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Abstract

Different theories have been proposed to understand the growing problem of antibiotic resistance of
microbial populations. Here we investigate a model that is based on the hypothesis that senescence
is a possible explanation for the existence of so-called persister cells which are resistant to antibiotic
treatment. We study a chemostat model with a microbial population which is age-structured and show
that if the growth rates of cells in different age classes are sufficiently close to a scalar multiple of a
common growth rate, then the population will globally stabilize at a coexistence steady state. This
steady state persists under an antibiotic treatment if the level of antibiotics is below certain threshold;
if the level exceeds this threshold, the washout state becomes a globally attracting equilibrium.
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1 Introduction

Antibiotic resistance is a worldwide problem with severe impact on national health care systems [26, 36]. It
has become clear in recent years, that various pathogens are displaying an increased rate of resistance [35].
Since the development of new antibiotics has slowed down at the same time, there is a general sense that
the spread of resistance should be halted, or at least slowed down. This will only be possible if we develop a
deeper understanding of the causes of antibiotic resistance. A significant amount of work is currently being
done by both experimentalists and theoreticians, and mathematical modeling has an integral role in this
effort. Recent review articles summarize this activity [7, 14, 25, 40].

Most of the studies have used deterministic differential equations models, with compartments that repre-
sent colonized or un-colonized patient populations and contaminated and uncontaminated health-care worker
populations, although some studies use individual-based models [9]. The efficacy of antimicrobial treatments
and other interventions that focus on reducing the transmission of antimicrobial-resistant bacteria between
patients and health care workers have been evaluated [9, 10, 11, 29]. However, in the majority of these
contributions the emphasis is on public health prevention measures and schedules of antimicrobial appli-
cation, rather than the ecology of the pathogen. The pathogens operate in complex environments where
they compete with genetically and phenotypically similar, but distinct, individuals. The application of the
antimicrobial agent may contribute to selection pressure that may lead to the establishment of the resistant
strain in a patient and a hospital [1, 32]

In [11] the competition between two methicillin-resistant strains of Staphylococcus aureus (MRSA) has
been modeled. One strain, community acquired CA-MRSA was assumed to have higher growth rate than
the hospital acquired strain HA-MRSA. In agreement with the principle of competitive exclusion [15, 37]
the model [11] predicts that CA-MRSA will eventually dominate and outcompete HA-MRSA.

Naive extrapolation of the principle of competitive exclusion could lead us to a very uncomfortable
conclusion that more resistant strains (which have higher growth rate in the presence of antimicrobial agents)
will inevitably outcompete the less resistant strains. Despite the wide acceptance of the competitive exclusion
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principle, more recent work has shown that there are significant exceptions to its validity. These include
spatial heterogeneity of the environment, temporal variations in resource availability, cross-feeding between
competitors and antagonistic interactions between competitors [24, 20, 43, 44].

Further confirmation that the competition between different strains can play a significant role in de-
velopment of antimicrobial resistance comes from the following intriguing experiment [4]. When microbial
populations are subject to antibiotic treatment, an initial rapid decline of the cells is observed. Nevertheless,
a small fraction of the cells survives the attack. These cells are often referred to as persister cells (a notion
which should not be confused with the dynamical systems concept of persistence). When the antibiotic
is removed, and the remaining cells are re-grown with fresh nutrient, one might expect that the restored
population would consist of resistant cells only, and thus that the second application of the same antibiotic
would not affect this population. Surprisingly however, this is not what happens. Instead, the response of
these cells is the same as that of the initial population: Most cells are killed rapidly, while a small population
of persisters survives. This phenomenon has long been known, dating back at least to the work of Bigger in
[4], now more than 6 decades ago, yet a satisfactory explanation of what its causes are, has not been found
so far. Persisters have often been considered to be a phenotype, capable of evading the detrimental effect
of antibiotics. Although the biological details are not well understood, cells are believed to switch between
the persistent and non-persistent state, depending on environmental conditions [27, 28, 18, 3, 21]. This idea
has been investigated using mathematical models in [22, 5, 6, 46, 17, 12]. Here we investigate the hypothesis
that persister formation is attributed to senescence, in the sense that persister cells are those that have un-
dergone many division cycles. It is known that asymmetric division leads to the degradation of parts of the
cellular machinery [39, 30], which in turn leads to a lower growth rate and to a reduced intake and metabolic
processing of the antibiotic, which may be the underlying cause of persistence. There is some experimental
evidence that persister cells are slowly growing cells (see, e.g. [3]). A Partial Differential Equation model
for senescence has been described in both chemostat and biofilm settings [19, 2].

In this paper we will investigate the hypothesis that one of the contributing factors to the development of
antibiotic resistance is the stable co-existence of the senescent and normal cells in the pathogen population.
Our main result states that such stable co-existence is possible when different age classes compete for the
same limiting resource. We formulate and analyze a general chemostat model expressed in terms of a system
of Ordinary Differential Equations. The population consists of a mix of cells of various ages, measured in
terms of how many cell divisions they have undergone. We assume that the division is asymmetric. When
a cell divides, one cell remains in the youngest age class while the other moves to the next older age class.
The oldest age class does not grow or divide. We will show that the population stabilizes at a globally
stable coexistence steady state, provided that the growth rate functions of cells in the different age classes
do not deviate too much from a scalar multiple of a common growth rate function. We extend our analysis to
coexistence in the presence of antibiotics, where we assume that the growth rates in all classes is a decreasing
function of the level of the antibiotics. We show that if the level of the antibiotics is smaller then a certain
threshold, the stable coexistence equilibrium persists, while if it is larger then this threshold, the washout
equilibrium is a globally attracting steady state.

The stable coexistence of all age classes may explain the experimental observation that the persister cells
do not give rise to resistant progeny. If any cells survive an antibiotic assault, they would give rise to a
new generation of cells and this population will in time converge to the same globally asymptotically stable
steady state that contains all age classes. This new population will be vulnerable to the antibiotic attack to
the same extent as before.

Our model does not take into account other sources of antibiotic resistance like horizontal gene transfer
of plasmids that confer resistance [8, 33, 31]. While horizontal gene transfer also contributes to the antibiotic
resistance problem, the plasmid that conveys the resistance is usually heritable. Therefore the progeny of
resistant cells are also antibiotic resistant, contrary to the particular experiment described above. Our model
shows that the stable coexistence of multiple age classes may be responsible for the experimental observation
that the new population remains vulnerable to the antibiotic.

