveforms. Each of the interneurons
studied so far has a unique set of directional and dynamic
response characteristics. Previous studies have shown that
these projecting interneurons encode a significant quantity of
information about the direction and velocity of low frequency
air current stimuli with a linear rate code [35], [36], [39]. More
recent studies demonstrate that there is also substantial amount
of information in the spike trains that cannot be accounted
for by a simple linear encoding scheme [18], [40]. Evidence
suggests the implementation of an ensemble temporal encoding
scheme in this system.

Dissection and preparation of specimens All experiments
were performed on adult female crickets obtained from com-
mercial suppliers (Bassett’s Cricket Ranch, Visalia, CA, and
Sunshine Mealworms, Silverton, OR). Specimens were selected
that had undergone their final molt within the previous 24 h.
The legs, wings and ovipositor were removed from each spec-
imen, and a thin strip of cuticle was removed from the dorsal
surface of the abdomen. After removal of the gut, the body
cavity was rinsed and subsequently perfused with hypotonic
saline. Hypotonicity facilitated microelectrode penetration of
the ganglionic sheath.

The preparation was pinned to the center of a thin disc of
silicone elastomer approximately 7 cm in diameter, located
within the central arena of an air-current stimulation device,
described below. Once the preparation was sealed and perfused
with saline, the ganglion was placed on a small platform and
gently raised from the ventral surface of the abdomen. This
increased the accessibility of the ganglion to electrodes while at
the same time improving the stability of electrode penetration
by increasing surface tension on the ganglion.

Electrophysiological recording Sharp intracellular electrodes
were pulled from glass capillary tubes by a model P*97/PC elec-
trode puller (Sutter Instrument Co.) The electrodes were filled
with a mixture of 2% neurobiotin and 3 M KCl, and had re-
sistances in the range from 10 to 30 megohms. During record-
ings the neurobiotin would diffuse into the nerve cell, allowing
for subsequent staining and identification. Data were recorded
using an NPI SEC-05L Intracellular amplifier and sampled at
10 kHz rate with a digital data acquisition system running on a
Windows 2000 platform.

Stimulus generation The cricket cercal sensory system is
specialized to monitor air currents in the horizontal plane. All
stimuli for these experiments were produced with a specially
designed and fabricated device that generated laminar air cur-
rents across the specimens’ bodies. Air currents were generated
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by the controlled, coordinated movement of loudspeakers. The
loudspeakers were mounted facing inward into an enclosed
chamber that resembled a miniature multidirectional wind
tunnel. The set of speakers were sent appropriate voltage sig-
nals to drive them in a “push-pull” manner to drive controlled,
laminar air-current stimuli through an enclosed arena in the
center of the chamber, where the cricket specimens were placed
after dissection.

Stimulus waveforms were constructed prior to the experi-
ment using MATLAB®. During experiments, the stimulus wave-
forms were sent out through a DAC to audio amplifiers and then
to the set of loudspeakers. Stimuli consisted of uninterrupted
waveform, for which the air current velocity was drawn from
a Gaussian White Noise process, band-passed between 5 and
150 Hz. Two independent waveforms were presented along two
orthogonal axes, thus covering all possible planar stimulus di-
rections around the cricket.

2) Results: Stimuli and responses were preprocessed to a
form suitable for the algorithm. The response of a single cell
is represented as a sequence of interspike intervals (ISIs), the
times between impulses that the cell emits in response to sen-
sory stimuli [41]. The sequence analyzed here is broken into
sets of pairs of ISIs, and embedded in two dimensional space
[20], [42]. As described in [18], to be considered a pattern and
further processed, a sequence of spikes must start with a spike
preceded by a quiet period of at least ms. Each ISI is also
limited to no more than ms. The parameters of the initial pro-
cessing, and , may be varied to verify their effects on the
final results. They depend on the cell and system being consid-
ered. Typically we use ms and ms. The
stimulus associated with each response is an airflow waveform
extracted in a range of around the beginning of each
response sequence of ISIs. The stimuli presented to the system
consist of two independent time series of air velocities (“along”
and “across” the cricket’s body), each of length , and so are
embedded in dimensional Euclidean space. The number of
observations, , depends on the recording rate and overall cell
responsiveness to a given stimulus. The choice of specific pa-
rameters is evident in the figures where they are discussed. The
complete data set to be processed by the algorithm consists of
pairs , where is large.

Using the Information Distortion method discussed in
Section III, we found optimal soft clusterings that identified
synonymous classes of stimulus-response pairs. Stimulus fea-
tures are represented as waveforms of the mean airflow velocity
immediately preceding the elicited spike pattern codewords.
The response space was taken to be all pairs of ISIs with

ms, preceded by at least ms of silence.
This was done with the intent of analyzing only well-isolated
codewords, which are assumed to be independent following
this selection process.

Fig. 1 illustrates the application of the algorithm to uncov-
ering the stimulus-response relation in an identified cell in the
cricket cercal sensory system (cell 10-2, nomenclature as in
[38]). The stimulus classes are represented by their class-con-
ditioned means. We suppress showing confidence intervals for
the class conditioned means for reasons of visualization clarity.
Each conditional mean has two channels (Panels A and B).

Fig. 1. A quantization to nine classes of the stimulus-response pairs of cell
10-2 in the cricket cercal sensory system. Panels A and B show the two chan-
nels of the conditional means of the air flow stimulus for each class. Panel C
depicts the two dimensional response space of all pairs of ISIs in the range
��� ��� ms � ��� ��� ms color-coded by their membership in particular classes.
The color labels are consistent among the panels.

The optimal information-based soft clustering produced re-
sponse classes that were physiologically consistent, in the sense
that responses that had similar ISIs were clustered together.
Since there was no explicit similarity criterion for either the
stimuli, or the response, this structure is an important emergent
property of the algorithm that reflects the underlying structure
of the biological system. The stimulus classes are clearly dis-
criminable (Panel A), and associated with features of the clus-
tered responses. For example, the mean of class 2 (green) has
two prominent downward excursions separated by about 15 ms,
which is the average ISI separation of responses combined in
this class. The second trough of the stimulus is consistently re-
lated to the second ISI in the response. In panel C, the classes
starting with a short first ISI (horizontal axis) are 4, 3, 9, and 2 in
order of increasing second ISI (vertical axis). These four classes
effectively break the stimulus into a set of discriminable events
(Panel A). This sequence also demonstrates the main topic of
symmetry in this article: the labels of the clusters are arbitrary.
Permuting the labels of the clusters of responses does not effect
the discovered relationship between the stimuli and these clus-
ters of responses (this symmetry does not refer to properties of
neurons or of the stimulus space).

The information theoretic clustering approach was also used
to directly address questions about the consistency of the neural
code between individuals of the same species. This extends
the approach taken in [21] to select a limited set of neural
activity classes and test for similarity across individuals. The
quantization was performed on 36 identified 10-2 cells, and
40 identified 10-3 cells (nomenclature as in [38]). 10-3 cells
have functionality similar to that of 10-2 cells with directional
selectivity offset by 90 . In Fig. 2 we investigate the position
of the boundary between class 4 of the neural responses and
the neighboring class 7 across a set of individual crickets. This
boundary, indicated by the vertical black line near 5.75 ms
for cell 10-2 in Fig. 2, can be seen between the light blue and
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Fig. 2. The top panel shows the summary for cell 10-2 from 36 different in-
dividuals; the bottom panel shows cell 10-3 from 40 different individuals. For
each animal, the normalized histogram of the first ISI for the neural responses
in classes 4 and 7 was calculated. The mean of these distributions is given (solid
blue line), as well as two standard deviations around the mean (dashed blue
line). The solid black vertical line represents the mean time coordinate of the
boundary between classes 4 and 7, the dashed black vertical lines indicate one
standard deviation around the mean. In both cells, class 4 (shortest first doublets)
is consistently preserved with a precision of about 1 ms between different in-
dividuals!.

black points in panel C of Fig. 1. The standard deviation of the
boundary is less than 1 ms across the set of individuals! That
is, this particular class is very well preserved in the cricket
population we study. This directly addresses universal coding
behavior at the level of individual response codewords.

C. Conclusions

The general goal of this section was to demonstrate the ap-
plication of the Information Distortion method to resolving the
neural coding problem. The essential basis for this approach
was to conceptualize a neural coding scheme as a collection of
stimulus-response classes akin to a dictionary or codebook, with
each class corresponding to a neural response codeword and its
corresponding stimulus feature in the codebook. The analysis
outlined here enabled the derivation of such a neural codebook,
by quantizing stimuli and neural responses into small reproduc-
tion sets and optimizing the quantization to minimize the Infor-
mation Distortion function.

The major advantage of this analytical approach over other
current approaches is that it yields the most informative approx-
imation of the encoding scheme given the available data. That
is, it gives a representation that preserves the most mutual infor-
mation between stimulus and response classes. Moreover, the
cost function, which is intrinsic to the problem, does not intro-
duce implicit assumptions about the nature or linearity of the en-
coding scheme, nor does the maximum entropy soft clustering
introduce additional implicit constraints to the problem.

A major thrust in this area is to find algorithms through which
the relevant stimulus space and the corresponding neural sym-
bols of a neuron or neural ensemble can be discovered simulta-
neously and quantitatively, making few assumptions about the
nature of the code or relevant features. The analysis presented in

the following sections of this manuscript enables this derivation
of a neural codebook by optimizing the Information Distortion
function.

III. ANALYTIC FORMULATION

How can we characterize a relationship between inputs
and outputs , defined by the joint distribution ,
in which both and are large spaces? We approach this
problem by clustering (quantizing) the stimulus and response
spaces to smaller reproduction spaces and [20], [43]. The
joint probability between the reproduction stimulus
and response spaces, , induces an approximation of the
original relationship by

In this section we introduce the Information Bottleneck and
Information Distortion methods, which determine an optimal
soft clustering of the response space to a small
reproduction space by optimizing an information-based dis-
tortion function [10], [11]. In general the stimulus clustering

can be optimized independently [20]. In this manu-
script we do not explicitly cluster the stimulus space, but set

( is the identity), and consider only the one-sided
quantization of , so that is approximated by

The soft clustering is a conditional probability which
assigns each of the elements in the large space to each
of the classes in the small space with some
level of uncertainty. The space of valid conditional probabilities

is

and

The Information Bottleneck method finds an optimal soft
clustering by solving a rate distortion problem of the
form

(1)

where is some information rate. The function is
referred to as the relevance-compression function in [44]. The
mutual information, , is a convex function of

Here, so that the action of the group of symmetries is
clear, the soft clustering has been de-
composed into subvectors so that

.
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The Information Distortion method determines an optimal
soft clustering by solving the maximum entropy problem

(2)

The conditional entropy of the classes given the
neural responses, is a concave function of

Both problems (1) and (2) are of the form

(3)

where

and (4)

and the real valued functions and are sufficiently smooth.
This type of problem also arises in Rate Distortion Theory [8],
[13] and the Deterministic Annealing approach to clustering
[14].

The form of and indicates that permuting the subvectors
does not change the value of and . In other words, and
are invariant to the action of

(and similarly for ) where acts on by relabeling the
classes . In the language of equivariant bifurca-
tion theory [45], and are said to be -invariant, where
is the algebraic group of all permutations on symbols [46],
[47].

The method of annealing has been used to find solutions to
optimization problems of the form (3) [9]–[12], [14], [17]. The
annealing problem is

(5)

where the nonnegative annealing parameter , a function of
for , is the Lagrange multiplier for the constraint

in the optimization problem (3). The reciprocal of
the annealing parameter is usually referred to as temperature, in
analogy to physical annealing. After starting at at ,
for which is maximal, one continues this solution as
increases (temperature decreases) to , creating a sequence

that converges to . We will show that a solu-
tion of the annealing problem (5) is always a solution of the
optimization problem (3) for . However, a solution
of (3) is not necessarily a solution of (5), although the stationary
points (critical points or the set of possible solutions) of (3) and
(5) are the same when (see Section IV-B).

