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Abstract
We use Conley index theory to develop a general method used to prove

existence of periodic and heteroclinic orbits in a singularly perturbed sys-
tem of ODE’s. This is a continuation of the authors’ earlier work [9] which
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is now extended to systems with multidimensional slow variables. The key
new idea is the observation that the Conley index in fast-slow systems has
a cohomological product structure. The factors in this product are slow
index, which captures information about the flow in the slow direction
transverse to the slow flow, and the fast index, which is analogous to the
Conley index for fast-slow systems with one-dimensional slow flow [9].

Key words: Fast-slow system, periodic and heteroclinic orbits, Conley
index

1 Introduction

Consider a family of differential equations on Rn = Rk ×R! given by

ẋ = f(x, y), ẏ = εg(x, y), (1.1)

where f : Rk ×R! → Rk and g : Rk × R! → R! are C1 and ε ≥ 0. Since ε is
assumed to be small there are effectively two time scales for this system. The
fast dynamics is governed by ẋ = f(x, y) and the slow dynamics by ẏ = g(x, y)
restricted to f(x, y) = 0. Concatenations of solutions of the fast and slow
dynamics are called singular solutions. The mathematical challenge is to identify
conditions for which there exists an ε0 > 0 such that for all 0 < ε ≤ ε0 there are
solutions to the full system (1.1) which lie near the singular solution.

Since these systems arise frequently in applications, problems of this nature
have received considerable attention. A particularly powerful technique, called
geometric singular perturbation theory, was developed by N. Fenichel, C. Jones
and N. Kopell1. Based on extensions of the classical concepts of normal hyper-
bolicity and transversality, when applicable it provides sharp results.

Our goal is to develop an alternative approach, which we believe is more
computable, using topological rather then geometrical methods. As will be ex-
plained in detail later, the ideas of the Conley index theory ([1, 3, 15, 19]) play
a prominent role in this program; changes in the index substitute for transver-
sality, and normal hyperbolicity is replaced by isolation. In an earlier paper
[9], we developed a theory for fast-slow systems with a one dimensional slow
variable (" = 1). In this paper we go a step further and provide a method which
is applicable to systems with a slow variable of arbitrary dimension, and from
which one can conclude the existence of heteroclinic or periodic orbits. This
requires a fundamentally new idea concerning the decomposition of the Conley
index into slow and fast indices. In the vocabulary of the current paper, in the
one dimensional slow manifold case, the Conley index consists only of the fast
index. We hasten to add that we are not claiming credit for the idea of using
topological tools in singular perturbation problems. In fact, we will include
some isolated elements of the history of the approach not only to put the results

1The reader is referred to [1] for a survey and further references on the geometric per-
turbation theory. The closest analogy to the material of this paper is the exchange lemma
introduced in [11].
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of this paper into it proper context, but also to provide a reference for some of
the more abstract ideas that are introduced here.

With this in mind, let us begin by introducing some of the fundamental ideas
from the index theory. Consider for the moment an arbitrary flow γ : R×X →
X defined on X , a locally compact metric space. A compact set N ⊂ X is called
an isolating neighborhood if

Inv(N, γ) := {x ∈ X | γ(R, x) ⊂ N} ⊂ intN

where intN denotes the interior of N . If S = Inv(N, γ) for some isolat-
ing neighborhood N , then S is referred to as an isolated invariant set. The
Conley index is an index of isolating neighborhoods with the property that if
Inv(N, γ) = Inv(N ′, γ), then the Conley index of N equals the Conley index of
N ′. In this way, one may also view the Conley index as an index of isolated
invariant sets.

To compute the Conley index requires the existence of an index pair. To be
more precise, let S be an isolated invariant set. A pair of compact sets

(N, L) with L ⊂ N is an index pair for S if:

(1) S = Inv(cl(N \ L)) and N \ L is a neighborhood of S;

(2) L is positively invariant in N , i.e. given x ∈ L and γ([0, t], x) ⊂ N then
γ([0, t], x) ⊂ L;

(3) L is an exit set for N , i.e. given x ∈ N and T > 0 such that γ(T, x) (∈ N ,
there is a t ∈ [0, T ] such that γ([0, t], x) ⊂ N and γ(t, x) ∈ L.

The cohomological Conley index of S is given in terms of the relative Alexander-
Spanier cohomology of the index pair; that is,

CH∗(S) := H̄∗(N, L).

Given an isolating neighborhood, its Conley index carries some information
on the dynamics of the associated isolated invariant set. In our case we will make
use of theorems in which the cohomological Conley index guarantees the exis-
tence of periodic orbits ([14, Theorem 1.3]) and heteroclinic orbits ([1, Theorem
3.3.1]).

Returning to the context of fast-slow systems, for fixed ε ≥ 0, the solutions
to system (1.1) generate a flow

ϕε : R×Rn → Rn
.

In the special case ε = 0, (1.1) has a simpler form, since y becomes a constant,
and hence, can be viewed as a parameter for the flows on Rk. Namely, for each
y ∈ R!, there exists a flow ψy : R×Rk → Rk given by

(ψy(t, x), y) = ϕ0(t, x, y). (1.2)
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For a fixed bounded region Y ⊂ R!, the parameterized flow

ψY : R×Rk × Y → Rk × Y

is defined by ψY (t, x, y) := (ψy(t, x), y) for y ∈ Y .
Another way to simplify (1.1) is to first rescale time by τ = εt and then in

the new equations let ε = 0:

0 = f(x, y), ẏ = g(x, y). (1.3)

The set of points (x, y) ∈ Rk+! with f(x, y) = 0 is called a slow manifold of
the problem (1.1). If ∂f∂x is invertible for y in some bounded set Y , then by the
implicit function theorem, there is a function x = m(y) such that f(m(y), y) = 0.
The set M := {(x, y) ∈ Rk+! | x = m(y), y ∈ Y } denotes a branch of the slow
manifold over Y . Solutions of

ẏ = g(m(y), y)

determine the slow flow ϕslow
M : R×M → M . If the branch M is clear from the

context, the slow flow is denoted by ϕslow(y, t).

Example 1.1 As an extremely simple example that begins to suggest the phi-
losophy behind our approach consider the fast-slow system

ṙ = r(1 − r), θ̇ = ε (1.4)

presented in polar coordinates which for each fixed value of ε > 0 generates a
flow ϕε : R×R2 → R2. For ε = 0, θ can be viewed as a parameter, leading to
the family of flows ψθ : R× [0,∞) → [0,∞). Clearly, the slow manifold is given
by M = {(r, θ) | r = 1}. Observe that M becomes a periodic orbit for ε > 0.

Turning now to the language of the Conley index, the sets

N =
{
(r, θ) | 1

2 ≤ r ≤ 3
2

}
and L =

{
(r, θ) | r = 1

2 or r = 3
2

}

define an index pair for all values of ε ≥ 0. A simple direct calculation shows
that

CHk(Inv(N,ϕε);Z2) ∼=
{

Z2 if k = 1, 2
0 otherwise,

for all ε ≥ 0. This combined with the fact that for ε > 0 there exists a Poincaré
section for N allows us to apply [14, Theorem 1.3] to prove that Inv(N,ϕε)
contains a periodic orbit for all ε > 0.

While all the information in the previous paragraph is correct, it fails to
indicate how the theory is used in the context of a fast-slow system. Thus we
repeat the calculations beginning with information that naturally arises from
the singular flow ϕ0. Consider a point K = (1, θ0) ∈ M . For the flow ψθ0 ,

N(θ0) =
{
r | 1

2 ≤ r ≤ 3
2

}
and L(θ0) =

{
r | r = 1

2 or r = 3
2

}
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is an index pair for K. Furthermore,

CHk(K;Z2) ∼=
{

Z2 if k = 1
0 otherwise.

Observe that the isolating neighorhood N is the product of the slow manifold M
and an isolating neighborhood for a point on the slow manifold under the fast
flow. More generally, we can describe N as a disk bundle with base consisting
of the slow manifold where the dynamics on each fiber is determined by the
fast flow. In particular, we can apply the Thom isomorphism theorem [20] to
conclude that

CH∗(Inv(N,ϕε);Z2) ∼= CH∗(K;Z2) ! H̄∗(M,Z2) (1.5)

where ! denotes the cup product. Observe that we have computed the Conley
index of Inv(N,ϕε) using the fast dynamics at a single point on the slow manifold
and the global topology of the slow manifold.