Our results can be interpreted more broadly in the context of competition between genetically and
phenotypically closely related pathogens. Since our model predicts a stable coexistence of such strains
(provided that the assumptions of our model are met), the intervention against the establishment of resistant
strains may be directed towards shifting the coexistence balance in the direction of more benign strains at
the expense of the resistant strains. This ecological approach to the management of nosocomial diseases is
similar to HIV virus infection management; the goal is not an eradication of the virus, but keeping the viral
load in the organism at managable levels [23, 34].

The paper is organized as follows. We describe the model and our main mathematical result in the next
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Section. In Section 3, we prove some general properties of our model, including an extinction and uniform
persistence property. In Section 4, we first specialize our model to the case where the growth rates of cells in
various age classes are proportional to a common growth rate (with lower proportionality factor for cells in
older age classes), and we obtain a global stability result for this case. Finally, we use a global perturbation
result to prove global stability for the case when the growth rates are perturbed slightly. In Section 5, we
state and prove the results that are relevant to the application of antibiotics. An important technical result
is stated and proved in the Appendix.

2 Model formulation and main result

We let S(t) denote the concentration of the growth-limiting nutrient, and xi(t) denote the cell concentration
in the ith senescent class. We consider the following senescence model:

ẋ1 = µ2(S, a)x2 + µ3(S, a)x3 + . . .+ µn(S, a)xn −Dx1, (1)
ẋi = µi−1(S, a)xi−1 − µi(S, a)xi −Dxi, i = 2, 3, ..., n, (2)

ẋn+1 = µn(S, a)xn −Dxn+1, (3)

Ṡ = D(S0 − S)−
n∑
i=1

yiµi(S, a)xi. (4)

Here, D represents the dilution rate, S0 is the nutrient feed concentration, µi(S, a) is the division rate of cells
in the ith senescent class, and yi > 0, i = 1, 2, ..., n are the reciprocal yield coefficients balancing the growth
and nutrient consumption of dividing cells. The parameter a is introduced to study the effect of antibiotic
treatment which we address in Section 5 of this paper. Until then, we will simply drop the dependence of
µi(S, a) on a and write µi(S).

We note that in this particular model, a dividing cell of the ith senescent class (1 ≤ i ≤ n) produces
one daughter cell in the first senescent class and one daughter cell in the (i+ 1)st senescent class. Although
unnecessary from the mathematical viewpoint, it is biologically feasible to assume that the proliferative
capacity of cells diminishes as they become more senescent, that is,

µ1(S) ≥ µ2(S) ≥ ... ≥ µn(S) > µn+1(S) ≡ 0.

Specifically, in our model, the (n+1)st senescent class consists of fully senescent cells that neither divide nor
consume the nutrient. Regarding the division rates µi(S), we assume that the functions µi(S) are smooth,
with µ′i(S) > 0 for all S > 0 and all i, and µi(0) = 0 for all i.

For mathematical convenience, we scale the time in the units of D and scale the state variables in the
units of S0 as follows

τ = Dt, S = S0S̃, xi =
S0x̃i
ω

, µ̃i(S̃) =
1
D
µi(S0S̃), ỹi = ωyi.

After dropping the tildes, we obtain the dimensionless (rescaled) system

ẋ1 = µ2(S)x2 + µ3(S)x3 + . . .+ µn(S)xn − x1,

ẋi = µi−1(S)xi−1 − µi(S)xi − xi, i = 2, 3, ..., n,
ẋn+1 = µn(S)xn − xn+1,

Ṡ = 1− S −
n∑
i=1

yiµi(S)xi,

where we may assume that yi > 1, i = 1, 2, ..., n by choosing a sufficiently large ω > 0. For notational ease,
we also introduce the following vector notation for our system:

Ẋ = [M(S)− In+1 + T (S)]X (5)
Ṡ = 1− S − yTM(S)X. (6)
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where XT = (x1, x2, . . . , xn, xn+1), yT = (y1, y2, ..., yn, 0),

M(S) =



µ1(S) 0 0 . . . 0 0
0 µ2(S) 0 . . . 0 0
0 0 µ3(S) . . . 0 0
...

...
. . . . . .

...
...

0 0 . . . . . . µn(S) 0
0 0 . . . . . . 0 0


and

T (S) =



−µ1(S) +µ2(S) +µ3(S) . . . +µn(S) 0
+µ1(S) −2µ2(S) 0 . . . 0 0

0 +µ2(S) −2µ3(S) . . .
...

...
0 0 +µ3(S) . . . 0 0
...

...
...

. . . −2µn(S) 0
0 0 . . . 0 +µn(S) 0


.

The terms M(S)X and T (S)X represent the net growth rate of cells and the aging effects of cell division,
respectively.

The main mathematical result of this paper establishes the global stability of the positive equilibrium of
the model in the case where the division rates are nearly proportional to each other.

Theorem 1. Let µ0(S) be smooth, zero at zero with µ′0(S) > 0 for S > 0. Suppose that

α1 ≥ α2 ≥ . . . αn > αn+1 ≡ 0,

and let F0(S) be as defined in (19).
If F0(1) > 1, then there exist ε∗ > 0 such that if ‖µi − αiµ0‖C0 < ε∗, then system (5) − (6) has a

unique positive steady state (X∗, S∗) which is globally asymptotically stable with respect to initial conditions
satisfying x(0) 6= 0 where x = (x1, ..., xn).

In Section 5 we model the effect of antibiotics on the coexistence steady state (X∗, S∗) under the as-
sumption that the growth rates µi(S, a) are decreasing functions of the level of the antibiotics a. We show in
Theorem 6 that if the level of antibiotics is smaller then critical level a∗ the coexistence steady state (X∗, S∗)
is still globally asymptotically stable, while if a > a∗ the washout steady state is globally asymptotically
stable.

It will sometimes turn out to be convenient to reduce system (5)− (6) to a (n+ 1)-dimensional system.
This is possible because xn+1 does not appear in any of the equations for S or xi for i ≤ n. Hence, we can
drop the xn+1-equation and focus on the following lower-dimensional system:

ẋ = [Mr(S)− In + Tr(S)]x (7)
Ṡ = 1− S − yTr Mr(S)x. (8)

where xT = (x1, x2, . . . , xn) and yTr = (y1, y2, . . . , yn), and letting µ(S) = (µ1(S), µ2(S), . . . , µn(S)):

Mr(S) = diag(µ(S)),

and

Tr(S) =



−µ1(S) +µ2(S) +µ3(S) . . . +µn−1(S) +µn(S)
+µ1(S) −2µ2(S) 0 . . . 0 0
0 +µ2(S) −2µ3(S) . . . 0 0
0 0 +µ3(S) . . . 0 0
...