The annealing problem corresponding to (1) is [9], [10], [44]

(6)

and the annealing problem for (2), in analogy with Deterministic
Annealing [14], is

(7)

[11], [12], [17], [48].
The following basic annealing algorithm produces a solu-

tion, , of the annealing problem (5) (and of the optimization
problem (3) for some ) by starting at a maximum of
(at ), and then continuing this solution as increases
from 0 to , creating a sequence that converges to

.

Algorithm 3.1 (Annealing): Let

be the maximizer of

and let . For , let be a solution
to the annealing problem (5). Iterate the following steps until

for some .
1) Perform -step: Let where .
2) Take , where is a small perturbation, as an

initial guess for the solution at .
3) Solve to get the maximizer

, using initial guess .
The purpose of the perturbation in Step 2) of the algorithm

is due to the fact that a solution may get “stuck” at a sub-
optimal solution . The goal is to perturb outside of the
basin of attraction of so that in step 3, we find .

A. An Example: The Four Blob Problem

To illustrate the behavior of the annealing solutions, consider
the method of annealing applied to (7), for , where

is a discretization of a mixture of four well separated
Gaussians, presented by the authors in [11], [12] (Fig. 3). In
this model, we assume that represents a range
of possible stimulus properties and that repre-
sents a range of possible neural responses. There are four modes
in , where each mode corresponds to a range of re-
sponses elicited by a range of stimuli. For example, the stimuli

elicit the responses with high probability, and
the stimuli elicit the responses with high
probability. One would expect that the maximizer of (7) will
cluster the neural responses into four classes, each of
which corresponds to a mode of . This intuition is justi-
fied by the Asymptotic Equipartition Property for jointly typical
sequences [8].

The optimal clustering for , , and is shown in
panels (b)–(d) of Fig. 3. The clusters can be labeled by

. When as in panel (b), the optimal clustering
yields an incomplete description of the relationship between

stimulus and response, in the sense that responses are
in class 2 and the responses are in class 1. The repre-
sentation is improved for the case shown in panel (c)
since now are in class 3, while the responses
are still clustered together in the same class 2. When as
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Fig. 3. The Four Blob Problem from [11], [12]. (a) A joint probability ���� �� between a stimulus set��� and a response set ��� , each with 52 elements. (b)–(d) The
optimal clusterings � �� � �� for 	 � ���, and � classes respectively. These panels represent the conditional probability ��� � �� of a response being classified
to a class � � 
 . White represents ��
 � �� � �, black represents ��
 � �� � �, and intermediate values are represented by levels of gray. Observe that the data
naturally splits into 4 clusters because of the 4 modes of ���� �� depicted in panel (a). The behavior of �������	��� � with increasing 	 can be seen in (e). The dashed
line is �������	��� �, which is the least upper bound of �������	��� �.

Fig. 4. The bifurcations of the solutions �� � � to the Information Distortion problem (7) initially observed by Dimitrov and Miller in [11]. For a mixture of 4
well-separated Gaussians, the behavior of ���� � �������	��� � as a function of  is shown in the top panel, and some of the solutions � ���� ���� � are shown in the
bottom panels.

in panel (d), the elements of are separated into the classes cor-
rectly. The mutual information in (e) increases with the number
of classes approximately as until it recovers about 90%
of the original mutual information (at ), at which point it
levels off.

The results from annealing the Information Distortion
problem (7) for are given in Fig. 4. The behavior of

as a function of can be seen in the top
panel. Some of the optimal clusterings for different values
of are presented on the bottom row (panels 1–6). Panel 1
shows the uniform clustering, denoted by , which is defined
componentwise by for every and . The
abrupt symmetry breaking transitions as increases (depicted

in panels and ) are typical for annealing
problems of the type (5) [9]–[12], [14].

The action of (where ) on the clusterings can
be seen in Fig. 4 in any of the bottom panels. The action of
permutes the numbers on the vertical axis which merely changes
the labels of the classes . Due to the form of and

given in (4), the value of the annealing cost function (5) is
invariant to these permutations.

The bifurcation diagram in Fig. 4 raises some interesting
questions. Why are there only three bifurcations observed?
In general, are there only bifurcations observed when
one is clustering into classes? In Fig. 4, observe that

. Why should we observe only 3 bifurcations
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Fig. 5. A graph of ��� � (3) for the Information Distortion problem (2).

to local solutions of the annealing problem (5) in such a large
dimensional space? What types of bifurcations should we
expect: pitchfork, transcritical, saddle-node, or some other
type? At a bifurcation, how many bifurcating branches are
there? Are the bifurcating branches subcritical (“turn back”)
or supercritical? When does a bifurcating branch contain so-
lutions of the optimization problem (3) and the corresponding
annealing problem (5)? Do bifurcations of solutions to the
annealing problem (5) reveal properties (such as convexity) of
the original cost function in (3)? How do the bifurcations
of solutions to the annealing problem (5) relate to bifurcations
of solutions to the optimization problem (3), which has no
explicit dependence on the Lagrange multiplier ?

To help answer this last question, one can solve the optimiza-
tion problem (3) directly by annealing in . As in Algorithm
3.1, in step 1, one can initially set and then increment by

; use the same initial guess in step 2; and now
solve (3) in step 3. Using this method, we found solutions of (3)
for a sequence of . We plot over this sequence in Fig. 5.

B. Results in This Contribution

For any annealing problem of the form (5) that satisfies some
regularity conditions, this paper answers many of the questions
just posed about the bifurcations.

1) There are symmetry breaking bifurcations observed
when continuing from the initial solution because
there are only subgroups in the symmetry breaking
chain from (Theorem 6.2), for example

.
2) The annealing solutions in Fig. 4 all have symmetry for

some . There exist other branches with symmetry
when (Fig. 6 and Theorem 6.2). In the

Four Blob problem, these solutions are suboptimal since
they yield mutual information values below the envelope
curve depicted in the figure.

3) Symmetry breaking bifurcations are generically pitchforks
(Theorem 6.3) and derivative calculations predict whether
the bifurcating branches are subcritical or supercritical
(Theorem 6.5), as well as determine optimality (Theorem
6.7). Symmetry preserving bifurcations are generically
saddle-nodes (Theorem 6.9).

4) The relationship between the bifurcations of solutions to
the optimization problem (3) and the annealing problem
(5) is given in Figs. 4 and 5. The Lagrange multiplier
is a function of for : turning Fig. 4 sideways
shows this functional relationship. In fact, the bifurcations
of all stationary points to (3) is much more complicated
(see Fig. 17). The curve in Fig. 5 is nonincreasing
and continuous (Lemma 4.2) and envelopes over
all stationary points of (3). Any curve below the envelope
corresponds to clusterings of the data which are not solu-
tions of the optimization problem (3).

5) A local solution to the annealing problem (5) does not
always continue through a symmetry breaking bifurca-
tion (Theorem 8.1). This would explain why, in practice,
solving (5) after bifurcation incurs significant computa-
tional cost [12], [14]. A solution of the annealing problem
(5) is always a solution of the original optimization
problem (3). The converse is not true.

6) Bifurcations of solutions to the annealing problem (5) dic-
tate the convexity of the curve (3) (Lemma 8.2). In par-
ticular, a subcritical bifurcation of the annealing solutions
to (5) at implies that the curve changes con-
vexity in a neighborhood of (Corollary 8.3). This can be
compared to the rate distortion curve in information theory,

When is linear in , then the rate distortion curve
is nonincreasing, convex, and continuous [8], [13]. This
convexity result does not generalize to either the Informa-
tion Bottleneck (1) or the Information Distortion (2) since

, in both these cases, is not linear, although both of
these curves, under mild regularity conditions, are nonin-
creasing and continuous (Lemma 4.2).

IV. MATHEMATICAL PRELIMINARIES

This section is divided into four parts. First, we define nota-
tions used throughout the rest of this paper. Second, we present
some key results from the theory of constrained optimization. In
the third part we apply the theory to the optimization problem
(3) and the corresponding annealing problem (5). And finally,
we give a primer on bifurcation theory in the presence of sym-
metries.

A. Notation

Let and so that
. There is no further restriction placed on (i.e.,

can be larger than ). Recall that the matrix defining
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Fig. 6. The bifurcations of stationary points to the Information Distortion
problem (7) which exhibit symmetry breaking from � � � � � � �

(color scheme is purple� blue� black� cyan), for which Fig. 4 only shows
solutions.

the conditional probability mass function of the random variable
, is

...
...

...

...
...

where is the row of .
The following notation will also be used throughout the rest of
this contribution:

the th vector component of ,
so that

the vector form of

.

the uniform conditional probability on such
that for every and .

identity matrix when .

the gradient of a differentiable scalar function
with respect to the vector argument .

the multilinear form of the dimensional
array of the th derivatives of the scalar
function . For example,

B. The Two Optimization Problems

In Section III, we considered two different constrained opti-
mization problems, a problem with a nonlinear constraint (3)

and the annealing problem (5)

Let us compare the respective Lagrangians, and the necessary
and sufficient conditions for optimality for each of these prob-
lems.

The equality constraints from the optimization problem (3)
and the annealing problem (5) are the same:

Assigning Lagrange multipliers to the equality con-
straints ( is an annealing parameter), the Lagrangian
for the annealing problem (5) with respect to the equality con-
straints is

(8)

Thus, is the vector of Lagrange multipliers
. The gradient of the Lagrangian

is

where and
. The gradient is a

vector of the equality constraints

...

Since we only consider equality constraints, the first order
necessary conditions for optimality, the Karush-Kuhn-Tucker
(KKT) conditions [49], are satisfied at if and only if

. A soft clustering is a stationary
point of the annealing problem (5) for some if there exists a
vector such that for the Lagrangian

defined in (8).



IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

10 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 2, FEBRUARY 2010

The Jacobian of the constraints for the annealing problem is

...

which has full row rank. Since the constraints are linear, then
a stationary point is a solution of the annealing problem (5) if

is negative definite on [49].
Only the optimization problem (3) is encumbered with the

nonlinear constraint . Assigning the Lagrange
multiplier to this constraint, we see that the Lagrangian in this
case is

This shows that the gradient of the Lagrangian is the same for
the optimization problem (3) and the annealing problem (5),

.
The Jacobian of the constraints for the optimization problem

(3) is

...

which is a function of , and, for generic , of full row rank.
By the theory of constrained optimization, a stationary point
of the annealing problem (5) is a local solution of (3) for some

if is negative definite on [49].
If is a solution of the optimization problem (3)

for some , then by the KKT conditions, is unique and non-
negative. This shows that the optimal can be written as a func-
tion of . For , the KKT conditions are satisfied
at if and only if . That is,
the constraint is active and equal to zero. Thus, if

is a stationary point of the annealing problem (5)
for , then for satisfies the KKT
conditions for the optimization problem (3).

We have just proved the following theorem.

Theorem 4.1: Suppose that is a stationary point of
the annealing problem (5) for some such that has
full row rank.

1) If is negative definite on then
is a solution of (3) (for ) and (5).

2) If is negative definite on ,
then is a solution of (3) for .

3) Conversely, if is a local solution of (5) for some ,
then there exists a vector of Lagrange multipliers so

that and
is nonpositive definite on .

4) If is a solution of (3) for some , then there ex-
ists a vector of Lagrange multipliers so that

and is
nonpositive definite on .