To obtain the existence of a Poincaré section, we use the slow flow θ̇ =
1 restricted to M . As was indicated earlier this provides us with sufficient
information to conclude the existence of a periodic orbit in Inv(N,ϕε).

This type of computation of the Conley index from the perturbation of a nor-
mally hyperbolic slow manifold can be found in [5]. However, it is quite common
for the slow manifolds of (1.1) to be unbounded. In particular, this means that
given a compact set N which intersects the slow manifold, Inv(N,ϕ0)∩∂N (= ∅.
In other words, unlike the example of (1.4) an isolating neighborhood and, hence,
an index pair cannot be obtained for the singular flow ϕ0. Conley [4] resolved the
first part of this problem by providing a characterization of a singular isolating
neighborhood; that is, a compact neighborhood which is an isolating neighbor-
hood for ϕε for all sufficiently small ε > 0. The latter issue was addressed by
Mrozek, Reineck and the third author with a description [16, Theorem 1.15] of
a singular index pair; that is, a pair of sets (N, L) such that

CH∗(Inv(cl(N \ L)),ϕε) ∼= H∗(N, L)

for all sufficiently small ε > 0.

Example 1.2 While the above mentioned results provide the foundations upon
which this work is based they do not, in themselves, posses sufficient compu-
tational power. To see this consider the question of the existence of periodic
travelling waves to a system of reaction diffusion equations of the form

εut = ε2uxx + uf(u, v)
vt = vxx + vg(u, v) (1.6)

where u and v are population densities of a prey and a predator species and
ε > 0 but small. It is assumed that

∂f

∂v
< 0 and

∂g

∂u
> 0
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Figure 1: Zero sets for the functions f and g. The dotted curve@and arrows
indicate the location and direction of the singular periodic orbit whose existence
was demonstrated in [8]. The v-axis and the right branch of f = 0 are branches
of the slow manifolds M1 and M2, respectively. The singular orbits on the
branches of the slow manifold are labeled by mi ⊂ Mi. The connecting orbits
β1 and β2 are the heteroclinic orbits defined by the fast flow that belong the to
singular orbit.

and that the zero sets of f and g are as indicated in Figure 1. This system was
investigated by Gardner and Smoller [8] using Conley index techniques and, in
part, motivated the work of this paper.

Choosing the travelling wave coordinate ξ = (x− θt)/ε, (1.6) reduces to the
fast-slow system

u̇ = w

ẇ = −θw − uf(u, v)
v̇ = εz

ż = −ε(θz + vg(u, v)) (1.7)

Clearly, both the fast and slow variables are two dimensional and thus it is
impossible to capture the dynamics in a single drawing. However, Figure 1
indicates the projection onto the u and v coordinates of the periodic orbit whose
existence was shown in [8]. This orbit is obtained as the concatenation of four
orbits, two from the fast system (the horizontal dotted lines) denoted by βi,
i = 1, 2, and two from the slow system (the vertical dotted lines) denoted by
m1 and m2. In particular, the horizontal dotted lines are projections of the
connecting orbits indicated in Figure 2.

Our construction of the singular isolating neighborhood is similar in spirit
to that of [8]. The major difference arises from the way the Conley index of
the associated isolating neighborhood is computed. In [8] the computation is
performed by the construction of a homotopy to the van der Pol equation. This
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Figure 2: Connecting orbit in the fast dynamics at v = v and v = v̄. Observe
that in both cases the two equilibria lie on the slow manifolds M1 and M2.

makes specific use both of the equation under consideration and of the orbit
being investigated. In contrast we provide a direct means of computing the
index similar in spirit to that of Example 1.1.

To be more precise, Examples 1.2 and 1.1 are obviously different in that
the singular orbit of the first consists of both segments from the slow manifold
and orbits from the fast dynamics. Therefore it is impossible to construct an
isolating neighborhood that can be viewed as a vector bundle with fibers defined
in terms of the fast dynamics and the base consisting of a subset of the slow
manifold. This observation motivates the following more general concept.

Definition 1.3 A pair of compact sets (N, L) with a continuous surjection
p : N → A forms an index bundle over the base space A, if there exists an open
covering {U} of A, such that, for any a ∈ A and an element Ua of the cover
containing a, the inclusion map

jUa : (N(a), L(a)) → (N(Ua), L(Ua))

induces an isomorphism

j∗Ua
: H∗(N(Ua), L(Ua)) → H∗(N(a), L(a)), (1.8)

where N(a) = p−1(a), N(U) = p−1(U) and L(a) = L ∩N(a).

The construction of these bundles occupies much of this paper. The base of
the bundle will be defined in terms of the singular orbit on the slow manifold.
Furthermore, for each fiber the key information is H∗(N(a), L(a)) which is
meant to suggest that we are keeping track of the Conley index information
derived from the fast flow at a point on the slow manifold. As will become clear
our construction of an index depends only on the dynamics near the singular
orbit. In fact it is constructed by combining local information from the segments
of the solutions to the slow and fast dynamics.

7



The fact that we only need the dynamics in the neighborhood of the sin-
gular orbit to perform the computations allows us to consider finite coverings
of the neighborhood. For a particular example of (1.7) it can be shown using
a numerically rigorous computation that another singular periodic orbit which
shares the segments β1 and β2 exits. Using covering space arguments we can
concatenate these singular orbits and construct associated index bundles. This
allows us to directly conclude the existence of a full two shift of bounded solu-
tions where the symbols correspond to the two simplest singular periodic orbits
[10].

Our construction of index bundles requires considerable notation. As an aid
to the reader we have adopted the following convention. Capital bold letters
denote neighborhoods in Rk × R! while capital calligraphed letters indicate
the corresponding subsets obtained by projecting onto R!. More precisely, let
Π : Rk×R! → R! denote the canonical projection map, then for U ⊂ Rk×R!,
U := Π(U). The strategy of this paper is to first construct an abstract theory
of index bundles from which the Conley index can be computed and then to
prove that under a general set of hypotheses an index bundle for a fast-slow
system can be constructed. We will indicate sets of the first type by adding
a circle and the latter type by adding a dagger; that is, †U indicates a set in
Rk ×R! that is constructed from a given fast slow system, whereas ◦U denotes
the corresponding set in an abstract index bundle.

To obtain an index bundle for a system such as (1.7) requires two ingredients:

(1) we need to be able to construct the sets †N and †L, and

(2) we need to be able to identify the Conley indices of the elements on dif-
ferent branches of the slow manifold that are connected by heteroclinic
orbits of the fast dynamics.

We now provide an outline of the key ingredients to these steps with the details
being provided in the sections that follow.

The construction of †N over a branch of the slow manifold M is in some
sense the easiest. We begin with the following concept.

Definition 1.4 Let Σ be an ("−1)-dimensional disc which is a local section for
a slow flow ϕslow on a slow manifold M . A slow sheet is a normally hyperbolic
subset E ⊂ M defined by

E :=
⋃

z∈Σ

ϕslow([0, T (z)], z)

where T : Σ→ (0,∞) is a bounded continuous function.

Remark 1.5 The requirement that E is normally hyperbolic seemingly con-
tradicts our philosophy that our assumptions should be topological rather then
geometrical. The assumptions that we need are slightly weaker. We need to
assume that the slow manifold is a manifold and the Conley index in the normal
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direction to the slow manifold is that of a hyperbolic fixed point. More precisely,
we need to assume, for the fast-slow system (1.1) that the derivative Dxf(x, y)
is non-singular, which by the Implicit Function Theorem guarantees existence of
a slow manifold x = h(y), and the and that for each y the fixed point x = h(y)
of the fast flow has the Conley index of a hyperbolic fixed point. Since we do
not know at this point of any application where this weaker assumption can be
verified without normal hyperbolicity, we chose to simplify the exposition by
assuming normal hyperbolicity.

In practice the slow sheet contains the segment of the singular orbit that
lies on the slow manifold. For technical reasons, the slow sheets may be too
large and thus, as is described in Section 5, we choose U ⊂ E. To produce a
neighborhood in Rk ×R! define the tube

†U := [−r, r]k × U

where 0 < r . 1.
Sets of this form define †N in the region of the segments that lie on the slow

manifold. Of course we also need to identify †L†U = †L ∩ †U, the associated
subsets of †L. As will be made clear shortly, this is more subtle.