...
...

. . . . . .
...

0 0 . . . 0 +µn−1(S) −2µn(S)


.
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3 Some general properties

3.1 Uniform boundedness

Lemma 1. The solutions of (5) − (6) are uniformly bounded. More precisely, there is some m∗ > 0 such
that for every solution (X(t), S(t)), there is a τ such that

(X(t), S(t)) ∈ L, for all t ≥ τ,

where
L := {(X,S) ∈ Rn+2

+ | 1TX + S ≤ m∗}.

Proof. Let us consider the evolution of the variable: m = S + 1TX, along an arbitrary solution (X(t), S(t))
of (5)− (6). Since yr − 1 ≥ 0, there holds that:

ṁ(t) = 1−m(t)− [yr − 1]TMr(S(t))x(t) ≤ 1−m(t),

and the conclusion follows by letting m∗ = 1.1.

3.2 Steady States

Define the following function:

F (S) = µ1(S)
n∑
j=2

j∏
k=2

µk(S)
1 + µk(S)

. (9)

Notice that F (S) is the product of the increasing function of S, µ1(S), and a sum of terms in which each
term is increasing (each term being the product of a finite number of increasing functions). Hence, F (S) is
increasing as well. Also note, F (0) = 0. We have:

Lemma 2. The washout state (0, 0, . . . , 0, 1)T is always a steady state of (5)− (6).
There are no other steady states on the boundary of Rn+2

+ .
If F (1) ≤ 1, then the washout steady state is the only steady state of (5)− (6), and if F (1) < 1, then the

washout steady state is hyperbolic and locally asymptotically stable.
If F (1) > 1, then the washout steady state is unstable, and (5) − (6) has a unique positive steady state

(X∗, S∗). Here, S∗ is the unique positive number for which F (S∗) = 1.

Proof. The first assertion is easily checked by a direct computation.
By (8), no steady state can have S∗ = 0, and so we can assume without loss of generality that S∗ > 0

from now on.
Let us now focus on finding steady states (X∗, S∗) with (non-negative) X∗ 6= 0. It suffices to look for

steady states (x∗, S∗) of system (7)− (8) because there is a bijective correspondence between steady states
of both systems: (x∗, S∗) is a steady state of (7) − (8) if and only if (X∗, S∗) is a steady state of (5) − (6)
with X∗ = (x∗, X∗n+1), where X∗n+1 = µn(S∗)x∗n.

For system (7)− (8), steady states (x∗, S∗) are solutions to:

x1 =
n∑
j=2

µj(S)xj (10)

xk =
µk−1(S)

1 + µk(S)
xk−1, k > 1 (11)

1− S = yTr Mr(S)x (12)

Since S > 0, equations (11) show that if xi = 0 for some i, then xj = 0 for all j, and hence we recover the
washout steady state. Consequently, there are no other steady states for (7)− (8) on the boundary of Rn+1

+ .
The same conclusion follows for (5)− (6) and the boundary of Rn+2

+ . So we assume that x > 0 henceforth.
We can recursively solve for each xk, k > 1 in terms of S and x1:

xk = x1

k−1∏
j=2

µj−1(S)
1 + µj(S)

, k > 1 (13)
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and substitute in (10), yielding:

x1 = x1µ1(S)
n∑
j=2

j∏
k=2

µk(S)
1 + µk(S)

,

and after dividing by x1 > 0 and recalling the definition of F (S) we find that this is equivalent with

F (S) = 1.

Since F is increasing, and since (12) requires that S ∈ (0, 1), there is no solution if F (1) ≤ 1, and a unique
solution S∗ ∈ (0, 1) if F (1) > 1. All x∗k, k > 1 can be determined (up to the factor x∗1) by plugging the
value of S∗ in (13), and the unique value of x∗1 then follows from (12). Summarizing, we have found the
unique positive steady state (x∗, S∗) of (7)− (8) (and consequently the unique positive steady state (X∗, S∗)
of (5) − (6)), provided that F (1) > 1. If F (1) ≤ 1 on the other hand, then the washout steady state is the
only steady state.

Linearization of (5)− (6) at the washout steady state yields the following Jacobian matrix:(
M(1)− In+1 + T (1) 0

−yTM(1) −1

)
,

hence the local stability properties follow from the location of the eigenvalues of the matrix Mr(1)−In+Tr(1).
This matrix can be re-written as follows (we are supressing the argument 1 of the various growth rate
functions µi):

Mr(1)− In + Tr(1) =


0 µ2 µ3 . . . µn
µ1 0 0 . . . 0
0 µ2 0 . . . 0
...

...
. . . . . .

...
0 0 0 . . . µn

−


1 0 0 . . . 0
0 (1 + µ2) 0 . . . 0
0 0 (1 + µ3) . . . 0
...

...
... . . .

...
0 0 0 . . . (1 + µn)

 =: A−D.

It is well-known [45, 13] that the eigenvalues of Mr(1) − In + Tr(1) are in the open left-half plane if the
spectral radius of the matrix AD−1 is less than 1. Conversely, if the spectral radius of AD−1 is larger than
1, then the matrix Mr(1)− In + T (1) has an eigenvalue with positive real part. We have that

AD−1 =


0 µ2

1+µ2

µ3
1+µ3

. . . µn

1+µn

µ1 0 0 . . . 0
0 µ2

1+µ2
0 . . . 0

...
...

. . . . . .
...

0 0 0 . . . µn

1+µn

 .