The fact that every solution of the annealing problem (5) is
also a solution of the optimization (3) follows from the observa-
tion that contains : if satisfies ,
then . However, there may be solutions of (3) which
are not annealing solutions of (5). This is illustrated numerically
for the Information Distortion problem (7) in Section VIII-A.

Now let us consider for what values of the optimization
problem (3) has a solution. Clearly, one necessary condition is
that . In fact, is a nonin-
creasing curve, and, when defined as in (1) or (2), continuous.
This is what we prove next.

Lemma 4.2: The curve ) is nonincreasing on
, and is continuous if the stationary points

of (i.e., ) are not in for ,
where

Proof: If , then , which shows that
. To prove continuity, take an arbitrary

. Let

where

be in the range (in ) of the function with the domain .
Given an arbitrary , let be an neighborhood of
in . By assumption (4), is continuous on , and so the set

is a relatively open set in . Because by definition
, we see that

(9)

Furthermore, since for , then, by the Inverse
Mapping Theorem, is an open neighborhood of .

The function is also continuous in the interior of .
Observe that is closed, and thus
is closed and hence compact. Thus, by (9) is a rela-
tively open neighborhood of a compact set . Therefore, since

is continuous, there exists a such that the set

is a relatively open set in such that

It then follows that

which means that

whenever
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C. An Overview of Bifurcation Theory With Symmetries

In this section, the general terminology and concepts related
to studying bifurcations of dynamical systems with symmetries
is reviewed. The dynamical system we will study, whose equi-
libria are stationary points of the optimization problem (3)), in
the sequel is the gradient flow of the Lagrangian. For a detailed
treatment, see Golubitsky et al. in [45].

Consider the system of ordinary differential equations

where is sufficiently smooth for some Ba-
nach space , and is a bifurcation parameter. An
equilibrium or steady state of the differential equation is a zero
of . An equilibrium is linearly stable if all of the eigen-
values of the Jacobian, , have a negative real part. If
some eigenvalue has a positive real part, then the equilibrium is
unstable. A bifurcation point is an equilibrium where
the number of equilibria changes as varies in a neighborhood
of . At a bifurcation, the Jacobian is singular,
(i.e., has a zero eigenvalue). Otherwise, the Implicit
Function Theorem could be used to find a unique solution
in a neighborhood of . The bifurcating directions are in
the kernel of the Jacobian, defined as

An equilibrium is a singularity of if is
singular. A singularity is a possible bifurcation point, since it
satisfies the necessary condition for a bifurcation.

Let be a compact Lie group which acts on ( is a spe-
cific case of such a group). The vector function is -invariant
if

for every . is -equivariant if

for every . The isotropy subgroup of is
defined as

In other words, has symmetry . The fixed point space of a
subgroup is

A symmetry breaking bifurcation is a bifurcation for which the
isotropy group of the bifurcating equilibria is a proper subgroup
of the group which fixes the bifurcation point. A symmetry pre-
serving bifurcation is one for which the symmetry of the bifur-
cating equilibria is the same as the group which fixes the bifur-
cation point.

The Equivariant Branching Lemma, attributed to Vander-
bauwhede [50] and Cicogna [51], [52], relates the subgroup

structure of with the existence of symmetry breaking bifur-
cating branches of equilibria of . For a proof see
[45, p. 83].

Theorem 4.3 (Equivariant Branching Lemma): Let be a
smooth function, which is -equivariant for
a compact Lie group , and a Banach space . Let be an
isotropy subgroup of with . Suppose that

, the Jacobian , and the crossing
condition is satisfied for .
Then there exists a unique smooth solution branch
to with isotropy subgroup .

Remark 4.4: For an arbitrary -equivariant system where bi-
furcation occurs at , the requirement in Theorem 4.3
that the bifurcation occurs at the origin is accomplished by a
translation. Assuring that the Jacobian vanishes, ,
can be effected by restricting and projecting the system onto
the kernel of the Jacobian. This transform is called the Lia-
punov–Schmidt reduction (see [53]).

Definition 4.5: The branch is transcritical if
. If then the branch is degenerate. If
and then the branch is a pitchfork.

The branch is subcritical if for all nonzero such that
for some . The branch is supercritical if

.
Subcritical bifurcations are sometimes called first-order

phase transitions or jump bifurcations. Supercritical bifurca-
tions are also called second order phase transitions.

An Example: Pitchforks and Saddle-Nodes: To illustrate
some of the concepts just introduced, let us consider the fol-
lowing -equivariant differential equation

whose equilibria are shown as a function of in Fig. 7 (see
also [54]). This simple problem illustrates both types of bifurca-
tions which we expect to see for any -equivariant annealing
problem of the form (5) such that (4) holds.

The group acts on a scalar by multiplica-
tion by either or . Equivariance is established since

. For all is an equilibrium. Since
, then is a singularity. Observe

that is the only scalar invariant to the action of (i.e.,
) and is an isotropy subgroup

with a one dimensional fixed point space, . Since
the crossing condition is satisfied, then the
Equivariant Branching Lemma gives the existence of a bifur-
cating solution emanating from , with direction

. Parameterizing the bifurcating branch as , we
have that

for . As a consequence of the symmetry, we actually
have two bifurcating branches, one for positive , and one for
negative . Since , then the bifurcation at the origin is
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Fig. 7. The bifurcation diagram of equilibria of �� � ���� �� � ���� �� .
A subcritical pitchfork bifurcation occurs at �� � �� � � ��, and saddle-node

bifurcations occur at �� �� �. The branches drawn with dots are composed
of unstable equilibria, and the branches drawn with a solid line are composed
of stable equilibria.

degenerate, and implies that the bifurcation is in
fact a subcritical pitchfork bifurcation.

The bifurcating branches emanating from the origin are un-

stable since the Jacobian for all and
. As increases, the higher order quintic term of even-

tually dominates and causes the branches to turn around and be-

come stable at the saddle-node bifurcations at

.
The methodology we have applied in this simple example is

how we will proceed to analyze bifurcations of stationary points
to arbitrary annealing problems of the form (5) when (4) holds.

V. SYMMETRIES

Why do the optimization problem (3) and the annealing
problem (5) have symmetry? How can we capitalize on this
symmetry to solve these problems? These are the questions
which are addressed in this section.

The symmetries of the optimization problems (3) and (5) arise
from the structure of and from the form of the functions

and given in (4): permuting the subvectors does
not change the value of and : this is the symmetry, -in-
variance.

We will capitalize upon the symmetry of by using the
Equivariant Branching Lemma to determine the bifurcations of
stationary points, which includes local annealing solutions, to
(5)

As we pointed out in Section IV-B, this also yields the bifurca-
tion structure of stationary points of the optimization problem
(3) with respect to .

In this section we lay the groundwork necessary to give the
bifurcation structure for a larger class of constrained optimiza-
tion problems of the form

as long as satisfies the following assumption.

Assumption 5.1: The function is of the form

for some smooth scalar function , where the vector
is decomposed into subvectors .

The annealing problem (5) satisfies Assumption 5.1 when

(10)

and and are of the form given in (4). This includes the
Information Bottleneck problem (6), and the Information Dis-
tortion problem (7).

It is straightforward to verify that any satisfying Assump-
tion 5.1 has the following properties.

1) is -invariant, where the action of on permutes
the subvectors of .

2) The Hessian is block diagonal, with
blocks.

The rest of this section is divided into three parts. In the first
part, we define the gradient flow of the Lagrangian, whose equi-
libria are stationary points to the annealing problem (5), and
show how the symmetries manipulate the form of its Jacobian
(i.e., the Hessian of the Lagrangian). In the second, we classify
the equilibria of the gradient flow according to their symmetries.
In the third, we give a detailed description of the kernel of the
Hessian at a bifurcation. This space is determined by consid-
ering the reduced problem: one only needs to compute the one
dimensional kernel of a single block of . The form of
the larger kernel, as well as the many bifurcating directions, fol-
lows from applying the symmetries.

A. The Gradient Flow

We now formulate a dynamical system whose equilibria cor-
respond to the stationary points of the annealing problem (5).
This system is the gradient flow of the Lagrangian.

With as in (10) such that and
satisfy (4), the Lagrangian of the annealing problem (5), which
we derived in (8), can be written as

The gradient of the Lagrangian is
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where . The
Hessian of the Lagrangian is

(11)

where is . The matrix is the block
diagonal Hessian of

...
...

...

where (see Assumption 5.1) are
matrices for .

The dynamical system whose equilibria are stationary points
of the optimization problem (3) and the annealing problem (5)
can now be posed as the gradient flow of the Lagrangian

(12)

for . Recall that equilibria of (12) are points

where

The Jacobian of this system is the Hessian from
(11).

The methodology we applied to the simple example in
Section IV-C is how we will proceed to analyze bifurcations of
equilibria of the gradient flow (12). The Equivariant Branching
Lemma gives the existence of branches of equilibria at sym-
metry breaking bifurcations. At such a bifurcation, we will
show that , so that the bifurcations are degenerate.
When , then the bifurcations are pitchforks, and the
sign of determines whether the bifurcating branches are
subcritical or supercritical. We will determine the stability of
these equilibria by considering the eigenvalues of the Hessian

.
Yet, by Theorem 4.1, it is the Hessian which de-

termines whether a given equilibrium is a solution of the op-
timization problem (3) or of the annealing problem (5). We
will show how stability relates to optimality in the optimization
problems (3) and (5) in Section VIII-A.

B. Equilibria With Symmetry

Next, we categorize the equilibria of the gradient flow (12)
according to their symmetries, which allows us to determine
when we expect symmetry breaking bifurcations versus sym-
metry preserving bifurcations.

Recall that is the vector form of
the soft clustering of the responses into the classes

. Let be a partition of the classes of
such that if and only if . That is,
for and . If is the order

of (so that ), then we have that has isotropy
group

where acts on by permuting the vector subcomponents
for every . For example, in bottom panel 2 of Fig. 4,

, and . So has
isotropy subgroup , or, more simply, . In panels 3, 4
and 5, and , and the associated
clustering has isotropy group . It is clear from Assumption
5.1 that if , then : the th and th
blocks of are equal. So, has blocks, for

, that are equal for each .
Suppose that is a singularity such that has

isotropy group . By definition,
is singular. Additionally, only one of the following is

also true:
1) is singular;
2) is nonsingular.
In the first case we expect to get a symmetry breaking bifur-

cation (Theorem 6.2). In the second case we get a symmetry
preserving bifurcation (Theorem 6.9).

Let us investigate case 1 and assume that is singular,
and that is singular, with only singular blocks
for . To ease the notation, we set

To distinguish between singular blocks and nonsin-
gular blocks . We will write

(13)

The type of symmetry breaking bifurcation we get from a sin-
gular equilibrium only depends on , the number
of blocks which are singular. This motivates the following
definition.

Definition 5.2: An equilibrium of the gradient
flow (12) is -singular (or, equivalently, is -singular) if:

1) .
2) for every (i.e., Fix ).
3) For , the block(s) of the Hessian defined in (13)

has dimension with basis vector (14)

4) The block(s) of the Hessian are nonsin-
gular.

5) The matrix

(15)

is nonsingular. When is empty, and in this case
we define .

We wish to emphasize that when is singular, that
the requirements 3–5 in Definition 5.2 hold generically [31].
The technical requirement 5 is crucial for a symmetry breaking
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bifurcation to occur. We will see later that the matrix becomes
singular at symmetry preserving bifurcations.

From Assumption 5.1, it is clear that and are
-invariant, and that and are -equivariant.