Clearly, the next step is to construct neighborhoods that contain the hete-
roclinic orbits of the fast flow that join the singular segments in the slow flow.
However, the existence of the heteroclinic orbits is not in itself sufficient. What
is necessary is that these fast orbits carry the index information from one tube
to the next. We check for this additional information by means of the topological
transition matrix (see [12, 13]) which is described below.

Let S be an isolated invariant set. A pair of disjoint compact invariant
subsets (M(1), M(2)) form an attractor repeller pair decomposition of S if for
every x ∈ S \ (M(1)∪M(2)), the alpha and omega limit sets of x are contained
in M(2) and M(1), respectively.2

In the context of a parameterized flow ψY : R × Rk × Y → Rk × Y , an
attractor repeller pair continues over Y , if there is an isolated invariant set
S = Inv(N,ψY ) with an attractor repeller pair decomposition (M(1), M(2)). It
is fairly easy to show that attractors and repellers are isolated invariant sets.
Observe that if one defines

Sy := S ∩ (Rk × {y}),

then Sy is an isolated invariant set for ψy. Similarly, (My(1), My(2)) is an
attractor repeller pair decomposition for Sy.

Since S is an isolated invariant set for ψY , there exists an index pair (N, L)
and CH∗(S) = H̄∗(N, L). It can be checked that (Ny, Ly) is an index pair for Sy.
Furthermore, the continuation theory of the Conley index guarantees that for

2An attractor repeller pair decomposition is a special case of a Morse decomposition [3].
We have chosen to present the material of the paper in the setting of an attractor repeller for
the sake of notational simplicity. The results extend in the obvious way to arbitrary Morse
decompositions.
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Figure 3: Boxes that contain the Connecting orbit in the fast dynamics at v = v
and v = v̄. For v ≈ v, (M1, M0) is an attractor-repeller pair while (M0, M1) is
an attractor-repeller pair for v ≈ v̄

all y ∈ Y the inclusion map jy : (Ny, Ly) → (N, L) induces an isomorphism j∗y :
H∗(N, L) → H∗(Ny, Ly). The same result applies to attractors and repellers.

Let us return for a moment to (1.7). Fix y = (v, z) and consider an isolat-
ing neighborhood N for the fast flow ψy for which My(1) and My(2) form an
attractor repeller pair. An easy computation shows that the dimension of the
unstable manifolds of these equilibria are the same. Thus one expects that for
a typical point y ∈ Y , there is no connecting orbit between My(1) and My(2).
Stated differently

Inv(N,ψy) =
⋃

p=1,2

My(p).

Now consider Y and an isolating neighborhood N such that M(1) and M(2)
form an attractor-repeller pair for Inv(N,ψY ) and choose y0, y1 ∈ Y such that

Inv(N,ψyi) =
⋃

p=1,2

Myi(p), i = 0, 1.

In this case there exists a topological transition matrix from y0 to y1 which is a
lower triangular, degree zero isomorphism

T ∗
y0,y1

: CH∗(My1(1))⊕ CH∗(My1(2)) → CH∗(My0(1))⊕ CH∗(My0(2))

If the (2, 1) off-diagonal entry of T ∗
y1,y0

is non-zero, then for any continuous curve
y = y(λ), λ ∈ [0, 1] with y(0) = y0 and y(1) = y1 in the parameter space, there
is a λ ∈ [0, 1] such that, for the parameter value y(λ), there exists a heteroclinic
orbit from My(λ)(2) and My(λ)(1).

We codify this discussion into the context of the fast-slow systems via the
following definition.
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Definition 1.6 A set †B ⊂ Rk × R! is a box, if the following conditions are
satisfied:

(1) †B is an isolating neighborhood for the parameterized flow ψ†B defined by

ψ†B : R×Rk × †B → Rk × †B
(t, x, y) 2→ (ψy(t, x), y),

where †B := Π(†B).

(2) Let S(†B) := Inv(†B,ψ†B). There exists an attractor-repeller decomposi-
tion

M(S(†B)) := {M(p, †B) | p = 1, 2 (2 > 1)}.

(3) There are isolating neighborhoods V (p, †B) for M(p, †B), p = 1, 2, such
that

V (p, †B) ⊂ int †B and V (1, †B) ∩ V (2, †B) = ∅.

(4) Let †By = †B ∩ (Rk × {y}), Sy(†B) := Inv(†By,ψy) and let {My(p, †B) |
p = 1, 2} be the corresponding attractor-repeller decomposition of Sy(†B).
There are subsets †B0 and †B1 open relative to the subset topology on
†B such that for fixed i = 0, 1 the invariant sets Sy(†B) are related by
continuation for all y ∈ †Bi.

(5) For each y ∈ †B, the set †By is a k-dimensional disc.

Notice that Definition 1.6(4) implies that there are no heteroclinic orbits be-
tween the Morse sets at the parameter values y ∈ †B0∪†B1. By the construction,
the sets Sy0(†B), y0 ∈ †B0 and Sy1(†B), y1 ∈ †B1 are related by continuation. It
follows that a topological transition matrix

T ∗
y0,y1

: CH∗(My1(1, †B))⊕ CH∗(My1(2, †B))

→ CH∗(My0(1, †B))⊕ CH∗(My0(2, †B))

is defined for every y0 ∈ †B0 and y1 ∈ †B1. We note that by the continuation
argument, topological transition matrices between y0 and y′

0 ∈ †B0 or between
y1 and y′

1 ∈ †B1 are identity maps, therefore, T ∗
y0,y1

does not depend on the
choice of y0 ∈ †B0 and y1 ∈ †B1, hence may be denoted by T ∗

†B.

Let us return to the setting of Example 1.2. Let †Ui and †Bi denote the
tube and box containing mi and βi, respectively, and set

†N =
2⋃

i=1

†Ui ∪
2⋃

i=1

†Bi.

As was indicated earlier, the proof of the existence of a periodic orbit depends
upon the construction of an index bundle (†N, †L). This requires the construc-
tion of an appropriate singular exit set †L which, as will be explained shortly,
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is a nontrivial task. For the moment observe that since the singular isolating
neighborhood is constructed using tubes and boxes it is reasonable to assume
that they must intersect in an appropriate manner. This intersection is mea-
sured in R!, the space of slow variables, that is,@ the compatibility of tubes
and boxes involves conditions expressed on the intersections †U1∩ †B1∩ †U2 and
†U2 ∩ †B2 ∩ †U1. This is made precise in Definition 5.3 where the notion of a
periodic corridor involving I boxes

{†Bi | i = 1, . . . , I
}

is introduced.
Now consider sequential tubes †Ui and †Ui+1 in the periodic corridor joined

by the box †Bi. In Section 5 we prove three essential results. The first is that
†N is a singular isolating neighborhood. The second is that a slight modification
allows one to verify that (†N, †L), where construction of †L is described below,
is a singular index pair. The third is that if

T ∗
†Bi

(2, 1) : CH∗(Myi+1(1, †Bi)) → CH∗(Myi(2, †Bi))

is non-zero for every i = 1, . . . , I, then, (†N, †L) is an index bundle with a pro-
jection onto the slow segments of the singular orbit. This allows us to compute
H∗(†N, †L) and prove the following theorem.

Theorem 1.7 Consider the fast-slow system (1.1) and a periodic corridor con-
taining boxes {†Bi}i=1,...,I . If T ∗

†Bi
(2, 1) is an isomorphism for all i = 1, . . . , I,

then for sufficiently small ε > 0, there exists a periodic solution to (1.1).

To explain the difficulty in constructing †L consider the simpler setting where
the slow variable is 1-dimensional. Given a periodic corridor the transition ma-
trix information provides sufficient information to demonstrate the existence of a
periodic orbit [9, Theorem 1.6]. A heuristic description of this result is as follows.
Given a tube †Ui in the periodic corridor, †U i = Π(†Ui) is an interval. For each
point m ∈ M∩†Ui, let y = Π(m) ∈ †U i. Using the fast flow ψy we can construct
an index pair (†Ny, †Lfast

y ). The continuation theory of the Conley index guar-
antees that for all y ∈ †U i the inclusion map j†Ui

: (†Ny, †Lfast
y ) → (†N†Ui

, †Lfast
†Ui

)
induces an isomorphism j∗†Ui

: H∗(†N†Ui
, †Lfast

†Ui
) → H∗(†Ny, †Lfast

y ). Now con-
sider sequential tubes †Ui and †Ui+1 in the periodic corridor joined by the box
†Bi. If

T ∗
†Bi

(2, 1) : CH∗(Myi+1(1, †Bi)) → CH∗(Myi(2, †Bi))

is non-zero, then we have an isomorphism from H∗(†Nyi+1 ,
†Lfast

yi+1
) to H∗(†Nyi ,

†Lfast
yi

).