A straightforward calculation shows that the characteristic polynomial of AD−1 is:

p(λ) = λn − µ1

 n∑
j=2

(
j∏

k=2

µk
1 + µk

)
λn−j

 .
If p(1) < 0, or equivalently if F (1) > 1, then the spectral radius of AD−1 is strictly larger than 1, and then
the washout steady state is unstable. Conversely, if p(1) ≥ 0, or equivalently if F (1) ≤ 1, then the spectral
radius of AD−1 is not larger than 1. To see this, we argue by contradiction: If the spectral radius of AD−1,
which we denote as λ∗, were larger than 1, the Perron-Frobenius Theorem implies that λ∗ is an eigenvalue
of AD−1, and therefore p(λ∗) = 0. But dividing this equation by (λ∗)n yields:

1 = µ1

 n∑
j=2

(
j∏

k=2

µk
1 + µk

(λ∗)−j
)

< µ1

 n∑
j=2

(
j∏

k=2

µk
1 + µk

) ,
since λ∗ > 1. But this implies that p(1) < 0, a contradiction. If p(1) > 0, or equivalently if F (1) < 1, then
the washout steady state is hyperbolic and locally asymptotically stable.
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Remark 1. We can formally define the basic reproductive number R0 of the structured cell population to be
the spectral radius of the so-called next generation matrix AD−1 [45, 13]. In the proof of Lemma 2, we
showed that the basic reproductive number R0 is the unique positive eigenvalue of the matrix AD−1 due to
Perron-Frobenius Theorem. Furthermore, we showed that the following three statements are equivalent: (i)
R0 > 1, (ii) F (1) > 1, and (iii) system (5)− (6) has a unique positive steady state (X∗, S∗).

3.3 Extinction

System (5)− (6) has the following extinction property.

Theorem 2. Suppose that F (1) < 1. Then every solution (X(t), S(t)) of (5)− (6) is such that

lim
t→∞

(X(t), S(t)) = (0, 0, . . . , 0, 1),

where (0, 0, . . . , 0, 1) is the washout steady state.

Proof. Let (x(t), S(t)) be any solution of (7) − (8). By defining Br(1) = [Mr(1) − In + Tr(1)], its dom-
inant eigenvalue ρ := λ(Br(1)) is negative by the proof of Lemma 2. We observe that ρ = q − 1 < 0
where q < 1 is the dominant eigenvalue of the matrix Mr(1) + Tr(1). We claim that q > 0. To see
this, let vT = (v1, v2, ..., vn) > 0 be an eigenvector of the matrix Mr(1) + Tr(1) corresponding to q.
Then (1, 1, . . . , 1)(Mr(1) + Tr(1)) = (µ1(1), µ2(1), . . . , µn−1(1), 0), and multiplying this by v, we find that
q(1, 1, . . . , 1)v > 0, which establishes the claim.

Let wT = (w1, w2, ..., wn) > 0 be a left eigenvector of the matrix Mr(1) + Tr(1) corresponding to q. Due
to the special form of this matrix, we have that

µn(1)(w1 − wn) = qwn,

µn−1(1)(w1 − wn−1 + wn) = qwn−1,

...
µ2(1)(w1 − w2 + w3) = qw2,

µ1(1)w2 = qw1,

or equivalently,

w1 − wn =
qwn
µn(1)

> 0,

w1 − wn−1 + wn =
qwn−1

µn−1(1)
> 0,

...
w1 − w2 + w3 =

qw2

µ2(1)
> 0,

w2 =
qw1

µ1(1)

It follows that since ρ < 0 there is δ > 0 sufficiently small, such that

δ(w1 − wn) < −ρ
2
wn,

δ(w1 − wn−1 + wn) < −ρ
2
wn−1,

...
δ(w1 − w2 + w3) < −ρ

2
w2,

δw2 < −ρ
2
w1.

Finally, let ε > 0 be sufficiently small so that

µi(1 + ε) ≤ µi(1) + δ, ∀i = 1, 2, ..., n.
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Now consider the auxiliary function V (t) :=
∑
i wixi(t). Differentiating V along (x(t), S(t)), we find that

V̇ = w2µ1(S)x1 + (w1 − w2 + w3)µ2(S)x2 + ...+ (w1 − wn)µn(S)xn −
∑
i

wixi.

Note that all combinations of wi’s are strictly positive.
We see that Lemma 1 is still valid if m∗ = 1 + ε for all ε > 0 by re-examining its proof, and thus for all

sufficiently large t, we have that S(t) < 1 + ε. Hence

V̇ ≤ w2µ1(1 + ε)x1 + (w1 − w2 + w3)µ2(1 + ε)x2 + ...+ (w1 − wn)µn(1 + ε)xn −
∑
i

wixi.

This implies

V̇ ≤ w2(µ1(1) + δ)x1 + (w1 − w2 + w3)(µ2(1) + δ)x2 + ...+ (w1 − wn)(µn(1) + δ)xn −
∑
i

wixi.

Rearranging the terms, and using the fact that ρ is an eigenvalue of Br(1), we have

V̇ ≤ ρ
∑
i

wixi + δw2x1 + δ(w1 − w2 + w3)x2 + ...+ δ(w1 − wn)xn ≤
ρ

2

∑
i

wixi =
ρ

2
V.

Since ρ < 0, V (t) → 0 as t → +∞. LaSalle’s invariance principle implies that (x(t), S(t)) converges to the
largest invariant set contained in the set Ω = {(x, S) ∈ Rn+1

+ | vTx = 0} = {(x, S) ∈ Rn+1
+ |x = 0}, the

non-negative S-axis. Clearly, the largest invariant set contained in Ω is the steady state {(0, 0, . . . , 0, 1)},
and therefore (x(t), S(t)) converge to this steady state. But then all solutions (X(t), S(t)) of (5) − (6) also
converge to the washout steady state because Ẋn+1 = µn(S(t))xn(t)−Xn+1, so that Xn+1(t) converges to
0 as well.

3.4 Uniform persistence

System (5)− (6) has the following persistence property.

Theorem 3. Suppose that F (1) > 1. Then there exists ∆ > 0 such that

lim inf
t→+∞

1Tx(t) ≥ ∆

for all solutions (X(t), S(t)) = (x(t), Xn+1(t), S(t)) of the system (5)− (6) with 1Tx(0) > 0.

Proof. The proof is based on the fluctuation method [16, 41], coupled with the results from [42] which
demonstrate when uniform weak repellors are uniform strong repellors. First we introduce some notation: For
a scalar function f(t), t ∈ R+, we denote the (extended) real numbers lim supt→∞ f(t) and lim inft→∞ f(t)
as f∞ and f∞ respectively. Letting Br(1) = [Mr(1) − In + Tr(1)], its dominant eigenvalue λ(Br(1)) is
positive by the proof of Lemma 2. Let ε > 0 be small enough so that the dominant eigenvalue of the matrix
B̃r = [Mr(1− ε)− In + T̃r] is positive, where

T̃r =



−µ1(1 + ε) +µ2(1− ε) +µ3(1− ε) . . . +µn−1(1− ε) +µn(1− ε)
+µ1(1− ε) −2µ2(1 + ε) 0 . . . 0 0
0 +µ2(1− ε) −2µ3(1 + ε) . . . 0 0
0 0 +µ3(1− ε) . . . 0 0
...