It is straightforward to show that every block of the Hessian
of the Information Bottleneck cost function (6) is always sin-
gular. At a bifurcation point which is in ,
the blocks of referred
to in requirement 3 of Definition 5.2 have a two dimensional
kernel, requirement 4 is not met, and the matrix in require-
ment 5 is not even defined. A similar theory to that presented
here, which projects out the “perpetual kernel,” explains the bi-
furcation structure of solutions for the Information Bottleneck
problem (6). Some details will be discussed in Section VIII-B.

C. The Kernel of the Hessian

Here, we see how the symmetry of and eases the compu-
tation of multiple equilibria of the gradient system
(12) at a bifurcation. As reviewed in Section IV-C, the Jaco-
bian from (11) is singular, and the bifurcating branches
are tangent to . To describe these bi-
furcating branches when is -singular, we need only work
with a reduced space, the kernel of from (14), which is a one
dimensional subspace of with basis vector . By the sym-
metry, this one vector explicitly determines the larger spaces

and (Theorem 5.3), and yields the bi-
furcating branches (Lemma 5.5).

Intuitively, it is the vector which specifies how
each of the responses of ought to split at a bifurcation
in order to increase the value of on . It is the symmetry
which specifies how the responses are explicitly assigned to the
classes, and these assignments are the bifurcating directions.

We first determine a basis for at an -singular
. Recall that in the preliminaries, when , we defined

to be the th vector component of . Using this no-
tation, the linearly independent vectors in can be
defined by

if is the th uniform class of
otherwise

(16)

where . Since is -singular, then
, which implies that

is a basis for . For example, consider the
bifurcation where symmetry breaks from to in Fig. 4
(see panels 2 and 3 in the bottom row). At this bifurcation,

, and is
three dimensional with basis vectors

where is .
The basis vectors of can be used to construct a

basis for when . Let

(17)

Fig. 8. The lattice of the isotropy subgroups� � � for� � � and the cor-
responding basis vectors of the fixed point spaces of the corresponding groups.

for where . Using (11), it is easy to see
that , which shows that are in .
Thus, if is singular and is -singular for

, then is singular.
The fact that the vectors are linearly independent is

straightforward to establish. To show that they actually span
(and so are a basis) relies on the assumption that

is -singular, which assures that the matrix
, introduced in Definition 5.2, is nonsingular.

We have the following Theorem. The proof of the first two
parts is above, and a proof of the third part can be found in [31].

Theorem 5.3: If is -singular for some ,
then

1) The vectors defined in (16) are a basis for
.

2) If is singular then is singular.
3) The vectors defined in (17) are a basis for

.

Observe that the dimensionality of is one
less than . This insight suggests that when

, then is nonsingular. This
is indeed the case.

Corollary 5.4: If is -singular, then is nonsin-
gular.

D. Isotropy Groups

The isotropy group of an equilibrium
of the gradient system (12) is a

subgroup of which fixes . If for all of the
classes , then is the isotropy group of ,
where freely permutes the subvectors if , but
holds fixed the subvectors if .

The isotropy groups of for the soft clusterings
pictured in Fig. 4 are clear. In panel 1 of the bottom row,

, and the isotropy group is . In panel 2,
and the isotropy group is . In panels 3 and 4,

and the isotropy group is .
Restricted to , the fixed point space of the sub-

group is one dimensional (see Corollary 5.6 and
Fig. 8). Golubitsky and Stewart [55] show that all of the isotropy
subgroups in with one dimensional fixed point spaces are
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Fig. 9. A bifurcating solution from the soft clustering � � ��� � � �� � � �� � � �� � � � ����� � at � � �����	 (panel 3 in the bottom row of Fig. 4)
where � acts on � by freely permuting the three subvectors � � � � � . Note that � is a scalar. The bifurcating direction is 
� � ������� � ���� ����� � � ����� �,
which is invariant under � permuting 
��� and 
��� . The new soft clustering � � �
� after the bifurcation has isotropy group � .

of the form , where . The following
Lemma which follows from this result will allow us to use the
Equivariant Branching Lemma (Theorem 4.3 and Remark 4.4)
to ascertain the existence of explicit bifurcating solutions.

Lemma 5.5: Let such that and .
Let be a set of classes, and let be a set of classes such
that and . Now define
such that

if
if
otherwise

where is defined as in (14), and let

(18)

where . Then the isotropy subgroup of is
, where acts on when and acts

when . The fixed point space of restricted to
is one dimensional.

Without loss of generality, one can assume that con-
tains the first classes of , and that contains the
other classes. Now it is straightforward to verify that

, confirming that
as claimed.

Letting and yields the following corollary.

Corollary 5.6: Let such that

th

where is defined as in (14), and let

(19)

where . Then the isotropy subgroup of is .
The fixed point space of restricted to is one
dimensional.

Fig. 8 gives the lattice of isotropy subgroups of when
, and the corresponding basis vectors of the fixed point

spaces.
Fig. 9 depicts a soft clustering where

acts on by permuting
the three subvectors . Also depicted is a vector

where permutes
and .

VI. BIFURCATIONS

There are two types of bifurcations of equilibria in any dy-
namical system with symmetry: symmetry breaking bifurca-
tions and symmetry preserving bifurcations. We next address
each of these bifurcation types for the flow (12), and conclude
with a generic picture of the full bifurcation structure.

Equilibria of the gradient flow of the Lagrangian (12) are sta-
tionary points of the optimization problem (3) and of the an-
nealing problem (5). Thus, this section gives the bifurcation
structure of these stationary points.

A. Symmetry Breaking Bifurcations

We have laid the groundwork so that we may ascertain the
existence of explicit bifurcating branches of equilibria of (12)

from an equilibrium when is -singular for
(Theorem 6.2). We will show that these symmetry

breaking bifurcations are always degenerate (Theorem 6.3), that
is, . If , which is a generic assumption, then
these bifurcations are pitchforks. We will provide a condition,
called the bifurcation discriminator, which ascertains whether
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the bifurcating branches with isotropy group are sub-
critical or supercritical (Theorem 6.5). Lastly, we also provide a
condition which determines whether branches are stable or un-
stable (Theorem 6.7).

Throughout this section we assume that is an
-singular point for . The reduced problem, finding

the vector in the kernel of the singular blocks of
, specifies how the data ought to split. Thus

and is both singular. The vectors are
constructed from the vector , and they form a basis for
which has dimension . The vectors
are particular vectors in which have isotropy group

. Since these belong to , they are in the span of
the vectors and hence are also constructed using the vector

. The vectors determine which classes of the data is
split into.

1) Crossing Condition: Before presenting the existence the-
orem for bifurcating branches, it is first necessary to address
when the crossing condition (“ ”), required by
Theorem 4.3, is satisfied. Observe that when

as in (10), then . For annealing prob-

lems of the form (5), we have shown [31] that the crossing con-
dition in Theorem 4.3 is satisfied if and only if

(20)

where is any of the basis vectors of (see (16)).
This result is illuminating: if is either positive or neg-
ative definite on , then the crossing condition is sat-
isfied. We have the following Theorem.

Theorem 6.1: Suppose that is -singular for
.
1) If is either positive or negative definite on

, then is a singularity of the gra-
dient flow of the Lagrangian (12) if and only if
is a bifurcation point.

2) If is either positive or negative definite on
, then is a singularity of (12) if

and only if is a bifurcation point.
Proof: The first part of the Theorem follows from the

claim that the crossing condition is equivalent to (20). To
prove the second part, observe that if , then

implies that
. Since (or ), then

(or ). Now apply the first
part of the Theorem.

By Theorem 6.1, for annealing problems where is
strictly concave, is positive definite on ,
so every singularity is a bifurcation point. For the Information
Distortion problem (7), is strictly concave,
so every singularity of is a bifurcation. For the Infor-
mation Bottleneck problem (6), is concave,
but not strictly concave, and is convex, but
not strictly convex.

2) Explicit Bifurcating Branches: By Lemma 5.5 and the
Equivariant Branching Lemma, we have the following existence
theorem.

Theorem 6.2: Let be an equilibrium of the gra-
dient flow (12) such that is -singular for , and
the crossing condition (20) is satisfied. Then there exists bi-

furcating solutions, , where is

defined in (18), for every pair such that and
, each with isotropy group isomorphic to . Of

these solutions, there are of the form ,

where is defined in (19), for , each with isotropy
group .

Fig. 8 depicts the lattice of subgroups of of the form
for , as well as the bifurcating directions from a
bifurcation at guaranteed by Theorem 6.2. Observe
that , which is true for any vector in by
(17). This assures that for small enough is in .

Fig. 9 depicts a symmetry breaking bifurcating solution from
to at .

Figs. 6 and 10 show some of the bifurcating branches guaran-
teed by Theorem 6.2 when for the Information Distortion
problem (7) (see Section VII, for details). The symmetry of the
clusterings shown depict symmetry breaking from

.
Fig. 11 depicts symmetry breaking from to . The

first bifurcation occurs at , as does the symmetry
breaking bifurcation from to given in Fig. 10. The subse-
quent two bifurcating branches given in Fig. 11 correspond to
bifurcations at and .

Theorem 6.2 does not exclude the existence of other bifur-
cating directions with symmetry other than or
(consider for example the symmetry where

). To our best knowledge, for the Information Dis-
tortion, Information Bottleneck, and Deterministic Annealing
methods, such bifurcating solutions have never been observed
[10], [11], [14]. However, rigorous results in this direction are
still lacking.

3) Pitchfork Bifurcating Branches: Suppose that a bifurca-
tion occurs at where is -singular. This section
examines the structure of the bifurcating branches

(21)

whose existence is guaranteed by Theorem 6.2. The proofs to
the results which follow rely on the explicit computation of the
derivatives of the Liapunov–Schmidt reduction referred to in
Remark 4.4. We will cite the Theorems, and the interested reader
is referred to [31] for the proofs.

Theorem 6.3: If is -singular for , then all
of the bifurcating branches (21) guaranteed by Theorem 6.2 are
degenerate (i.e., ).

From Definition 4.5, the sign of determines whether a
bifurcating branch (21) is a pitchfork and subcritical

or a pitchfork and supercritical . Without further
restrictions on generically, as in the case study
presented in Section II-B, and the four blob Gaussian mixture
model in Section III-A. Thus, symmetry breaking bifurcations
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Fig. 10. Bifurcation diagram of stationary points of (7) when � � �. Fig. 4 showed an incomplete bifurcation diagram for this same scenario since the algorithm
in that case was affected by the stability of the branches. The panels illustrate the sequence of symmetry breaking bifurcations from the branch �� � �� �� with
symmetry � , to a branch with symmetry � (blue), then to � (black), and finally, to � (cyan).

are generically pitchforks. Next, a condition is given which de-
termines the sign of for the bifurcating branches with a
given isotropy group.

Definition 6.4: The bifurcation discriminator of the bifur-
cating branches (21) with isotropy group is

where

The matrix is the Moore-Penrose generalized inverse [56]
of a block of the Hessian (13), from
(15), and is the basis vector of from (14).

When is -singular, then , and so in
this case the bifurcation discriminator is

(22)

The discriminator is defined purely in terms
of the constitutive function of (see
Assumption 5.1). This follows since the blocks of are
written as is a function of these blocks, and

for . The fourth derivative
in can be expressed as

and the vector has th component

The next theorem shows that the sign of is determined
by the sign of .

Theorem 6.5: Suppose is -singular for
and that is positive definite on . If

, then the bifurcating branches (21) guar-
anteed by Theorem 6.2, are pitchforks and subcritical. If

, then the bifurcating branches are pitch-
forks and supercritical.

This theorem is in contrast to the behavior of generic in-
variant functions, such as the model for speciation in [57], [58],
where the symmetry breaking bifurcations are transcritical. The
difference is due to the constraints imposed by and the
form of given in Assumptions 5.1.