This observation leads to the conclusion that (†N, †Lfast) is an index bundle with
projection Π : †N → ∪I

i=1
†U i.

In the previous example the singular exit set is essentially defined by the
expanding directions of the fast flow. This is not the case for higher dimen-
sional slow manifolds, since there is no natural expansion or contraction rate
around typical orbits. In fact the tubes were constructed using flow boxes which
explicitly eliminates any sense of expansion or contraction. The expanding and
contracting dimensions in the slow dynamics must be determined globally, but
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matched locally via the fast dynamics within the box. We resolve this dichotomy
in Section 2 by introducing the notion of local models (Definition 2.2) and their
compatibility (Definition 2.3). In Section 3 these local models are used to con-
struct a slow index bundle (◦N, ◦Lslow) and a fast index bundle (◦N, ◦Lfast).
These are then combined to create the total index bundle (◦N, ◦L). Finally,
in Section 4 the cohomology of the total index bundle is computed. It should
be remarked that these are abstract constructions. In Section 5 we show that
given a specific fast slow system for which the compatibility conditions can be
checked, the pair (†N, †L) defines an index bundle from which the index can be
computed for all sufficiently small ε > 0

The techniques developed in this paper can also be applied to proving the
existence of connecting orbits. To be more precise consider an example where
the slow flow exhibits isolated invariant sets on different branches. There are
two obvious questions. First, do the invariant sets for the slow flow persist as
invariant sets for ϕε for sufficiently small ε > 0, and if so does there exist a
connecting orbit from one to the other? The first question was addressed by
Conley and Fife [5]. A minor modification of the above mentioned techniques
can be used to answer the second question.

As in the periodic case the basic building blocks are tubes and boxes though
we need to include one other concept to capture the isolated invariant sets of
the slow dynamics.

Definition 1.8 A subset C of a slow manifold M is a cap, if it is an isolating
block under the slow flow ϕslow on M .

Using caps it is easy to modify the definition of a periodic corridor to obtain
a heteroclinic corridor (see Definition 5.4). In particular, a heteroclinic corridor
contains a repelling cap CR and an attracting cap CA. Let

†CR := [−r, r]k × CR and †CA := [−r, r]k × CA.

In Section 5 the proof of the following result is provided.

Theorem 1.9 Consider the fast-slow system (1.1) and a heteroclinic corridor
containing boxes {†Bi}i=1,...,I . If T ∗

†Bi
(2, 1) (= 0 for all i = 1, . . . , I, then for all

sufficiently small ε, r > 0, there exists a connecting orbit from Inv(†CR,ϕε) to
Inv(†CA,ϕε).

The outline of the rest of this paper is as follows. As is indicated earlier,
in Section 2, we define abstractly local models and their compatibility condi-
tions. The notion of compatible local model isolates conditions under which the
cohomology H∗(◦N, ◦L) has a product structure. In Section 3, we exhibit this
product structure using the notion of an index bundle. We compute the coho-
mology of an index bundle using a version of Leray-Hirsh Theorem in Section
4. In Section 5, we define the periodic and heteroclinic corridors, show how to
build from them a singular isolating neighborhood †N and the exit set †L, and
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furthermore, we show how (†N, †L) can be decomposed to form a collection of
compatible local models, thus allowing us to compute H̄∗(†N, †L). We postpone
the proofs of several results from this section to Appendix B. In Appendix A,
we provide some background in the Conley index theory.

2 Local and global models

In this section we introduce the notion of a local model and its compatibility.
A collection of compatible local models gives an ideal model for computing
the index of a singular index pair. Once a singular index pair is identified as
described in Section 5, one obtains a collection of compatible local models which
facilitates the index computation, with the aid of the notion of index bundle
which will be introduced in Section 3.

◦Bin ◦Bout

◦U0

◦U1

α

α

α

α′

α′

α′

β

β

β′

β′

[β]

δ0

δ1

◦V1

◦V0

J

K

p

◦B

p̄

h

Figure 4: Slow local model.

Definition 2.1 A slow local model (◦U0, ◦U1, ◦V0, ◦V1, ◦B, h, p) consists of a col-
lection of compact subsets (◦U0, ◦U1, ◦V0, ◦V1, ◦B) in R! together with a map
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h : ◦B → ◦B′ and a fibration p : ◦U0 → K, ◦B′ and K deing defined below, that
satisfy the following properties:

(1) ◦Vj ⊂ ◦U j for j = 0, 1.

(2) ◦B ⊂ ◦U0 and there is a set ◦B′ ⊂ ◦U1 which is homeomorphic to ◦B under
a map h : ◦B → ◦B′ that satisfies h(◦B ∩ ◦V0) = ◦B′ ∩ ◦V1. Let ◦U be the
union of ◦U0 and ◦U1 with ◦B and ◦B′ identified by the homeomorphism h.
Similarly, let ◦V be the union of ◦V0 and ◦V1 with the same identification
by h.

(3) There exist fibrations p0 : ◦U0 → [α, δ0] and p1 : ◦U0 → [δ1,α′] such that
◦B′ = p−1

1 ([δ1,β′]) for some β′ ∈ (δ1,α′) and ◦B = p−1
0 ([β, δ0]) for some

β ∈ (α, δ0). Let ◦Bin = p−1
0 (β) and ◦Bout = p−1

1 (β′).

(4) There exists a homeomorphism π : [β, δ0] → [δ1,β′] such that p1 ◦ h =
π ◦ p0. The map π induces a fibration p : ◦U → K, where K = [α,α′] is
given by identifying [α, δ0] and [δ1,α′] under the map π. Let J be given
by further collapsing the interval in K that corresponds to [β, δ0] for p0

(or equivalently [δ1,β′] for p1) to a point, which will be denoted by [β],
and p̄ : ◦U → J be the resulting fibration. Observe that the fiber p̄−1([β])
is ◦B (or equivalently ◦B′).

(5) For each λ ∈ K, a pair (◦U(λ), ◦V(λ)) given by

◦U(λ) = ◦U ∩ p−1(λ), ◦V(λ) = ◦V ∩ p−1(λ)

in a fiber is assumed to be homeomorphic to any other such pair (◦U(µ), ◦V(µ))
for µ ∈ K.

Definition 2.2 A local model (◦U0, ◦U1, ◦V 0, ◦V 1, ◦U0, ◦U1, ◦B, ◦L, q) associated
to a given slow local model (◦U0, ◦U1, ◦V0, ◦V1, ◦B, h, p) on R! consists of a
collection of subsets (◦U0, ◦U1, ◦V 0, ◦V 1, ◦U0, ◦U1, ◦B, ◦L) in Rn and a map
q : ◦U0 ∪ ◦B ∪ ◦U1 → ◦U that satisfy the following properties:

(1) ◦V j ⊂ ◦U j ⊂ ◦Uj ⊂ Rk+! for j = 0, 1.

(2) The map q is a fibration with a fiber homeomorphic to the k-disc (k =
n− "), such that q(◦U0 ∪ ◦B) = ◦U0, q(◦B ∪ ◦U1) = ◦U1, and q(◦B) = ◦B.
Assume also that, for each j = 0, 1, the map q restricted to ◦U j is a
homeomorphism onto ◦Uj with q(◦V j) = ◦Vj . Consequently, q restricted
to ◦B = ◦U0 ∩ ◦B and ◦B′ = ◦U1 ∩ ◦B is a homeomorphism onto ◦B0 and
◦B1, respectively. Define ◦Bout = q−1(◦Bout) ∩ ◦B.