...
...

. . . . . .
...

0 0 0 . . . +µn−1(1− ε) −2µn(1 + ε)


.

Such ε > 0 exists because λ(Br(1)) > 0 and by continuity of eigenvalues.
Assume that the quantity 1Tx is not uniformly weakly persistent for (7)− (8) . Then there is a solution

(x(t), S(t)) with x(0) 6= 0 such that
(1Tx)∞ ≤ ε

2γ
, (14)
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where γ := maxi Y −1
i µi(1). Equation (8) implies that S∞ ≤ 1. By the “fluctuation method” [41](Proposition

A.22) it follows that

0 ≥ lim inf
t→∞

(
1− S∞ − yTr Mr(S∞)x(t)

)
≥ lim inf

t→∞

(
1− S∞ − yTr Mr(1)x(t)

)
≥ lim inf

t→∞

(
1− S∞ − γ(1Tx(t))

)
≥ 1− S∞ − γ(1Tx)∞

≥ 1− S∞ −
ε

2
,

where we used (14) to establish the last inequality. Therefore S∞ ≥ 1− ε/2, and hence S(t) ≥ 1− ε for all
sufficiently large t. Also, by Lemma 1, we have S(t) ≤ 1 + ε for all sufficiently large t. Then (7) implies that
for all sufficiently large t:

ẋ(t) ≥ B̃rx(t).

Since λ(B̃r) > 0, all solutions of ż = B̃rz with z(0) 6= 0 and z(0) ≥ 0 diverge as t → ∞, and thus by
a standard comparison argument for monotone system [37] the same is true for x(t). This contradicts
boundedness of x(t), see Lemma 1.

We have established that 1Tx is uniformly weakly persistent, or using the terminology of [42], that
X2 := {(x, S) ∈ Rn+1

+ | 1Tx = 0} is a uniform weak repellor for X1 := {(x, S) ∈ Rn+1
+ | 1Tx > 0}. Using

Lemma 1, it now follows from Theorem 1.4 of [42], that X2 is in fact a uniform strong repellor for X1. Since
Ẋn+1 = µn(S(t))xn(t) −Xn+1, and using the fact that S(t) ≥ 1 − ε for all sufficiently large t, the same is
then true for solutions (X(t), S(t)) of (5)− (6) with 1Tx(0) > 0. This concludes the proof.

4 Global stability results

4.1 Local and global stability when all µi are proportional to µ0.

Specializing (5)− (6) and (7)− (8) to the case where µi(S) = αiµ0(S), with

α1 ≥ α2 ≥ . . . αn > αn+1 ≡ 0,

yields the following simplified equations:

Ẋ = B(S)X (15)
Ṡ = 1− S − µ0(S)(yT M̃X), (16)

where XT = (x,Xn+1), and

B(S) = µ0(S)


α1 0 . . . 0 0
0 α2 . . . 0 0
...

...
. . .

...
...

0 0 . . . αn 0
0 0 . . . 0 0

− In+1 + µ0(S)



−α1 α2 α3 . . . αn 0
α1 −2α2 0 . . . 0 0
0 α2 −2α3 . . . 0 0
0 0 α3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . αn 0


,

=: µ0(S)M̃ − In+1 + µ0(S)T̃

and

ẋ = Br(S)x (17)
Ṡ = 1− S − µ0(S)(yTr M̃rx), (18)
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respectively, where Br(S) = µ0(S)M̃r + µ0(S)T̃r − In,

M̃r =


α1 0 . . . 0
0 α2 . . . 0
...

...
. . .

...
0 0 . . . αn

 , T̃r =



−α1 α2 α3 . . . αn
α1 −2α2 0 . . . 0
0 α2 −2α3 . . . 0
0 0 α3 . . . 0
...

...
...

. . .
...

0 0 . . . αn−1 −2αn


.

Recalling (9), we define

F0(S) = α1µ0(S)
n∑
j=2

j∏
k=2

αkµ0(S)
1 + αkµ0(S)

. (19)

Then assuming that F0(1) > 1, it follows from Lemma 2 that (15) − (16) and (17) − (18) have a unique
positive steady state (X∗0 , S

∗
0 ) and (x∗0, S

∗
0 ) respectively. We show that these are hyperbolic and locally

asymptotically stable.

Lemma 3. Let µ0(S) be smooth, zero at zero, with µ′0(S) > 0 for S > 0. If F0(1) > 1, then the steady state
(X∗0 , S

∗
0 ) is hyperbolic and locally asymptotically stable for (15)− (16).

Proof. In this particular case, the positive steady state (X∗0 , S
∗
0 ) satisfies:

B(S∗0 )X∗0 = 0 (20)
µ0(S∗0 )(yT M̃X∗0 ) = 1− S∗0 (21)

The first equation implies that 0 is an eigenvalue of B(S∗0 ), but since B(S∗0 ) is reducible, it is not immediately
clear that it is the dominant eigenvalue, nor that it is simple. To see that this is indeed the case, notice that
the triangular structure of B(S∗0 ) implies that its spectrum σ(B(S∗0 )) is given by:

σ(B(S∗0 )) = σ(Br(S∗0 )) ∪ {−1},

and that (20) is equivalent to:

Br(S∗0 )x∗0 = 0 and (X∗0 )n+1 = µ0(S∗0 )(x∗0)n,

where X∗0 = (x∗0, (X
∗
0 )n+1). The matrix Br(S∗0 ) is quasi-monotone and irreducible, and since x∗0 is a positive

vector, it follows that 0 is the real, simple and dominant eigenvalue of Br(S∗0 ). Consequently, 0 is also a
simple and dominant eigenvalue of matrix B(S∗0 ).