A result similar to Theorem 6.5 holds when is neg-
ative definite on , but now predicts supercrit-
ical branches, and predicts subcritical branches.

In Section VI-A1, we showed that for the Information Dis-
tortion problem (7), the condition in Theorem 6.5 that
be positive definite on is always satisfied for every
singularity. Thus, for the Information Distortion, Theorem 6.5
can always be applied to determine whether pitchforks are sub-
critical or supercritical. To calculate for the In-
formation Distortion problem, we have the following lemma.

Lemma 6.6: For the Information Distortion problem (7),
is equal to

where . The expression

is equal to
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Fig. 11. Symmetry breaking bifurcations from the branch �� � �� �� with symmetry � to branches which have symmetry � � � .

Fig. 12. A close up, from Fig. 10, of the branch with � symmetry (in black)
which connects the� symmetric branch below (blue branch in the lower left) to
the � symmetric branch (cyan branch in the upper right). The soft clusterings
on the suboptimal � symmetric branch (lower black branch) are investigated
further in Fig. 15. By Theorem 6.3, the symmetry breaking bifurcations from
� � � and from � � � are degenerate, and, since � ��� �� �, a pitch-
fork.

where

Proof: Direct computation of the derivatives of
and .

Consider the bifurcation at in Fig. 10
where symmetry breaks from to . The value of the discrim-
inator at this bifurcation is (see
Section VII for details), which predicts that this bifurcation is a
pitchfork and subcritical. Fig. 13, a close-up of the bifurcation
diagram at this bifurcation, illustrates the subcritical bifurcating
branch.

Fig. 13. A close-up of Figs. 6 and 10 at � � ������. Illustrated here is a
subcritical pitchfork bifurcation from the branch �� � ��, a break in symmetry
from� to� . This was predicted by the fact that ��� � ����������� � �. It is
at the symmetry preserving saddle node at � � �����	 that this branch changes
from being composed of stationary points to local solutions of the problem (7)
(see Section VIII-A).

4) Stability: We now address the stability of the bifurcating
branches. We will relate the stability of equilibria to optimality
in the optimization problem (3) and the annealing problem (5)
in Section VIII-A.

As illustrated in Section IV-C, to ascertain stability, one de-
termines whether or not , evaluated at the equilibria on a bi-
furcating branch, has positive eigenvalues ( is a symmetric
matrix, so it only has real eigenvalues). The next theorem, whose
proof is in [31], provides a condition to determine when this oc-
curs.

Theorem 6.7: Suppose is -singular for
and that is positive definite on . All of the
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subcritical bifurcating branches (21) guaranteed by Theorem 6.2
are unstable. If the bifurcating branch is supercritical and if

then the branch consists of unstable solutions. The component
functions of are

where all of the derivatives are taken with respect to
is the Moore-Penrose inverse of , and is a basis vector from
(17).

The expression from Theorem 6.7 can be sim-
plified to a form which only uses derivatives of the constituent
functions of (as we did in Definition 6.4),

where are scalars which depend only on and .
By Theorem 6.7, the subcritical bifurcating branch depicted

in Fig. 13 is unstable.

B. Symmetry Preserving Bifurcations

We now turn our attention to bifurcations which are not sym-
metry breaking bifurcations of equilibria of (12),

We show that, generically, these bifurcations are saddle-node
bifurcations, which we have illustrated numerically in Fig. 13
for the Information Distortion problem (7).

In contrast to the conditions which led to a symmetry
breaking bifurcation in Section VI.A, where had a
high dimensional kernel (see Definition 5.2), for a symmetry
preserving bifurcation, is (generically) nonsingular.

Lemma 6.8: At a generic symmetry preserving bifurcation
, the Hessian is nonsingular.

Proof: If is singular, then at least one of the blocks
is singular. If there are multiple blocks equal to , then

Theorem 6.2 implies that undergoes a symmetry breaking
bifurcation. Thus is the only block that is singular, and now
Corollary 5.4 shows that is nonsingular. This leads to a
contradiction since we assume that a bifurcation takes place at

.

If is a singularity of the gradient flow (12) such
that is nonsingular, then looks very dif-
ferent than the form of when symmetry breaking
bifurcation occurs (see Section V-C). In fact, when is

nonsingular, it can be shown [31] that is one di-
mensional, with basis vector

where are the blocks of , and is in ,
where (see (15)). At a symmetry
breaking bifurcation, the matrix is generically nonsingular.

Now we provide a sufficient condition for the existence of
saddle-node bifurcations. The first assumption given in the fol-
lowing theorem is satisfied generically at any symmetry pre-
serving bifurcation (Lemma 6.8), the second assumption is a
crossing condition, and the third condition assures that

.

Theorem 6.9: [31] Let . Suppose that
is a singularity of the gradient system (12) such

that:
1) The Hessian is nonsingular.

2) The dot product .

3) .
Then, generically, is a saddle-node bifurcation.

C. Generic Bifurcations

We have described the generic bifurcation structure of sta-
tionary points to problems of the form

as long as . Symmetry breaking bi-
furcations are pitchforks, and symmetry preserving bifurcations
are saddle-nodes. The type of bifurcation which occurs depends
on three types of singular points, which depend on

, and the matrix (see (15))
which we have depicted in Fig. 14.

The first type of singular point is where the blocks
of , for , are singular. By Theorem 5.3, must be
singular. Generically, the blocks, , of are nonsin-
gular, and is nonsingular. Theorem
6.2 shows that this is the type of singularity that exhibits sym-
metry breaking bifurcation.

The second type of singular point is a special case in which
no bifurcation occurs. If only a single block, , of is sin-
gular (i.e., ), and if the generic condition that the corre-
sponding is nonsingular holds, then we show in Corollary 5.4
that is nonsingular. Thus, generically, no bifurcation occurs
for this case.

The third type of singular point is when is singular, but
when is nonsingular. In this case, the matrix must be
singular [31]. This singular point manifests itself as a saddle-
node bifurcation (Theorem 6.9). Fig. 14, which summarizes the
preceding discussion, indicates how the singular points of
and affect the bifurcations of equilibria of the flow (12).

Another way to categorize the bifurcations of the annealing
solutions to (5) is to consider the derivatives of . The
second condition in Theorem 6.9, which guarantees the ex-
istence of a symmetry preserving saddle-node bifurcation, is
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Fig. 14. A hierarchical diagram showing how the singular points of � � and � � affect the bifurcating branches of stationary points of the optimization problem
(3) and stationary points of the annealing problem (5).

equivalent to requiring that . For

symmetry breaking bifurcations, .

In fact, whenever is nonsingular, by the Implicit Func-
tion Theorem, taking the total derivative of

shows that is always in range . Furthermore,

(20) shows that the crossing condition depends on , and
Theorems 6.5 and 6.7 show that influences whether bifur-
cating branches are subcritical or supercritical, as well as stable
or unstable.

VII. NUMERICAL RESULTS

We created software in MATLAB® to implement pseudoar-
clength continuation to numerically illustrate the bifurcation
diagram of stationary points to the optimization problem (3)
and the annealing problem (5) as guaranteed by the theory of
Section VI.

This continuation scheme, due to Keller [59]–[61],
uses Newton’s method to find the next equilibrium,

, from by allowing both
and to vary. The advantage of this approach over Algorithm
3.1 is twofold. First, the step size in ,
changes automatically depending on the “steepness” of the
curve at and so this method allows for
continuation of equilibria around a saddle-node bifurcation.
Secondly, this algorithm is able to continue along unstable
branches.

All of the results presented here are for the Information Dis-
tortion problem (7),

where is the mixture of four Gaussian blobs introduced
in Fig. 3, and we optimally cluster the responses into
clusters.

Figs. 6 and 10 are analogous to Fig. 4, using the same mixture
of Gaussians and the same Information Distortion cost
function. The difference is that Fig. 4 was obtained using the
Basic Annealing Algorithm, while we used the continuation al-
gorithm in Figs. 6 and 10. The continuation algorithm shows that
the bifurcation structure is richer than shown in Fig. 4. In Fig. 6
we show bifurcating branches which emanate from the uniform

invariant branch at , and
. In the bottom row of Fig. 10, panels 1–5 show that the

clusterings along the branches break symmetry from to to
, and, finally, to . An “*” indicates a point where

is singular, and a square indicates a point where is sin-
gular. Notice that there are points denoted by “*” from which no
bifurcating branches emanate. At these points a single block of

is singular, and, as explained by Corollary 5.4, is
nonsingular, and so no bifurcation occurs. Notice that there are
also points where both and are singular (at the
symmetry breaking bifurcations) and points where just
is singular (at the saddle-node bifurcations). These three types
of singular points are depicted in Fig. 14.

Fig. 11 illustrates symmetry breaking from to .
The clusterings depicted in the panels are not found when using
an algorithm which is affected by the stability of the equilibria
(such as the Basic Annealing Algorithm).

Theorem 6.5 shows that the bifurcation discriminator,
, can determine whether the bifurcating branches

guaranteed by Theorem 6.2 are subcritical or super-
critical . We considered the bifurcating branches from

with isotropy group . The numer-
ical results obtained by calculating for
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Fig. 15. The symmetry breaking bifurcating branches from the solution branch �� � �� �� (which has symmetry � ) at � � ������, as in Fig. 10, but now we
investigate further the branches which have � symmetry.

Fig. 16. Depicted here are bifurcating branches with � symmetry from the � branch at the � values 1.133929 and 1.390994 shown in Fig. 6. The bottom
panels show some of the clusterings along these branches.

TABLE I
THE BIFURCATION DISCRIMINATOR: NUMERICAL EVALUATIONS OF THE

BIFURCATION DISCRIMINATOR ��� � � � �	 ��� � � � �������
�� 	

�� 	 	 
 � �� AS A FUNCTION OF 
 FOR THE FOUR BLOB PROBLEM (SEE

FIG. 3(A)) WHEN � IS DEFINED AS IN (7). A SUPERCRITICAL BIFURCATION

IS PREDICTED WHEN 
 	 �, AND SUBCRITICAL BIFURCATIONS FOR


 � ������
�

and 6 at are shown in Table I.
Supercritical branches are predicted when . Subcritical
branches with symmetry are predicted when .
The subcritical bifurcation predicted by the discriminator for
the Information Distortion problem (7) for is shown in

Fig. 13. This change from supercritical to subcritical branches
as increases is discussed in more detail in Section VIII-B.

Fig. 15 explores some of the soft clusterings on one of the
secondary branches after symmetry breaks from to .

Fig. 16 illustrates clusterings along branches which bifurcate
from at at the first bifurcation (see
Fig. 6). By Theorem 4.1, these branches do not give solutions of
(7) after a bifurcation. However, we cannot at the moment reject
the possibility that these branches continue to a branch that leads
to a global maximum of both the optimization problem (3) and
the annealing problem (5) as .

Now let us examine how the bifurcations of stationary points
to the annealing problem (5), given with respect to the annealing
parameter , yields the bifurcation structure of stationary points
of the optimization problem (3) with respect to . Fig. 5 de-
picts a realization of the curve which we produced by
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Fig. 17. The bifurcation diagram of stationary points to the problem (2) with
respect to � .

solving (3) for and as defined for the Information Distor-
tion problem (2)

for different values of using the data set from a mixture of four
Gaussians given in Fig. 3. Although it appears that the curve is
concave, this is not the case, which we show in Section VIII.B.
The curve is an envelope for the full structure of all sta-
tionary points of (2), which we give in Fig. 17. All curves below
this envelope correspond to clusterings of the data which are not
maxima of the optimization problem (3).