(3) For each y ∈ ◦U , there exists a flow ψy such that

(a) ◦Uj (j = 0, 1) is an isolating neighborhood for the parametrized
flow {ψy}y∈◦Uj with Invψ◦Uj (◦Uj) = ◦U j . Let ◦Uj

y denote q−1(y) for
y ∈ ◦Uj \ ◦B, and ◦Uj,−

y the corresponding exit set. Similarly, let ◦By

denote q−1(y) for y ∈ ◦B. Let ◦Uj,− = ∪y∈◦Uj
◦Uj,−

y for j = 0, 1.
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(b) For each y ∈ ◦U0, ◦U0
y is homeomorphic to [−r, r]k and ◦U0,−

y is
homeomorphic to [−r, r]s × ∂[−r, r]k−s for some r > 0. Also ◦U0

y =
q−1(y) ∩ ◦U0 has a (k − s)-dimensional unstable manifold.

(c) ◦By is an isolating neighborhood of the parametrized flow {ψy}y∈◦B
whose exit set is denoted by ◦B−

y . Let ◦B− = ∪y∈◦B
◦B−

y . ◦By admits
an attractor-repeller decomposition {My(2), My(1)}, where My(2) =
◦U0

y and My(1) = ◦U1
y. Moreover, there is no connecting orbits for

any y ∈ ◦Bin ∪ ◦Bout.

(4) The set ◦L is the union of ◦Vj (j = 0, 1) and ◦P, where

◦Vj = q−1(◦Vj) (j = 0, 1)

and

◦P =




⋃

j=0,1

⋃

y∈◦Uj\◦B

◦Uj,−
y



 ∪ ◦B− ∪Wu
◦B(◦Bout) ∪

ρ
(
cl(◦U0,− \ ◦B), ◦B,ψ

)
∪ ρ

(
cl(◦U1,− \ ◦B), ◦B,ψ

)
.

Note that, in general, for given an invariant set Y ⊂ N of a parametrized
flow ϕ, the set ρ(Y, N,ϕ) denotes the push forward set of Y in N under
ϕ. See Appendix A for the precise definition.

Definition 2.3 Let LMi = (◦U0
i ,

◦U1
i ,

◦V 0
i ,

◦V 1
i ,

◦U0
i ,

◦U1
i ,

◦Bi, ◦Li, qi), i = 1, . . . , I
be a collection of local models associated with the corresponding slow local mod-
els (◦U0

i ,
◦U1

i ,
◦V0

i ,
◦V1

i ,Pi, hi) together with the associated fibrations pi : ◦U i →
Ki = [αi,α′

i]. Let ◦Ui(α′
i) := q−1

i (p−1
i (α′

i)) and ◦Vi(α′
i) := ◦V1

i ∩ ◦Ui(α′
i).

We say the collection of local models is compatible, if, for any i = 2, . . . , I,
each LMi is compatible with LMi−1 in the sense that there is an identification
homeomorphism

ξi : ◦Ui(α′
i) → ◦Ui−1(αi−1)

that maps ◦Vi(α′
i) to ◦Vi(αi), homeomorphically, and that induces a homeo-

morphism ξ̃i : ◦U i(α′
i) → ◦U i−1(αi−1).

Note that this identification homeomorphism may very well be the identity
map. However, in practice, we want to connect the local models by these identi-
fication maps and make an isolating neighborhood, in which case, simply taking
the union of these local models may cause a problem, because part of a local
model might intersect with some other local model. Therefore it is theoretically
better to abstractly connect the local models by identifying their ends with
the adjacent ones. This is simply the purpose of introducing the identification
homeomorphism ξi.
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◦Bout
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◦U 1◦L

◦Bi
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Figure 5: Local model.

If a collection of compatible local models {LMi}i=1,...,I is such that LMI is also
compatible with LM1, then we say that the collection is of periodic type. Other-
wise it is said to be of heteroclinic type. For periodic case, it will be convenient
to define LM0 = LMI and consider compatible local models {LMi}i=0,...,I .

Given a compatible collection of local models

LMi = (◦U0
i ,

◦U1
i ,

◦V 0
i ,

◦V 1
i ,

◦U0
i ,

◦U1
i ,

◦Bi,
◦Li, qi) i = 1, . . . , I,

be it periodic or heteroclinic, define

◦Ni = ◦U0
i ∪ ◦Bi ∪ ◦U1

i ,

◦N =

(
I⊔

i=1

◦Ni

)
/ ∼ξ, ◦L =

(
I⊔

i=1

◦Li

)
/ ∼ξ,
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where ∼ξ stands for the identification by the homeomorphisms {ξi}i=1,...,I . We
also define the auxiliary sets as follows:

◦U =

(
I⊔

i=1

◦U i

)
/ ∼ξ, ◦V =

I⊔

i=1

◦Vi/ ∼ξ,

◦Lslow =

(
I⊔

i=1

(◦V0
i ∪ ◦V1

i )

)
/ ∼ξ,

◦Lfast =
I⊔

i=1

◦Pi/ ∼ξ .

Here the identification ∼ξ for ◦U and ◦V must be understood as identification
by the corresponding maps {ξ̃i}i=1,...,I .

Our goal is to show that the pair (◦N, ◦L) is a singular index pair for a
periodic or heteroclinic orbit of the fast-slow system, and that the existence of
such an orbit can be detected by the information of the associated index. The
former will be done in Section 5. In order to obtain the index information, in
Section 3, we introduce the notion of an index bundle, which is a language that
relates index information of the slow dynamics and fast dynamics. We show,
step by step, that the pairs (◦U , ◦V), (◦N, ◦Lslow), (◦N, ◦Lfast), and then (◦N, ◦L)
are index bundles, under an appropriate condition.

Once the collection of compatible local models LMi is pasted together, the
result of index computation strongly depends on how the exit set of one local
model be related to the next. This kind of information can be built in as the
sequence of transition matrices associated with each box. More precisely, for
every i, choose yi ∈ ◦Bin

i \ ◦V and y′
i ∈ ◦B

′out
i \ ◦V. From the assumption on the

absense of connecting orbit at yi and y′
i, the transition matrix T ∗

i between yi

and y′
i is well-defined. We can define a map Θ for a global model by

Θ(j, m) := T ∗
m(2, 1) ◦ T ∗

m−1(2, 1) ◦ . . . ◦ T ∗
j+1(2, 1) ◦ T ∗

j (2, 1), (2.1)

and
Θ := Θ(1, I),

where
T ∗

i (2, 1) : CH∗(Mzi(1, ◦Bi)) → CH∗(Myi(2, ◦Bi))

denotes the corresponding off-diagonal entry (or more generally the submatrix)
in T ∗

i .
Clearly, if all T ∗

j (2, 1), j = 1, . . . , I are isomorphisms, then Θ is an isomor-
phism, and if all T ∗

j (2, 1) (= 0, j = 1, . . . , I, then Θ (= 0.

3 Index bundles for compatible local models

In this section, given compatible local models {LMi}i=1,...,I , we show that the
pair (◦N, ◦L) decomposes into fast and slow pairs and that the slow pair forms
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an index bundle. The fast pair forms an index bundle as well, provided the map
Θ is an isomorphism. This information is then summarized in a commutative
diagram in Theorem 3.17.

Recall that we have already introduced the notion of index bundle in In-
troduction. If (X, Y ) is an index bundle over a base space A which is path-
connected, then H∗(X(a), Y (a)) and H∗(X(a′), Y (a′)) are isomorphic for any
a, a′ ∈ A. From now on, the base space of an index bundle is assumed to be
path-connected.

Definition 3.1 A pair (F, F ′) is a fiber of an index bundle (X, Y ) over A, if

H∗(F, F ′) ∼= H∗(X(a), Y (a))

for all a ∈ A.

Definition 3.2 A cohomological extension of an index bundle (X, Y ) over A is
a homomorphism

e : H∗(F, F ′) → H∗(X, Y )

such that for each a ∈ A

H∗(F, F ′) e→ H∗(X, Y ) → H∗(X(a), Y (a))

is an isomorphism.

3.1 Slow index bundle

3.1.1 Local slow index bundle

Let (◦U0
i ,

◦U1
i ,

◦V0
i ,

◦V1
i ,

◦Bi, hi, pi) be a slow local model. In Section 2, we have
defined a fibration p̄i : ◦U i → Ji from the fibration pi : ◦U i → Ki.

Lemma 3.3 Each pair (◦U i, ◦V i) is an index bundle over base Ki with the pro-
jection pi, and an index bundle over base Ji with the projection p̄i.