Linearization of (15)− (16) at (X∗0 , S
∗
0 ) yields the following block-matrix:(

B(S∗0 ) µ′0(S∗0 )(M̃ + T̃ )X∗0
−µ0(S∗0 )yT M̃ −1− µ′0(S∗0 )(yT M̃X∗0 )

)
=

(
B(S∗0 ) µ′0(S∗0 )

µ0(S∗0 )X
∗
0

−µ0(S∗0 )yT M̃ −1− µ′0(S∗0 )
µ0(S∗0 ) (1− S∗0 )

)
,

where we used (20) and (21). Now, we decompose the matrix as follows:

A+ kbcT :=
(

B(S∗0 ) 0
−µ0(S∗0 )yT M̃ −1

)
+
µ′0(S∗0 )
µ0(S∗0 )

(
X∗0

−(1− S∗0 )

)(
0 0 . . . 0 1

)
.

The spectrum of the (n+ 2)× (n+ 2) matrix A is given by

σ(A) = σ(B(S∗0 )) ∪ {−1},

and thus all eigenvalues of A have negative real parts, except for the simple eigenvalue at 0. Also notice that
the parameter

k =
µ′0(S∗0 )
µ0(S∗0 )

is positive. We will show that for all k > 0, the eigenvalues of A + kbcT have negative real parts. To see
this, we perform a similarity transformation as follows. Let

P =
(
b v1 v2 . . . vn+1

)
,
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where v1, . . . , vn+1 are chosen so that

span{b} ⊕ span{v1, v2, . . . , vn+1} = Rn+2.

Then using (20)− (21) it follows that:

P−1AP + kP−1bcTP =
(

0 ∗
0 Ã

)
+ k

(
−(1− S∗0 ) ∗

0 0

)
,

where the ∗’s don’t matter for our purposes, and the eigenvalues of the (n + 1) × (n + 1) matrix Ã are −1
and n eigenvalues that belong to the open left-half plane (Indeed, this follows from similarity which implies
that σ(A) = {0} ∪ σ(Ã), and since σ(A) = σ(B(S∗0 )) ∪ {−1}; moreover, we have already shown that B(S∗0 )
has a simple dominant eigenvalue 0. It follows that the spectrum of A + kbcT includes −k(1 − S∗0 ), which
is negative because k > 0 and 1− S∗0 > 0 by (21), and the eigenvalues of Ã, all of which have negative real
part. This concludes the proof.

Theorem 4. Let µ0(S) be smooth, zero at zero, with µ′0(S) > 0 for S > 0. If F0(1) > 1, then the positive
steady state (X∗0 , S

∗
0 ) is globally asymptotically stable for (15) − (16) with respect to solutions (X(t), S(t))

satisfying 1Tx(0) > 0.

Proof. The local asymptotic stability follows from Lemma 3. Let us first show that the positive equilib-
rium (x∗0, S

∗
0 ) of (17)− (18) is globally asymptotically stable with respect to solutions (x(t), S(t)) satisfying

1Tx(0) > 0. This follows from Theorem 7 in the Appendix because system (17)− (18) fits the framework of
model (30)− (31) with the following choice of the quasi-positive and irreducible matrix Q:

Q =



0 α2 α3 . . . αn−1 αn
α1 −α2 0 . . . 0 0
0 α2 −α3 . . . 0 0
0 0 α3 . . . 0 0
...

...
...

. . . . . .
...

0 0 0 . . . αn−1 −αn


. (22)

By the cascade structure of system (15) − (16) (the cascade consists of system (17) − (18) which drives
system Ẋn+1 = −Xn+1 + µ0(S(t))xn(t) via xn(t) and S(t)) it follows that the positive equilibrium (X∗0 , S

∗
0 )

of (15)− (16) is globally asymptotically stable for solutions (X(t), S(t)) satisfying 1Tx(t) > 0.

4.2 A persistence property, uniform in model parameters

Before we can prove the main result we need to establish the following persistence result.

Theorem 5. Let µ0(S) be smooth, with µ0(0) = 0, µ′0(S) > 0 for S > 0, and suppose that F0(1) > 1. Then
there exist ε > 0, ∆ > 0, and a forward invariant set K ⊂ {(X,S)|X,S ≥ 0, 1Tx ≥ ∆}, such that for any
solution (X(t), S(t)) of the system (5) − (6) with ‖µi − αiµ0‖C0 < ε and 1Tx(t) > 0, there exists a τ > 0
such that (x(t), S(t)) ∈ K for all t > τ .

Proof. By the cascade structure of (5) − (6) it suffices to prove the result for solutions of system (7) − (8).
For notational convenience, we first re-write the relevant part of the unperturbed system (17)− (18) as

ẋ = [µ0(S)Q− In]x (23)
Ṡ = 1− S − µ0(S)yTr M̃rx, (24)

where Q is defined in (22), and the corresponding perturbed system (7)− (8) as

ẋ = [µ0(S)Q+Rr(S)− In]x (25)
Ṡ = 1− S − µ0(S)yTr M̃rx− yTr Dr(S)x, (26)

where we introduced the matrices

Rr(S) := Mr(S) + Tr(S)− µ0(S)Q, Dr(S) := Mr(S)− µ0(S)M̃r.
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The matrix Q is quasi-positive and irreducible with principal eigenvalue r1 > 0 and the principal left
eigenvector wT > 0. By scaling w if necessary, we may assume that the vector r1w

T − yTr M̃r is nonnegative.
In addition, we claim that the inequality F0(1) > 1 implies that r1µ0(1) > 1. To see this, we note that by
Lemma 2 there exists a positive steady state (x∗0, S

∗
0 ) for (23) − (24). In particular, there is x∗0 > 0 and

S∗0 ∈ (0, 1) such that
µ0(S∗0 )Qx∗0 = x∗0,

and thus
r1 =

1
µ0(S∗0 )

.

Since S∗0 < 1 the monotonicity of µ0(S) implies that r1µ0(1) > 1, which establishes our claim.
We proceed by obtaining several auxiliary estimates. We let | · | denote the Euclidean norm on Rn and

let ‖ · ‖ denote the induced matrix norm. Observe that for any nonnegative vector x ∈ Rn,

1Tx ≥ |x| ⇒ wTx ≥ wmin(1Tx) ≥ wmin|x| ⇒ |x| ≤
1

wmin
wTx.

Hence,

|w||x| ≤ |w|
wmin

wTx,

which in turn implies that

|wTRr(S)x| ≤ ‖Rr(S)‖|w||x| ≤ ‖Rr(S)‖ |w|
wmin

wTx.