In Section IV-B, we showed that at a solution of the op-
timization problem (3) for some , that the Lagrange multi-
plier for the constraint is unique and nonneg-
ative, . For solutions where

. When solving (2) for each (as we did to pro-
duce Fig. 5), we computed the corresponding Lagrange mul-
tiplier , which is the subcritical curve shown in Fig. 13.
Turning the Figure sideways shows as a function of . The
existence of the subcritical bifurcation indicates that is not a
one-to-one function of . To produce the bifurcation diagram
depicted in Fig. 17, we simply plotted versus

for the stationary points we
found when annealing in as in Fig. 6.

VIII. CONSEQUENCES OF THE BIFURCATIONS

We have provided a theoretical analysis of the bifurcation
structure of stationary points for the optimization problem (3)
with respect to , and for the corresponding annealing problem
(5) with respect to the Lagrange multiplier . In this section, we
turn our attention to consequences of these bifurcations.

First, we relate how the structure and stability of bifurcating
branches affects the optimality of stationary points in the prob-
lems (3) and the corresponding annealing problem (5). In the

second part, we address implications for the convexity of the
curve in (3), which includes the rate distortion curve from
Information Theory.

A. Stability and Optimality

We now relate the stability of the equilibria in the
flow (12) with optimality of the stationary points in each of
the optimization problem (3) and the corresponding annealing
(5).

First, we give a general theorem which determines when
equilibria are not annealing solutions of (5). We
will show that, if a bifurcating branch corresponds to an
eigenvalue of changing from negative to positive,
then the branch consists of stationary points which
are not annealing solutions of (5). By Theorem 4.1, positive
eigenvalues of do not necessarily show that is
not an annealing solution of (5), unless the projection of the
corresponding eigenvector is in . For example, consider
the Information Distortion problem (7) applied to the Four Blob
problem presented in Fig. 3. In this scenario, for the equilibrium

of the gradient system (12), always has
at least positive eigenvalues, even when is
negative definite. In fact, for arbitrary annealing problems of
the form (5) and for any data set always has
at least positive eigenvalues.

Theorem 8.1: For the bifurcating branch (21) guaranteed by

Theorem 6.2, is an eigenvector of

for sufficiently small . Furthermore, if the corresponding eigen-
value is positive, then the branch consists of stationary points
which are not annealing solutions to (5).

Proof: We first show that is an eigenvector of

for small . Let so that

Thus, a bifurcation of solutions to occurs at .
For ,
where the first equality follows from Lemma 5.5, and the second
equality follows from -equivariance. Hence, is in

, which is one dimensional with basis vector
, showing that for some scalar function

. Taking the derivative of this equation with respect to ,
we get

(23)

which shows that is an eigenvector of
, with corresponding eigenvalue . Using (11)

and letting , we see that (23)
can be rewritten as

which shows that and . Thus, is
an eigenvector of with corresponding
eigenvalue . If , the desired result now follows from
Theorem 4.1.
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Theorem 8.1 can be used to show that the subcritical bifur-
cating branch depicted in Fig. 13 is not composed of solutions
to the annealing problem (7). The condition in Theorem 8.1 is
easy to check when using continuation along branches, since the
Hessian is available from the last iteration of Newton’s
method (see Section VII).

At first glance, the fact that the stationary points on the sub-
critical branch in Fig. 13 are not solutions of (7) may be wor-
risome, since we showed in Lemma 4.2 that in (2) is
continuous for all . By the continuity of

, for these , there is a solution of (7) and a vector of La-
grange multipliers such that is a stationary
point of the annealing problem (5) (KKT conditions).

However, recall from Theorem 4.1 that there may be solutions
of the optimization problem (3) which are not solutions of the
corresponding annealing problem (5). Thus, Theorem 8.1 does
not address when a stationary point is not optimal for problems
of the form (3). Theorem 4.1 indicates how to check for opti-
mality in this case explicitly: a stationary point is optimal for
(3) if the Hessian is negative
definite on , and it is not optimal if is not
nonpositive definite on .

We next illustrate stationary points of the Information Dis-
tortion problem (7) which are not solutions of (2). Consider
the subcritical bifurcating branch of stationary points of (7) at

depicted in Fig. 13. By projecting the Hessian
onto and also onto , we

determined the following (see Fig. 13).
1) The clusterings on the “flat” branch before the

bifurcation at are solutions to both (2) and
(7).

2) The clusterings on the “flat” branch after the bi-
furcation at are not solutions of either (2) or
(7).

3) The clusterings on the subcritical bifurcating branch are
solutions of (2) but are not solutions of (7).

4) After the branch turns at the saddle-node, the associated
clusterings are now solutions of both (2) and (7).

Clearly, the existence of subcritical bifurcations is tied to the
existence of saddle-node bifurcations, where the branches turn
around and regain optimality in the annealing problem (5). Gen-
erally speaking, the generic existence of saddle-node bifurca-
tions (Theorem 6.9) is why annealing does not (necessarily) give
a globally optimized clustering of the data for the optimization
problem (3) and the corresponding annealing problem (5). It is
possible that the global maximum at is not connected to
the maximum at , but that it vanishes in a saddle-node
bifurcation at some finite . If saddle-nodes were not possible,
then the global optimizer would be connected by a continuation
of stationary points to the uniform solution used as a starting
point for the annealing problem.

Using the Information Distortion, Information Bottleneck,
and Deterministic Annealing, the solutions corresponding to the
symmetry breaking chain from are
observed to be optimal, while branches with symmetry
are suboptimal [10], [11], [14]. This is in contrast to a model of
speciation given in [57], [58]. We do not have a general theoret-
ical result which explains this difference.

B. Convexity of the Rate Distortion Curve

We have proved the generic existence of saddle-node bifur-
cations of stationary points to annealing problems of the form
(5). We illustrated subcritical pitchfork and saddle-node bifur-
cations for the Information Distortion problem (7) in Fig. 13. A
natural question arises in the mind of the information theorist:
Are there implications for the rate distortion curve, defined in
[8], [13] as

(24)

where is a distortion function. This constrained
problem is of the form (3), where . We now
investigate the connection between the existence of saddle-node
bifurcations and the convexity of the rate distortion function
for . This is precisely the rel-
evance-compression function, , defined in (1), in which the
constant is ignored. Observe that there is a one-to-one
correspondence between and via .
For the Information Distortion problem the analogous function
is , defined in (2).

It is well known that if the distortion function is
linear in , then is continuous, strictly decreasing and
convex [8], [13]. Since the distortion

is not a linear function of , the convexity proof given
in [8], [13] does not generalize to prove that either (1) or (2) is
convex. This is why we proved the continuity of both (1) and
(2) using other means in Lemma 4.2.

In [10], [44], using variational calculus, it is shown that
. Since is a function of (KKT conditions),

then it seems reasonable to consider where is
differentiable. We have the following lemma.

Lemma 8.2: If the functions , and are
differentiable, then,

and

The relationship between the bifurcations of the stationary
points of the annealing problem (5) and the convexity of the
curves and is now clear.

Corollary 8.3: If there exists a saddle-node bifurcation of so-
lutions to the Information Bottleneck problem (6) at ,
then is neither concave, nor convex in any neighborhood
of . Similarly, the existence of a saddle-node bifurcation of
solutions to the Information Distortion problem (7) at
implies that is neither concave, nor convex in any neigh-
borhood of .

Proof: The result follows from Lemma 8.2 and the fact that
changes sign at the saddle-node bifurcation at .

Since we have explicitly shown the existence of saddle-node
bifurcations for the Information Distortion problem (7) (see

in Fig. 13), then the Corollary
shows that in Fig. 5 is neither concave nor convex. The
convexity of changes at ).
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Bachrach et al. [62] show that whenever , that
is convex. By Corollary 8.3, this shows that when

solving (6) for when , that saddle-node
bifurcations of stationary points can not exist: only supercritical
bifurcating branches are possible.

As mentioned in the preliminaries, we have assumed no con-
straint in the number of clusters . Letting allows each
of the objects of to be classified into its own class, so
that there is potentially no compression of the data. One way
to find the soft clustering which maximizes either the optimiza-
tion problem (3) or the annealing problem (5) is by brute force,
and to explicitly consider for . For the
problem in Fig. 3, this is at least a dimensional space. An-
other, more computationally feasible approach is to anneal as is
done in [9], [44]. This amounts to “space jumping”, where one
first considers clusters (i.e., ), and then
larger after each bifurcation is detected. At before
jumping, the bifurcation in is a break of symmetry from
to . Once the number of potential clusters is increased (to, say,

), the bifurcation, now imbedded in , corresponds to
a break in symmetry from either to or from to

, depending on how the newly introduced clusterings in
are defined.

Let us consider the brute force approach, where we explicitly
consider the bifurcations, when , and let us compare
this to the bifurcations when , such as with the numer-
ical results we presented in Section VII, where we set .
Finding clusterings for such an can be
construed as an additional constraint. Perhaps when computing
the bifurcation structure for , the subcritical bifurca-
tions and the saddle-nodes will not occur for general annealing
problems of the form (5), mere mathematical anomalies, and not
possible when is large enough, as is the case for the Informa-
tion Bottleneck.

The argument which Bachrach et al. use to show convexity
of [62] relies on the explicit form of

and a geometric proof given by Witsenhausen
and Wyner in [63]. This argument does not hold for the Informa-
tion Distortion curve , since in this case ,
and therefore Witsenhausen’s result does not apply.

In fact, the saddle-nodes and subcritical bifurcations which
we have shown explicitly for the Information Distortion at

still occur when , which is what we show next.
Consider the bifurcation of stationary points to the Informa-

tion Distortion problem (7) at from the uninfor-
mative branch depicted in Fig. 13. This is a bi-
furcation point for any . In Table I, we computed the dis-
criminator when

. When , the branch is supercritical
(since ), but for , the branch becomes subcrit-
ical, and then becomes “more” subcritical as increases (i.e.,

becomes more negative). This trend continues for
arbitrarily large . To prove this, we note that
depends on , and on (see Definition 6.4),
all of which depend on only through , which follows from
the following Lemma.

Lemma 8.4: For the Information Distortion problem (7),

Proof: Direct computation using the derivatives in Lemma
6.6.

By Lemma 8.4, we have that

The subscripts show whether the matrices are evaluated at
for or at . Substituting these into (22), and noting
that and have the same eigenpairs, then we can write

in terms of functions of for arbitrarily large
, as

This shows that if and if
as in the case for the Information Distortion at ,
then for and , the branch with
symmetry is supercritical. But for large enough,
the bifurcating branches with symmetry (Theorem
6.2) will become subcritical pitchforks. In a similar scenario, it
could be that branches switch from subcritical to supercritical
as increases.

We have demonstrated that even for the case , subcrit-
ical pitchforks and saddle-nodes exist for the Information Dis-
tortion. Thus, a potential advantage for using the Information
Bottleneck over the Information Distortion method (or any an-
nealing scheme (5)) for clustering data is that for ,
one is guaranteed that only supercritical bifurcations exist, and
no saddle-nodes. This is relevant for the computationalist, since
the existence of subcritical bifurcations and saddle-nodes can
incur significant computational cost when one attempts to find
optimal clusterings when using the Basic Annealing Algorithm
3.1.

IX. CONCLUSION

We have argued that the minimal set of assumptions that con-
strain the neural coding problem is that it has to be stochastic
on a fine scale (due to inherent noise in the neural processing),
but deterministic on a large scale (because of the evolutionary
enforced need for a consistent response). Therefore a general
model for the neural code, which is the correspondence between
the inputs and the outputs, is a stochastic map. This map, how-
ever, becomes (almost) deterministic, when viewed on a coarser
scale, that is, as a map from clusters of inputs to clusters of out-
puts. This model of a neural code has a clear advantage over
other models of not needing any additional assumptions on the
character of the code. In this sense it is the most general such
model. There are two main challenges of this approach. First,
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we needed to find an algorithm that would find the optimal de-
terministic “skeleton” of the stochastic coding map, or, equiv-
alently, the optimal soft clustering of the set of inputs and the
set of outputs that best approximates the (almost) determin-
istic code. The second challenge is the need for large data sets
that contain the rare signals and responses in sufficient number
for the stochastic map to be well represented by the data. This
second challenge is not particular to our approach. More im-
portantly, our method allows iterative refinement of the coarse
groups as more data becomes available and so it scales well with
data availability.