Proof. This immediately follows from the condition (2) of Definition 2.1, and
the definition of p̄i. "

3.1.2 Slow index bundle

Given a collection of slow local models (◦U0
i ,

◦U1
i ,

◦V0
i ,

◦V1
i ,

◦Bi, hi, pi), i = 1, . . . , I,
recall

◦U =
I⊔

i=1

◦U i/ ∼ξ, ◦V =
I⊔

i=1

◦V i/ ∼ξ,

where ∼ξ is the identification by {ξ̃i}i=1,...,I , see Definition 2.3. Let K and J
be similarly defined by concatenating the intervals Ki and Ji respectively. Note
that, if the collection of compatible local models is of heteroclinic type, K and
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J are both homeomorphic to an interval. If however it is of periodic type, then
they are homeomorphic to a circle. Define a projection p : ◦U → K by

p(x) = pi(x) for x ∈ ◦U i

and, similarly, define p̄ : ◦U → J by

p̄(x) = p̄i(x) for x ∈ ◦U i.

Lemma 3.4 The pair (◦U , ◦V) is an index bundle over K with the projection p
and an index bundle over J with the projection p̄.

Proof. In view of Lemma 3.3, we need to show that there is a homo-
topy equivalence between the pairs (◦U(λ), ◦V(λ)) and (◦U(W ), ◦V(W )) for each
λ ∈ W , where W is an open subset of K such that W intersects both Ki−1

and Ki for some i. Assume without loss of generality that λ ∈ Ki. By
Definition 2.1, (◦U(W ) ∩ ◦U i, ◦V(W ) ∩ ◦U i) is homotopically equivalent to the
fiber (◦U i(α′

i), ◦Vi(α′
i)), which by Definition 2.3 is homeomorphic to the pair

(◦U i−1(αi−1), ◦Vi−1(αi−1)). By Lemma 3.3, this is equivalent to (◦U(W ) ∩
◦U i−1, ◦V(W ) ∩ ◦U i−1) and, therefore, to (◦U(λ), ◦V(λ)) for any λ ∈ Ki−1. The
result for base J follows immediately. "

3.1.3 Extension of the slow index bundle

We want to extend the bundle structure of ◦U with projection p : ◦U → J to a
bundle structure of the set ◦N. Let

q̄i = p̄i ◦ qi : ◦Ni → Ji

be a projection map, and
q̄ : ◦N → J (3.1)

be a projection map defined by

q̄(z) = q̄i(z) if z ∈ ◦Ni.

Theorem 3.5 The pair (◦N, ◦Lslow) is an index bundle over J with the projec-
tion q̄.

Proof. From Lemma 3.3, (◦U i, ◦V i) with projection p̄i : ◦U i → Ji is an index
bundle. Since q̄i = p̄i ◦ qi, it is enough to show that for each fiber Υ(λ) (λ ∈ Ji),
there is an isomorphism

H∗(◦N ∩Υ(λ), ◦Lslow ∩Υ(λ)) ∼= H∗(◦U i(λ), ◦V i(λ)). (3.2)

By definition of the set ◦Lslow
i , we have qi(◦Lslow

i ) = ◦Vi and by definition of ◦Ni,
we have qi(◦Ni) = ◦U i. Now we construct a homotopy inverse to the map qi.
First recall that, for each y ∈ ◦U i, we denote by ◦Ny the set ◦N∩(Rk×{y}). We
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can view ◦Ni as a bundle with projection qi and fibers ◦Ny. Let si : ◦U i → ◦Ni

be a continuous section of this bundle. Then qi ◦ si : ◦U i → ◦U i is the identity
and si ◦ qi : ◦Ni → ◦Ni is homotopic to the identity, since every fiber is a
k-disc. This last fact follows directly from the construction for y ∈ ◦U i \ ◦Bi

and by assumption (1) of Definition 2.2 for y ∈ ◦Bi. Therefore the map si is a
homotopy inverse to qi on ◦Ni. Since ◦Lslow

i consists of entire fibers over ◦V i, we
see that in fact qi maps the pair (◦Ni, ◦Lslow

i ) to the pair (◦U i, ◦V i) and si maps
(◦U i, ◦V i) to (◦Ni, ◦Lslow

i ). This shows that each pair (◦Ni(λ), ◦Lslow
i (λ)) has the

same cohomology as the corresponding pair (◦U i(λ), ◦Vi(λ)). Since (◦N, ◦Lslow)
and (◦U , ◦V) are the unions of (◦Ni, ◦Lslow

i ) and (◦U i, ◦Vi) respectively, the result
follows for the total pair (◦N, ◦Lslow). "

Theorem 3.6 The index bundle (◦N, ◦Lslow) admits a cohomological extension
es.

Proof. We first define a cohomological extension of the index bundle (◦U , ◦V).
By Definition 2.1, for each i, there are homotopy equivalences

ei(αi) : (◦U i(αi), ◦V i(αi)) → (◦U i,
◦V i)

and
e′i(α

′
i) : (◦U i,

◦V i) → (◦U i(α′
i),

◦V i(α′
i)).

We denote the homeomorphism given in Definition 2.3 by

hi : (◦U i(α′
i),

◦V i(α′
i)) → (◦U i−1(αi−1), ◦V i−1(αi−1)).

Then, for each j, the map

ej = e′1(α′
1) ◦ e1(α1) ◦ h2 ◦ e′2(α′

2) ◦ . . . ◦ e′j−1(α′
j−1) ◦ ej−1(αj−1) ◦ hj ◦ e′j(α′

j)
: (◦U j , ◦Vj) → (◦U1(α′

1), ◦V1(α′
1))

is a homotopy equivalence. Let e : (◦U , ◦V) → (◦U1(α′
1), ◦V1(α′

1)) be defined by
e = ej on ◦Uj , then it is a homotopy equivalence as well.

We designate (◦U1(α′
1), ◦V1(α′

1)) to be a fiber of the index bundle (◦U , ◦V).
By construction above the induced map

e∗ : H∗(◦U1(α′
1),

◦V1(α′
1)) → H∗(◦U , ◦V)

is a cohomological extension of the index bundle (◦U , ◦V).
Now, corresponding to the fiber (◦U1(α′

1), ◦V1(α′
1)) of the bundle (◦U , ◦V),

let

(◦Nfib, ◦Lfib,slow) := (◦N1(α′
1),

◦Lslow
1 (α′

1)) = q̄−1(◦U1(α′
1),

◦V1(α′
1))

be the fiber of the bundle (◦N, ◦Lslow). By (3.2), for any λ ∈ J , we have that
the cohomology of the fiber of the bundle (◦U , ◦V) over λ ∈ J is the same as the
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cohomology of the fiber of the bundle (◦N, ◦Lslow) over λ. Therefore e∗ induces
a cohomological extension of the index bundle (◦N, ◦Lslow)

es : H∗(◦Nfib, ◦Lfib,slow) → H∗(◦N, ◦Lslow).

"

3.2 Fast index bundle

3.2.1 Local fast index bundle

Let γ be a section of the bundle p : ◦U → K, and let γi be a restriction of this
section to the bundle pi : ◦U i → Ki. We select the section γ in such a way
that γi(Ki) ⊂ ◦U i \ ◦V i. Recall that, by Definition 2.3, there is an identifica-
tion between the pairs (◦U i(α′

i), ◦Vi(α′
i)) and (◦U i−1(αi−1), ◦Vi−1(αi−1)). We

assume, without loss of generality, that the section γ is selected in such a way
that γi(Ki) ∩ ◦U i(α′

i) maps by this identification to γi−1(Ki−1) ∩ ◦U i−1(αi−1).
Let

◦Ni,γ := q−1
i (γi(Ki)) ∩ ◦Ni,

and let q̄i,γ : ◦Ni,γ → Ji be the restriction of the projection q̄i to ◦Ni,γ , namely,
q̄i,γ := p̄i ◦ (qi|◦Ni,γ ).

The part of the box ◦Bi over the segment γi∩◦Bi, namely ◦Bi,γ := ◦Bi∩◦Ni,γ ,
is a single fiber of the bundle over Ji. Let [βi] be the point in Ji corresponding
to the fiber. We denote by ◦Ui,γ the collection of fibers

◦Uj
i,γ := ◦Uj

i ∩ ◦Ni,γ (j = 0, 1).