Similarly, we find that

|yTr Dr(S)x| ≤ ‖Dr(S)‖ |yr|
yr,min

yTr x ≤ ‖Dr(S)‖ |yr|yr,max

yr,minwmin
wTx.

Here, wmin (respectively wmax) denote the smallest (respectively the largest) component of the vector w.
The continuity of µ0(S) and the inequality r1µ0(1) > 1 imply that there exists a sufficiently small δ > 0

such that

r1µ0

(
1

1 + 4δ

)
− 1− δ > 0. (27)

Now we choose ε > 0 sufficiently small, so that the inequalities

‖Rr(S)‖ |w|
wmin

< δ, ‖Dr(S)‖ |yr|yr,max

yr,minwmin
< δ

hold as long as ‖µi − αiµ0‖C0 < ε.
Introducing m(t) := S(t) + wTx(t), we find that for (25)− (26)

ṁ = 1− S − wTx+ µ0(S)(r1w
T − yTr M̃r)x− yTr Dr(S)x+ wTRr(S)x.

Since r1w
T − yT M̃r ≥ 0, we obtain the inequality

ṁ ≥ 1− S − wTx− |yTr Dr(S)x| − |wTRr(S)x| ≥ 1− S − wTx− 2δwTx,

hence
ṁ ≥ 1− (1 + 2δ)S − (1 + 2δ)wTx = 1− (1 + 2δ)m.

The latter inequality implies that all solutions of the perturbed system (25)-(26) eventually enter the forward
invariant set

K0 :=
{

(x, S)|x ≥ 0, S ≥ 0, m ≥ 1
1 + 4δ

}
.

Since all solutions of (25)-(26) satisfy

wT ẋ = (r1µ0(S)− 1)wTx+ wTRr(S)x,
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the monotonicity of µ0(S) implies that in K0, the following inequality holds:

wT ẋ ≥
(
r1µ0

(
1

1 + 4δ
− wTx

)
− 1− δ

)
wTx.

By the monotonicity of µ0(S) and the inequality (27), there exists ∆0 > 0 such that

r1µ0

(
1

1 + 4δ
− z
)
− 1− δ > ∆0 > 0,∀z ∈ (0,∆0),

hence all solutions of (25)-(26) with wTx > 0 in K0 eventually enter the forward invariant set

K := {(x, S) ∈ K0|wTx ≥ ∆0}.

The claim of the Theorem follows by observing that 1Tx > 0 implies wTx > 0, and that wTx ≥ ∆0 implies
1Tx ≥ ∆0

wmax
:= ∆ > 0.

4.3 Proof of Theorem 1

The proof is an application of Theorem 2.2 in [38].
First notice that if µi(S) = αiµ0(S) for all i = 1, 2, ..., n, then system (5)−(6) has a unique positive steady

state (X∗0 , S
∗
0 ) by Lemma 2 which is hyperbolic and locally asymptotically stable by Lemma 3. Moreover,

all solutions with x(0) 6= 0 converge to (X∗0 , S
∗
0 ) by Theorem 4.

By Theorem 5 and Lemma 1, there exist ε > 0 and ∆ > 0 such that whenever ‖µi − αiµ0‖C0 < ε, all
solutions of (5)− (6) with x(0) 6= 0 eventually enter the compact invariant set

D = K ∩ L.

The conclusion now follows immediately from Theorem 2.2 in [38].

5 Application of antibiotics

In a continuous culture, the application of antibiotics is a complex process involving the pharmaco-dynamic
and pharmaco-kinetic processes. For purposes of this paper, we will only study the primary effect of the
antibiotic treatment which lowers the growth/division rate of all cells. The cells in different senescence
classes may be affected differently. Specifically, we introduce a parameter a ∈ R+ that models the strength
of the antibiotic treatment. The resulting growth rates of cells in the ith senescent class are given by µi(S, a),
where µi : R+ × R+ → R+ are such that for all (S, a) ∈ R+ × R+

µi(0, a) = 0,
∂µi
∂S

(S, a) > 0,
∂µi
∂a

(S, a) < 0. (28)

We define the auxiliary function

G(S, a) := µ1(S, a)
n∑
j=2

j∏
k=2

µk(S, a)
1 + µk(S, a)

. (29)

TG I think we also need to assume
µi(S, 0) = µi(S)

The line below should be G(S, 0) = F (S).
Recalling definition (9), we note that G(S, a) = F (S).
The response of the microbial population to antibiotic treatment is described in the following Theorem.

Theorem 6. Model (1)-(4) has the following properties.

1. There exists a unique extended real number a∗ ∈ [0,+∞] such that for all a ≥ a∗ the only equilibrium of
(1)-(4) is the washout steady state. For a < a∗, (1)-(4) admits a unique positive coexistence equilibrium
E(a).
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2. If a ≥ a∗, then all positive solutions of (1)-(4) converge to the washout steady state.

3. For any function µ0(S) (smooth, zero at zero with µ′0(S) > 0) and any collection of nonnegative
numbers

α1 ≥ α2 ≥ . . . αn > αn+1 ≡ 0,

such that F0(1) > 1 (here, F0(S) is as defined in (19)), there exists ε∗ > 0 such that if ‖µi−αiµ0‖C0 <
ε∗, then E(a) is a globally asymptotically stable equilibrium which attracts all positive solutions of
(1)− (4).

Proof. Statements (2) and (3) follow directly from Theorems 2 and 1, respectively. To prove (1), we observe
that the equilibrium value Sa must satisfy G(Sa, a) = 1. Due to (28) and (29),

∂G

∂S
=
∑
i

∂G

∂µi

∂µi
∂S

> 0,
∂G

∂a
=
∑
i

∂G

∂µi

∂µi
∂a

< 0, since
∂G

∂µi
> 0.

In particular, the function G(1, a) is strictly decreasing on R+. There exists a unique value a∗ such that
G(1, a∗) = 1. If G(1, a) > 1 for all a ∈ R+, we define a∗ = +∞. For a given a ∈ [0, a∗), we have that
G(1, a) > 1 and G(0, a) = 0, hence the equation G(S, a) = 1 admits a unique solution S = Sa ∈ (0, 1) for
which all x∗k, k > 1 can be determined (up to the factor x∗1) by plugging the value of Sa in (13), and the
unique value of x∗1 then follows from (12). If, on the contrary, a ≥ a∗, then G(1, a) ≤ 1, and the equation
G(S, a) = 1 has no solutions in the interval (0, 1), in which case no positive equilibrium exists.