The optimality criterion for the best soft clustering comes
from information theory. We seek clusters of inputs and outputs
such that the induced relationship between the two clustered
spaces preserves the maximum amount of the original mutual
information between the inputs and outputs. It has been shown
that the globally optimal solution is deterministic [12] and that
the combinatorial search for the solution is NP-complete [64]
and therefore computationally not feasible for large data sets.
The lack of a fast algorithm that would compute the global max-
imum of the mutual information cost function led to the imple-
mentation of annealing as the standard algorithm for such opti-
mization problems [9]–[11], [14].

Even though the implementation is straightforward and an-
nealing usually finds biologically feasible solutions, our goal
was to understand the annealing algorithm in more detail, the
reasons for this success, and the potential for failure.

Using bifurcation theory with symmetries we have shown that
the soft clustering which optimizes the cost function of interest
is not an annealing solution after a subcritical bifurcation. Thus,
although the curve of optimal solutions to the cost function is
continuous with respect to the annealing parameter, the curve of
annealing solutions is discontinuous at a subcritical bifurcation.
However, since the annealing procedure is guaranteed to find a
local solution eventually, the subcritical branch must turn and
become optimal at some later saddle-node bifurcation, which
we have shown occur generically for this class of problems.

We also discuss the number and the character of refinements
that the annealing solutions undergo as a function of the an-
nealing parameter. Generically occurring symmetry breaking
pitchforks are in contrast to the symmetry breaking transcritical
bifurcations of solutions to an invariant model for speci-
ation in [57], [58]. For the Information Distortion, Information
Bottleneck, and Deterministic Annealing methods, the solutions
corresponding to the symmetry breaking chain from

are observed to be locally optimal, while
branches with symmetry are not [10], [11], [14]. This
is another difference with the model of speciation given in [57],
[58].

Previously we have shown that the annealing solution
converges to a deterministic local maximum [12]. The main
problem of whether the globally optimal solution can always
be reached by the annealing process from the uniform solution
remains open. This is because we can not rule out either the ex-
istence of saddle-node bifurcations which do not connect to the
original uniform solution, or the existence of locally suboptimal
bifurcating branches which do connect the uniform solution to
the global one. To our best knowledge, for the Information Dis-

tortion, Information Bottleneck, and Deterministic Annealing
methods, such bifurcating branches have never been observed
[10], [11], [14], although rigorous results are still lacking. We
hasten to add that proving that the globally optimal solution can
always be reached by the annealing process from the uniform
solution would be equivalent to an statement and
therefore such a proof is unlikely. Despite this, the relatively
straightforward annealing problem can be a fruitful method
for approaching NP-hard problems. Although each iteration
of annealing is more computationally intensive than the cost
function evaluation needed by the combinatorial search to solve
the NP-hard deterministic clustering, the overall complexity
of the locally optimal annealing solution branch grows only
linearly with the number of classes. We have shown here that
there are only bifurcations for clusters. Compare this
to the combinatorial explosion of the size of the search space
in the deterministic clustering. Thus, even though we believe it
unlikely that it can be proven that a branch of locally optimal
annealing solutions connects from the uniform solution to the
global deterministic optimum in all cases, the profoundness of
such a result should still encourage work in this area.

In addition our results can be of interest for Information
Theory. In contrast to rate distortion theory where the rate dis-
tortion curve is always convex, the analogous function for the
Information Bottleneck and Information Distortion methods is
nonconvex when a saddle-node bifurcation occurs. The differ-
ence stems from the fact that both in the Information Bottleneck
and Information Distortion methods the distortion function is
the mutual information, which is a nonlinear function of the
quantizer. In Deterministic Annealing and Rate Distortion
theory, the distortion function is an expectation of a pair-wise
distance function and hence linear in the quantizer.
Future work

Future works involves expanding these analytic results in two
directions. We would like to extend the results from the current
one-sided clustering or quantization to joint quantization of both
stimulus and response spaces [20]. Joint quantization, which
clusters both sides of a system jointly, has a cost function that is
invariant to , where acts on the space of clus-
tered stimuli, and acts on the space of clustered responses.
This added complexity poses different challenges in the analytic
development. Initial observations in this area show that the sim-
plest symmetry breaking is of the kind

and not for example to or .
This is easy to understand intuitively—if either soft clustering
is uniform, the cost function does not increase as no classes are
resolved. However, subsequent bifurcations of the joint problem
are not well understood. Specifically, we do not know at what
stages a finer quantization of one space occurs relative to the
other and why. Multi-quantization, another extension of the In-
formation Bottleneck problem [65], [66], used for network anal-
ysis, has an even richer symmetry structure, with the cost func-
tion being invariant under the symmetry group , and its
bifurcation structure is completely unknown.

The approach could be further extended as a model of brain
development. It shows a very definite and dramatic way in
which parts of the sensory world that were previously unre-
solved can be separated into discriminable portions, by taking
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a part of a system that is uniform in its properties and splitting
it into portions that perform different functions, while maxi-
mizing the information between the sensory environment
and the neural representation . This is similar to the latest
ideas of how a portion of the brain, previously dedicated to the
same task, bifurcates into distinct parts delegated to different
tasks [67], [68]. This could be accomplished by the duplication
of a homeobox gene which causes a replication of a whole
neural subsystem, which that gene regulates. For example, it is
hypothesized that the multitude of primate visual cortices [69]
emerged in this manner. Applying the distortion-based methods
described here to questions about evolutionary development
of brain structures could provide firm quantitative foundations
to such theories of brain evolution. If, for instance, the Right
Fusiform Gyrus (RFG) area and the Inferior Temporal (IT)
cortex emerged by duplication of a single cortical region, both
cortices likely performed the same function of visual object
recognition. Given enough time and evolutionary pressure, they
eventually bifurcated to the current state, in which the IT cortex
performs general visual object recognition, while the RFG is
specialized to face discrimination.

More generally, specific realizations of this general method
have been used in very diverse fields with the same goal in
mind: break down a complex system into simpler components
in a manner that is consistent with the structure of the complex
system, then study the components separately. This is essen-
tially the process of reductionism, used successfully in the sci-
ences, but posed here in a formal manner, and supplied with
tools that can automate it. This implies that the distortion based
procedures outlined here could be used as a general system iden-
tification and analysis methodology. These methods are general
enough to be used for models of arbitrary input-output systems:
quantize to a simpler system, characterize the simpler system,
then refine the quantization for a finer description.

ACKNOWLEDGMENT

The authors would like to gratefully acknowledge their col-
leagues John Miller and Zane Aldworth in the Center for Com-
putation Biology at Montana State University in Bozeman for
sharing experimental results which we use to illustrate the ap-
plicability of our method to neurophysiological data from the
cricket cercal sensory system.

REFERENCES

[1] F. Rieke, D. Warland, R. R. de Ruyter van Steveninck, and W. Bialek,
Spikes: Exploring the Neural Code. Cambridge, MA: The MIT Press,
1997.

[2] R. E. Kass, V. Ventura, and E. N. Brown, “Statistical issues in the anal-
ysis of neural data,” J. Neurophys., vol. 94, pp. 8–25, 2005.

[3] L. Paninski, J. Pillow, and E. Simoncelli, “Maximum likelihood esti-
mation of a stochastic integrate-and-fire neural model,” Neur. Comp.,
vol. 17, pp. 1480–1507, 2005.

[4] J. W. Pillow, J. Shlens, L. Paninski, A. Sher, A. Litke, E. Simoncelli,
and E. Chichilnisky, “Spatio-temporal correlations and visual signaling
in a complete neuronal population,” Nature, vol. 454, pp. 995–999,
2008.

[5] C. E. Shannon, “A mathematical theory of communication,” Bell Sys.
Tech. J., vol. 27, pp. 623–656, 1948.

[6] H. B. Barlow, “Possible princilples underlying the transformation of
sensory messages,” in Sensory Communications, W. A. Rosenblith,
Ed. Cambridge, MA: MIT Press, 1961.

[7] T. W. Kjaer, J. A. Hertz, and B. J. Richmond, “Decoding cortical
neuronal signals: Network models, information estimation and spatial
tuning,” J. Comp. Neurosci, vol. 1, no. 1–2, pp. 109–139, 1994.

[8] T. Cover and J. Thomas, Elements of Information Theory, ser. Wiley
Series in Communication. New York: Wiley, 1991.

[9] N. Slonim and N. Tishby, “Agglomerative information bottleneck,” in
Advances in Neural Information Processing Systems, S. A. Solla, T. K.
Leen, and K.-R. Müller, Eds. Cambridge, MA: MIT Press, 2000, vol.
12, pp. 617–623.

[10] N. Tishby, F. C. Pereira, and W. Bialek, “The information bottle-
neck method,” in Proc. 37th Annu. Allerton Conf. Commun., Contr.,
Comput., 1999.

[11] A. G. Dimitrov and J. P. Miller, “Neural coding and decoding: Commu-
nication channels and quantization,” Network: Computat. Neural Syst.,
vol. 12, no. 4, pp. 441–472, 2001.

[12] T. Gedeon, A. E. Parker, and A. G. Dimitrov, “Information distortion
and neural coding,” Canadian Appl. Math. Quart., vol. 10, no. 1, pp.
33–70, 2003.

[13] R. M. Gray, Entropy and Information Theory. New York: Springer-
Verlag, 1990.

[14] K. Rose, “Deteministic annealing for clustering, compression, classi-
fication, regression, and related optimization problems,” Proc. IEEE,
vol. 86, no. 11, pp. 2210–2239, 1998.

[15] W. Bialek, R. R. de Ruyter van Steveninck, and N. Tishby, “Efficient
representation as a design principle for neural coding and computa-
tion,” in Proc. 2006 IEEE Int. Symp. Inf. Theory, 2006, pp. 659–663.

[16] G. Chechick, A. Globerson, N. Tishby, M. Anderson, E. D. Young,
and I. Nelken, “Group redundancy measures reveals redundancy re-
duction in the auditory pathway,” in Advances in Neural Information
Processing Systems, T. G. Dietterich, S. Becker, and Z. Ghahramani,
Eds. Cambridge, MA: MIT Press, 2002, vol. 14.

[17] A. G. Dimitrov and J. P. Miller, “Analyzing sensory systems with the
information distortion function,” in Proc. Pacific Symp. Biocomput.
2001, R. B. Altman, Ed., 2000.

[18] A. G. Dimitrov, J. P. Miller, Z. Aldworth, T. Gedeon, and A. E. Parker,
“Analysis of neural coding through quantization with an information-
based distortion measure,” Network: Computat. Neural Syst., vol. 14,
pp. 151–176, Feb. 2003.

[19] A. G. Dimitrov, J. P. Miller, Z. Aldworth, and T. Gedeon, “Non-uni-
form quantization of neural spike sequences through an information
distortion measure,” Neurocomputing, vol. 38–40, pp. 175–181, 2001.

[20] B. Mumey, A. Sarkar, T. Gedeon, A. G. Dimitrov, and J. P. Miller,
“Finding neural codes using random projections,” Neurocomputing,
vol. 58–60, pp. 19–25, 2004.