Let
◦Li,γ := ◦Li ∩ ◦Ni,γ = ◦Lfast

i ∩ ◦Ni,γ

◦L◦Uj
i ,γ := ◦Uj

i,γ ∩ ◦Li = ◦Uj
i,γ ∩ ◦Uj,−

i (j = 0, 1)
◦L◦Bi,γ := ◦Bi,γ ∩ ◦Li = ◦Bi,γ ∩ ◦Lfast

i ,

(3.3)

where the second equality in each line comes from the fact that γi ⊂ ◦U i \ ◦Vi

and the definition of ◦Lslow
i and ◦Lfast

i .
Recall (2.1) that Θ is defined as a composition of transition matrices T ∗

i (2, 1)
with domain being the sum of the indeces at y ∈ ◦Bin

i \ ◦V and range the sum of
indices at y′ ∈ ◦B

′out
i \◦V. We can identify y with the point yi := γi∩(◦Bin

i \◦V),
and y′ with the point y′

i := γi ∩ (◦B
′out
i \ ◦V). Therefore the map T ∗

i (2, 1) can
be identified with the map T̄ ∗

i (2, 1) within (◦Ni,γ , ◦Li,γ). Let Θ̄i = T̄ ∗
i (2, 1) be

a map defined in (2.1) for a single box ◦Bi,γ .

Lemma 3.7 If Θ̄i is an isomorphism, then the pair (◦Ni,γ , ◦Li,γ) is an index
bundle over Ji with the projection q̄i,γ .
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Proof. The goal of the construction of (◦Ni,γ , ◦Li,γ) lies in realization that
the computation of the index for parameterized flow ψi,γ on (◦Ni,γ , ◦Li,γ) is
identical to computation carried out in [9]. Indeed, (◦Ui,γ , ◦L◦Ui,γ) is a tube
and (◦Bi,γ , ◦L◦Bi,γ) is the i-th box of the tube and box collection (see [9] for
terminology).

We want to show that (◦Ni,γ , ◦Li,γ) is a bundle over Ji. By construction,
H∗(◦Bi,γ , ◦L◦Bi,γ) is a single fiber of this bundle. We first take an open set
W ⊂ Ji which does not contain bi ∈ Ji; for such an open set, the “natural tube
continuation” (see Remark 2.11 in [9]) proves the required property (1.8). For
an open set W ⊂ Ji which does contain bi, we need the result of Proposition
4.6 of [9], which, in the present notation, shows that

H∗(◦Bi,γ ,
◦L◦Bi,γ) ∼= H∗(◦Ni,γ(α′

i),
◦Li,γ(α′

i)) ∼= CH∗(M(1, i)). (3.4)

Here ◦Ni,γ(α′
i) = ◦Ni,γ ∩ q−1

i (◦U i(α′
i)) and ◦Li,γ(α′

i) = ◦Ni,γ(α′
i) ∩ ◦Li. By as-

sumption, Θ̄i : CH∗(M(1, i)) → CH∗(M(2, i)) is an isomorphism and therefore

CH∗(M(1, i)) ∼= CH∗(M(2, i)) ∼= H∗(◦Ni,γ(β′), ◦Li,γ(β′)).

Finally, by the tube continuation

H∗(◦Ni,γ(β′), ◦Li,γ(β′)) ∼= H∗(◦Ni,γ(λ), ◦Li,γ(λ))

for any λ ∈ W . "

3.2.2 Fast index bundle

We want to join the local index bundles (◦Ni,γ , ◦Li,γ) to a global index bundle
(◦Nγ , ◦Lγ) over the parameter spaces K or J . The above identification between
the pairs (◦U i(α′

i), ◦V i(α′
i)) and (◦U i−1(αi−1), ◦V i−1(αi−1)) identifies the end-

point γi(Ki)∩◦U i(α′
i) with the endpoint γi−1(Ki−1)∩◦U i−1(αi−1). Since the pair

(◦Ni,γ(α′
i), ◦Li,γ(α′

i)) is the intersection of (◦Ni(α′
i), ◦Li(α′

i)) with the set ◦Ni,γ

and (◦Ni−1,γ(αi−1), ◦Li−1,γ(αi−1)) is the intersection of (◦Ni−1(αi−1), ◦Li−1(αi−1))
with ◦Ni−1,γ , there is a natural identification

(◦Ni−1,γ(αi−1), ◦Li−1,γ(αi−1)) → (◦Ni,γ(α′
i),

◦Li,γ(α′
i)).

Observe that this construction is independent of the map Θi. Let

◦Nγ :=
I⋃

i=1

◦Ni,γ ,
◦Lγ :=

I⋃

i=1

◦Li,γ .

We note that, as with the global slow index bundle, ◦Nγ is a bundle over J
which is an interval for the case of heteroclinic corridor and a circle S1 for the
case of periodic corridor.

Let q̄γ : ◦Nγ → J be a projection defined by q̄γ(x) = q̄i,γ(x) for x ∈ ◦Ni,γ .
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Lemma 3.8 If Θ̄i is an isomorphism for all i = 1, . . . , I, then (◦Nγ , ◦Lγ) is an
index bundle over J with projection q̄γ.

Proof. Similarly as in Theorem 3.5 for the slow index bundle, we need to
connect the local index bundles (◦Ni,γ , ◦Li,γ) to make a global index bundle
(◦Nγ , ◦Lγ). To do this, we only need to show that there is an isomorphism

H∗(◦Nγ(W ), ◦Lγ(W )) ∼= H∗(◦Nγ(λ), ◦Lγ(λ))

for any λ ∈ W , where W is an open set in J which intersects Ji and Ji−1 for
some i. Assume without loss of generality again that λ ∈ Ji−1. By (3.4),

H∗(◦Ni,γ(W ∩ Ji), ◦Li,γ(W ∩ Ji)) ∼= H∗(◦Ni,γ(α′
i),

◦Li,γ(α′
i))

∼= CH∗(M(1, i− 1))
∼= H∗(◦Ni−1,γ(αi−1), ◦Li−1,γ(αi−1)),

where by Definition 2.2(2), the last group is isomorphic, via the continuation
isomorphism, to H∗(◦Ni−1,γ(λ), ◦Li−1,γ(λ)) for any λ ∈ Ji−1. "

Lemma 3.9 There is a map

ef : (◦N1,γ(α′
1),

◦L1,γ(α′
1)) → (◦Nγ , ◦Lγ)

which is a cohomological extension, provided Θ̄ := Θ̄I ◦ . . . ◦ Θ̄1 is an isomor-
phism.

Proof. From Proposition 4.6 in [9], there is an isomorphism

Ψ := Ψ(I) : H∗(◦Nγ , ◦Lγ) → H∗(◦N1,γ(α′
1),

◦L1,γ(α′
1)).

We designate (◦N1,γ(α′
1), ◦L1,γ(α′

1)) as a fiber of the index bundle (◦Nγ , ◦Lγ).
Define

ef := Ψ−1 : H∗(◦N1,γ(α′
1),

◦L1,γ(α′
1)) → H∗(◦Nγ , ◦Lγ).

Let jγ(λ) be the inclusion map jγ(λ) : (◦Nγ(λ), ◦Lγ(λ)) → (◦Nγ , ◦Lγ) for some
λ ∈ J \ ∪I

i=1{[βi]}. Using natural tube identification, it has been shown in [9]
that all maps jγ(λ) for λ ∈ Jk are homotopic and thus can be identified as a
single map jk,γ .

By Proposition 4.8 in [9], we have that

jk,γ := Θ̄(k) ◦Ψ.

Consequently the composition

H∗(◦N1,γ(α′
1),

◦L1,γ(α′
1))

Ψ−1

→ H∗(◦Nγ , ◦Lγ)
jk,γ→ H∗(◦Nγ(λ), ◦Lγ(λ))

is equal to

H∗(◦N1,γ(α′
1),

◦L1,γ(α′
1))

Θ̄(k)→ H∗(◦Nγ(λ), ◦Lγ(λ)).