Acknowledgments. We thank the anonymous referees and the handling editor for their valuable com-
ments that helped us to improve this manuscript. The research of PDL, TG, and SSP is partially supported
by NSF.

Appendix

Consider

ẋ = [µ0(S)Q− In]x (30)
Ṡ = 1− S − µ0(S)yTr x, (31)

where Q is a quasi-positive and irreducible matrix and yTr = (y1, y2, . . . , yn). As before, we assume that
µ0 is smooth, zero at zero and µ′0(S) > 0 for S > 0. Denote the real dominant eigenvalue of Q by r1 and
let v1 be a corresponding positive eigenvector (Qv1 = r1v1). Also let w1 be a positive left eigenvector of Q
corresponding to r1 (wT1 Q = r1w

T
1 ). Note that all non-negative solutions of (30)−(31) are bounded. Indeed,

letting V (x, S) = wT1 x+ S, we have that

dV

dt
= 1− V + µ0(S)(r1w1 − yr)Tx.

Then dV/dt ≤ 1−V if r1 ≤ 0, but also if r1 > 0 (by re-scaling the positive vector w1 so that r1w1− yr < 0).
This implies boundedness of solutions of (30)− (31).

Consider the auxiliary system
β̇ = Qβ − (1TQβ)β, β ∈ Rn. (32)

Lemma 4. All non-zero and non-negative solutions of (32) satisfy

lim
t→∞

β(t) =
v1

1T v1
.

Proof. Let y(t) be a non-zero and non-negative solution of the linear system ẏ = Qy, and let the vector β(t)
be defined via the relation

(1T y(t))β(t) = y(t). (33)

Differentiating both sides of this equation, we obtain

(1TQy(t))β(t) + (1T y(t))β̇(t) = ẏ(t) = Qy(t).
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Substituting (1T y(t))β(t) = y(t), and dividing out the quantity (1T y(t)), results in

β̇(t) = Qβ(t)− (1TQβ(t))β(t),

hence β(t) is a non-zero and non-negative solution of (32). Using the eigenfunction expansion, we can
represent y(t) as

y(t) = c1e
r1tv1 +

∑
j≥2

cje
rjtvj ,

where c1 > 0 and r1 > <(rj), j ≥ 2. By (33) we have

e−r1t(1T y(t))β(t) = e−r1ty(t),

or equivalently c1(1T v1) +
∑
j≥2

cje
(rj−r1)t(1T vj)

β(t) = c1v1 +
∑
j≥2

cje
(rj−r1)tvj .

It follows immediately that
lim
t→∞

β(t) =
c1v1

c1(1T v1)
=

v1

1T v1
.

Theorem 7. Assume that system (30) − (31) has a positive equilibrium point (x∗0, S
∗
0 ). Then all solutions

(x(t), S(t)) of (30)− (31) with 1Tx(t) > 0, converge to (x∗0, S
∗
0 ).

Proof. Let the vector α(t) be defined via the relation (1Tx(t))α(t) = x(t).Differentiating both sides of this
equation, we obtain

(µ0(S(t))(1TQ)x(t)− (1Tx(t)))α(t) + (1Tx(t))α̇i(t) = µ0(S(t))Qx(t)− x(t).

After canceling the equal terms (1Tx(t))α(t) = x(t) from both sides and dividing out the common factor
(1Tx(t)), we obtain the equivalent system

µ0(S(t))(1TQα(t))α(t) + α̇(t) = µ0(S(t))Qα(t).

Introducing the new time τ so that
d

dτ
=

1
µ0(S(t))

d

dt
,

we find that the functions αi(τ) satisfy (32). Since there exist m,M such that 0 < m ≤ µ0(S(t)) ≤ M , it
follows that t→ +∞ as τ → +∞. Hence by Lemma 4,

lim
t→+∞

α(t) = lim
τ→+∞

α(τ) = α∗ > 0.

The dynamics of the original system (30)− (31) is asymptotic to the dynamics of the limiting system

ż = (aµ0(S)− 1) z, (34)
Ṡ = 1− S − bµ0(S)z, (35)

where z = 1Tx, a = 1TQα∗ = r1(1Tα∗) = r1 > 0, and b = yTr α
∗ > 0. Linearization at the positive

equilibrium (z∗0 , S
∗
0 ) of the limiting system (34)− (35) yields:(

0 aµ′0(S∗0 )
−bµ0(S∗0 ) −1− bµ′0(S∗0 )z∗0

)
which has negative trace and positive determinant. Thus, (z∗0 , S

∗
0 ) is hyperbolic and asymptotically stable

for (34)− (35). Moreover, system (34)− (35) admits the following Lyapunov function on {(z, S) ∈ R2
+|z >

0, S > 0}:

V (z, S) = c

∫ z

z∗0

s− z∗0
s

ds+
∫ S

S∗0

µ0(s)− µ0(S∗0 )
µ0(s)

ds,
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where c = b/a > 0.
Indeed,

dV

dt
= c

(
z − z∗0
z

)
z(aµ0(S)− 1) +

(
µ0(S)− µ0(S∗0 )

µ0(S)

)
(1− S − bµ0(S)z)

= −cz∗0(aµ0(S)− 1) +
(
µ0(S)− µ0(S∗0 )

µ0(S)

)
(1− S) + z(−c+ µ0(S∗0 )b)

= −bz∗0(µ0(S)− µ0(S∗0 )) +
(
µ0(S)− µ0(S∗0 )

µ0(S)

)
(1− S) + 0

=
(
µ0(S)− µ0(S∗0 )

µ0(S)

)
(1− S − bµ0(S)z∗0) ≤ 0,

since both factors in the last expression are 0 if and only if S = S∗0 , and have opposite signs when S < S∗0
and S > S∗0 . By Lasalle’s invariance principle, all solutions (z(t), S(t)) of (34)− (35) with z(t) > 0, converge
to the largest invariant set where S = S∗0 , which is the equilibrium (z∗0 , S

∗
0 ).

Hence, the positive equilibrium is globally asymptotically stable with respect to solutions (z(t), S(t)) for
which z(t) > 0, whenever it exists. A standard application of the theory of asymptotically autonomous
systems (see e.g. Appendix F in [37]) concludes the proof.
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