[21] E. Schneidman, N. Brenner, N. Tishby, R. R. de Ruyter van Steveninck,
and W. Bialek, “Universality and individuality in a neural code,” in
Proc. NIPS, 2000, pp. 159–165 [Online]. Available: citeseer.ist.psu.
edu/305279.html

[22] U. Alon, N. B. D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A.
J. Levine, “Broad patterns of gene expression revealed by clustering
analysis of tumor and normal colon tissues probed by oligonucleotide
arrays,” in Proc. Nat. Acad. Sci., 1999.

[23] L. Chen, “Multiple protein structure alignment by deterministic an-
nealing,” Aug. 2003, pp. 609–610.

[24] L. Chen, T. Zhou, and Y. Tang, “Protein structure alignment by deter-
ministic annealing,” Bioinformatics, vol. 21, no. 1, pp. 51–62, 2005.

[25] R. M. Hecht and N. Tishby, “Extraction of relevant speech features
using the information bottleneck method,” in Proc. InterSpeech 2005,
Lisbon, Portugal, 2005.

[26] K.-M. Lee, T.-S. Chung, and J.-H. Kim, “Global optimization of clus-
ters in gene expression data of dna microarrays by deterministic an-
nealing,” Genom. Inf., vol. 1, no. 1, pp. 20–24, 2003.

[27] S. O’Rourke, G. Chechik, R. Friedman, and E. Eskin, “Discrete profile
comparison using information bottleneck,” BMC Bioinformatics vol.
7, pp. S8–, 2006 [Online]. Available: http://www.biomedcentral.com/
1471-2105/7/s1/s8

[28] S. F. Taylor, N. Tishby, and W. Bialek, “Information and fitness,”
arXiv:0712.4382v1 [q-bio.PE], Dec. 2007.

[29] A. Zhang, Advanced Analysis of Gene Expression Microarray Data.
Singapore: World Scientific Publishing, 2006.

[30] P. Andritsos, R. Miller, and P. Tsaparas, “Information-theoretic tools
for mining database structure from large data sets,” in Proc. 2004 ACM
SIGMOD Int. Conf. Manage. Data, New York, NY, 2004, pp. 731–742
[Online]. Available: http://doi.acm.org/10.1145/1007568.1007650

[31] A. E. Parker and T. Gedeon, “Bifurcation structure of a class of � -in-
variant constrained optimization problems,” J. Dynam. Diff. Equations,
vol. 16, no. 3, pp. 629–678, July 2004.



IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

PARKER et al.: SYMMETRY BREAKING IN SOFT CLUSTERING DECODING OF NEURAL CODES 27

[32] E. T. Jaynes, “On the rationale of maximum-entropy methods,” Proc.
IEEE, vol. 70, pp. 939–952, 1982.

[33] M. Kanou and T. A. Shimozawa, “Threshold analysis of cricket cercal
interneurons by an alternating air-current stimulus,” J. Comp. Physiol.
A, vol. 154, pp. 357–365, 1984.

[34] J. P. Miller, G. A. Jacobs, and F. E. Theunissen, “Representation of
sensory information in the cricket cercal sensory system. I. Response
properties of the primary interneurons,” J. Neurophys., vol. 66, pp.
1680–1689, 1991.

[35] F. Theunissen, J. C. Roddey, S. Stufflebeam, H. Clague, and J. P.
Miller, “Information theoretic analysis of dynamical encoding by
four primary sensory interneurons in the cricket cercal system,” J.
Neurophy., vol. 75, pp. 1345–1359, 1996.

[36] F. E. Theunissen and J. P. Miller, “Representation of sensory infor-
mation in the cricket cercal sensory system. II. Information theoretic
calculation of system accuracy and optimal tuning curve width of four
primary interneurons,” J. Neurophysiol., vol. 66, pp. 1690–1703, 1991.

[37] D. Bodnar, J. P. Miller, and G. A. Jacobs, “Anatomy and physiology
of identified wind-sensitive local interneurons in the cricket cercal sen-
sory system,” J. Comp. Physiol. A, vol. 168, pp. 553–564, 1991.

[38] G. A. Jacobs and R. K. Murphey, “Segmental origins of the cricket
giant interneuron system,” J. Comp. Neurol., vol. 265, pp. 145–157,
1987.

[39] H. Clague, F. Theunissen, and J. P. Miller, “The effects of adaptation
on neural coding by primary sensor interneurons in the cricket cercal
system,” J. Neurophysiol., vol. 77, pp. 207–220, 1997.

[40] J. C. Roddey, B. Girish, and J. P. Miller, “Assessing the performance of
neural encoding models in the presence of noise,” J. Comp. Neurosci.,
vol. 8, pp. 95–112, 2000.

[41] D. S. Reich, F. Mechler, K. P. Purpura, and J. D. Victor, “Interspike
intervals, receptive fields, and information encoding in primary visual
cortex,” J. Neurosci., vol. 20, pp. 1964–1974, 2000.

[42] J. D. Victor, “Binless strategies for estimation of information from
neural data,” Phys. Rev. E., vol. 66, pp. 051903–, 2002.

[43] I. S. Dhillon, S. Mallela, and D. S. Modha, “Information-theoretic
co-clustering,” in Proc. The Ninth ACM SIGKDD Int. Conf. Knowledge
Discovery Data Mining (KDD 03), 2003.

[44] N. Slonim, “The Information Bottleneck: Theory and Applications,”
Ph.D. dissertation, Hebrew University, Jerusalem, Israel, 2002.

[45] M. Golubitsky, I. Stewart, and D. G. Schaeffer, Singularities and
Groups in Bifurcation Theory II. New York: Springer Verlag, 1988.

[46] D. S. Dummit and R. M. Foote, Abstract Algebra. Englewood Cliffs,
NJ: Prentice Hall, 1991.

[47] G. James and A. Kerber, The Representation Theory of the Symmetric
Group, ser. The Encyclopedia of Mathematics and Applications, G.-C.
Rota, Ed. Reading, MA: Addison-Wesley, 1981, vol. 16.

[48] A. Dimitrov, T. Gedeon, B. Mumey, R. Snider, A. E. Parker, and
J. P. Miller, “Derivation of natural stimulus feature set using a
data-driven model,” in Proc. Int. Conf. Computat. Sci., P. M. A. Sloot,
D. Abramson, A. V. Bogdanov, J. Dongarra, A. Y. Zomaya, and Y.
E. Gorbachev, Eds., , 2003, vol. 2660, Lecture Notes in Computer
Science, pp. 337–345.

[49] J. Nocedal and S. J. Wright, Numerical Optimization. New York:
Springer, 2000.

[50] A. Vanderbauwhede, “Local Bifurcation and Symmetry,” Habilitation
Thesis, Rijksuniversiteit Gent., , 1980.

[51] G. Cicogna, “Symmetry breakdown from bifurcation,” Lettere Al
Nuevo Cimento, vol. 31, pp. 600–602, 1981.

[52] G. Cicogna, “Bifurcation and symmetries,” Bollettino Un. Mat. Ital.,
pp. 787–796, 1982.

[53] M. Golubitsky and D. G. Schaeffer, Singularities and Groups in Bifur-
cation Theory I. New York: Springer Verlag, 1985.

[54] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications
to Physics, Biology, Chemistry, and Engineering. Cambridge, MA:
Perseus Books, 1998.

[55] M. Golubitsky and I. Stewart, The Symmetry Perspective: From Equi-
librium to Chaos in Phase Space and Physical Space. Boston, MA:
Birkhauser Verlag, 2002.

[56] J. R. Schott, Matrix Analysis for Statistics. New York: Wiley, 1997.
[57] J. Cohen and I. Stewart, “Polymorphism viewed as phenotypic sym-

metry-breaking,” in Non-Linear Phenomena in Biological and Phys-
ical Sciences, S. K. Malik, M. K. Chandrashekaran, and N. Pradhan,
Eds. New Delhi, India: Indian National Science Academy, 2000, pp.
1–63.

[58] I. Stewart, “Self-organization in evolution: A mathematical perspec-
tive,” Philosoph. Trans. Roy. Soc., vol. 361, pp. 1101–1123, 2003.

[59] W. J. Beyn, A. Champneys, E. Doedel, W. Govaerts, Y. A. Kuznetsov,
and B. Sandstede, “Numerical continuation and computation of normal
forms,” in Handbook of Dynamical Systems III. Singapore: World
Scientific, 1999.

[60] E. Doedel, H. B. Keller, and J. P. Kernevez, “Numerical analysis and
control of bifurcation problems in finite dimensions,” Int. J. Bifurcat.
Chaos, vol. 1, pp. 493–520, 1991.

[61] H. B. Keller, “Numerical solutions of bifurcation and nonlinear eigen-
value problems,” in Applications of Bifurcation Theory, P. Rabinowitz,
Ed. New York: Academic, 1977, pp. 359–384.

[62] R. Gilad-Bachrach, A. Navot, and N. Tishby, “An information theoretic
tradeoff between complexity and accuracy,” COLT, pp. 595–609, 2003.

[63] H. S. Witsenhausen and A. D. Wyner, “A conditional entropy bound
for a pair of discrete random variables,” IEEE Trans. Inf. Theory, vol.
IT-21, pp. 493–501, Sep. 1975.

[64] B. Mumey and T. Gedeon, “Optimal mutual information quantization
is np-complete,” in Proc. Neural Inf. Coding (NIC) Workshop, Snow-
bird, UT, 2003.

[65] G. Elidan and N. Friednam, “Learning hidden variable networks: The
information bottleneck approach,” J. Machine Learning Res., vol. 6,
pp. 81–127, 2005.

[66] N. Slonim, N. Friedman, and N. Tishby, “Multivariate information bot-
tleneck,” Neur. Computat., vol. 18, pp. 1739–1789, 2006.

[67] L. Krubitzer and K. Huffman, “Arealization in the neocortex of mam-
mals: Genetic and epigenetic contributions to the phenotype,” Brain,
Behav. Evol., vol. 55, pp. 322–335, 2000.

[68] L. Krubitzer and J. Kaas, “The evolution of the neocortex in mammals:
How is phenotypic diversity generated?,” Curr. Opin. Neurobiol., vol.
15, pp. 444–453, 2005.

[69] D. J. Felleman and D. C. Van Essen, “Distributed hierarchical pro-
cessing in the primate cerebral cortex,” Cereb. Cortex, vol. 1, no. 1,
pp. 1–47, 1991.

Albert E. Parker received the B.S. degree in mathematics from Bridgewater
State College, Bridgewater, MA, the M.S. degree in mathematics from the Uni-
versity of Vermont, Burlington, and the M.S. degree in statistics and the Ph.D.
degree in mathematics from Montana State University, Bozeman.

He was a Postdoctoral Researcher with Curt Vogel and the Center for Adap-
tive Optics based in Santa Cruz, CA, in 2005. He is currently a Postdoctoral
Researcher with Colin Fox and the New Zealand Institute of Mathematics at the
University of Auckland, New Zealand, and a Research Engineer and statistician
with the Center for Biofilm Engineering at Montana State University. His re-
search interests include iterative sampling from high dimensional densities, and
modeling of complex biological systems.

Alexander G. Dimitrov received the B.S. degree in physics from Sofia Univer-
sity, Bulgaria, in 1991 and the M.S. degree in physics and the Ph.D. degree in
applied mathematics from the University of Chicago, IL. in 1998.

In 1998, he joined the Center for Computational Biology at Montana State
University, Bozeman, where he is currently an Assistant Professor in the De-
partment of Cell Biology and Neuroscience. His research interests include in-
formation-theoretic and probabilistic approaches to neural computing and cog-
nitive processes, mathematical neuroscience, and nonlinear neuronal models.
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