Since Θ̄(k) is an isomorphism for each k, ef is a cohomological extension. "
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3.2.3 Extension of the fast bundle

As we have done with a pair (◦N, ◦Lslow), we can view (◦N, ◦Lfast) as a bundle
with projection q̄ : ◦N → J . Recall that this means that, for each λ ∈ J \⋃I

i=1{[βi]}, where [βi] is the point in Ji whose fiber is ◦Bi, the fiber of the
bundle is

(◦N(λ), ◦Lfast(λ)) := (◦N ∩Υ(λ), ◦Lfast ∩Υ(λ)),

and for λ = [βi], the fiber of this bundle is

(◦Bi,
◦Lfast ∩ ◦Bi).

We want to relate the cohomology of a fiber of the bundle (◦N, ◦Lfast) to the
cohomology of the corresponding fiber of the bundle (◦Nγ , ◦Lγ). To this end we
define the projection q̄fast

i : ◦Ni → ◦Ni,γ by the requirement that

q̄i,γ ◦ q̄fast
i = q̄i.

Let q̄fast : ◦N → ◦Nγ be defined by q̄fast(z) = q̄fast
i (z) if z ∈ ◦Ni.

Lemma 3.10

H∗(◦Nγ(λ), ◦Lγ(λ)) ∼= H∗(◦N(λ), ◦Lfast(λ)) (3.5)

for all λ ∈ J .

Proof. We first take λ (= [βi] for any i. Then, by the construction of the
fibration, we have q−1(λ) ∩ ◦Bi = ∅. It follows that

(◦N(λ), ◦Lfast(λ)) = (◦Uj
i ∩ q−1(λ), ◦Uj,−

i ∩ q−1(λ)),

where j = 0 if λ ∈ [αi,βi], and j = 1 if λ ∈ [β′i,α′
i]. Take y ∈ γ ∩ q−1(λ). By

the construction of ◦Uj
i and ◦Uj,−

i we get

q̄fast(◦Uj
i ) = ◦Uj

y and q̄fast(◦Uj,−
i ) = ◦Uj,−

y .

Finally we have

◦Uj
y = ◦Nγ(λ), and ◦Uj,−

y = ◦N−
γ (λ),

which proves (3.5).
Now we consider λ = [βi], in which case (◦N([βi]), ◦Lfast([βi])) = (◦Bi, Lfast∩

◦Bi). We first prove some preliminary results.

Claim 3.11

◦Bi
∼= ◦U i(α′

i)× ◦Bi,γ .

Proof. Since the projection ◦Bi of the box ◦Bi is the set of the form ◦Bi =⋃
λ∈[βi,β′i]

◦U i(λ) and γi, as a section of the bundle with fibers ◦U i(λ), intersects
each fiber exactly once, the result follows. "
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Claim 3.12

◦Lfast ∩ ◦Bi
∼= ◦U i(β′i)× ◦L◦Bi,γ .

Proof. We describe the pair

(q̄fast(◦Bi), q̄fast(◦Lfast ∩ ◦Bi)).

Obviously, q̄fast(◦Bi) = ◦Bi,γ by construction of q̄fast. The set ◦Lfast ∩ ◦Bi

consists of three sets
◦Lfast ∩ ◦Bi = ρ(◦U0,−

i \ ◦Bi, ◦Bi,ψβi) ∪ ρ(◦U1,−
i \ ◦Bi, ◦Bi,ψβ

′
i)

∪ Wu
◦Bi

(◦U i(β′i)) ∪ ◦B−
i .

It is easy to see that, by definition of the fast exit set ◦B−
i , we get q̄fast(◦B−

i ) =
◦B−

i,γ .
By assumption qi(◦U i(β′i)) = ◦U i(β′i). Recall that ◦U i(β′i) ⊂ ◦Bin

i ∪ ◦Bout
i .

Since ◦Bin
i ∩ ◦Bout

i = ∅, ◦Bin
i , ◦Bout

i are both open and ◦U i(β′i) is connected, we
have ◦U i(β′i) ⊂ ◦Bin

i or ◦U i(β′i) ⊂ ◦Bout
i . Therefore it takes a finite time for a

point z ∈ Wu
◦Bi

(◦U i(β′i)) to leave ◦Bi. It follows that Wu
◦Bi

(◦U i(β′i)) is homotopic
to ◦U i(β′i). The image of the set ◦U i(β′i) under the projection q̄fast is the point
y′

i. Thus q̄fast(Wu
◦Bi

(◦U i(β′i))) is homotopic to Wu
◦Bi

(y′
i).

A similar argument can be applied to the set ρ(◦U0,−
i \ ◦Bi, ◦Bi,ψβi). Since

Π(ρ(◦U0,−
i \ ◦Bi, ◦Bi,ψβi)) ⊂ ◦U i(βi), we can get by a similar argument as

above that ◦U i(βi) ⊂ ◦Bin
i or ◦U i(βi) ⊂ ◦Bout

i . It follows that it takes a finite
time for a point z ∈ ◦U0,−

i to leave ◦Bi and therefore ρ(◦U0,−
i \ ◦Bi, ◦Bi,ψβi)

is homotopically equivalent to ρ(◦U0,−
i,y \ ◦Bi,y, ◦Bi,y ,ψβi

y ) where y := yi. An
analogous argument works for ρ(◦U1,−

i \ ◦Bi, ◦Bi,ψβ
′
i).

Thus taken together

q̄fast(◦Lfast ∩ ◦Bi) ∼= ◦B−
i,γ ∪ ρ(◦U

0,−
i,y \ ◦Bi,y, ◦Bi,y,ψβi

y )

∪ ρ(◦U1,−
i,y \ ◦Bi,y, ◦Bi,y,ψ

β′i
y ) ∪Wu

◦Bi
(y′

i)
∼= ◦L◦Bi,γ .

This, together with the definition of q̄fast and the foliation {Υ(λ)}, implies that

◦Lfast ∩ ◦Bi
∼= ◦L◦Bi,γ × ◦U i(β′i).

This finishes the proof of the Claim. "

It follows from Claim 3.11 and 3.12 that

(◦B,
◦Lfast ∩ ◦Bi) ∼= (◦Bi,γ × ◦U i(β′i),

◦Li,γ × ◦U i(β′i)).

Since ◦U i(β′i) is homeomorphic to a disc Dl−1, (3.5) follows for λ = [βi]. "
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Theorem 3.13 If Θ is an isomorphism then the pair (◦N, ◦Lfast) is an index
bundle over J with projection q̄ and admits a cohomological extension ef .

Proof. Since by (3.5) the cohomology of fibers of (◦N, ◦Lfast) is the same
as cohomology of corresponding fibers of (◦Nγ , ◦Lγ), cohomological extension
ef on the bundle (◦Nγ , ◦Lγ) can be viewed as cohomological extension on the
bundle (◦N, ◦Lfast), with the fiber

(◦Nfib, ◦Lfib,fast) := (q̄fast)−1(◦N1,γ(β′1),
◦L1,γ(β′1)). (3.6)

"

3.3 Total index bundle

The goal of this subsection is to show that (◦N, ◦L) is an index bundle over J .

Theorem 3.14 For each λ ∈ Ji, there is an isomorphism

D∗(λ) : H∗(◦U i(λ), ◦Vi(λ)) ⊗H∗(◦Ni,γ(λ), ◦Li,γ(λ)) → H∗(◦Ni(λ), ◦Li(λ)).

For the fiber λ = [βi], this takes the form

H∗(◦Bi,
◦Li ∩ ◦Bi) ∼= H∗(◦U i(β′i),

◦Vi(β′i))⊗H∗(◦Bi,γ ,
◦L◦Bi,γ).

Proof. We start with λ ∈ Ji,λ (= [βi]. In the following computation, we use
the definition of ◦U, ◦U− and ◦L.

H∗(◦Uj
i (λ),

◦Uj
i (λ) ∩ ◦Li)

∼= H∗([−r, r]k × ◦Uj
i (λ),

◦Uj,−
i (λ) ∪

⋃

y∈◦Vj
i (λ)

◦Ny)

∼= H∗([−r, r]k × ◦Uj
i (λ), [−r, r]s × ∂[−r, r]k−s × ◦Uj

i (λ)

∪
⋃

y∈◦Vj
i (λ)

◦Uj
y)

∼= H∗(◦Uj
y × ◦Uj

i (λ), ◦U
j,−
i,y × ◦U j

i (λ) ∪ ◦Uj
i,y × ◦Vj

i (λ))

∼= H∗(◦Uj
i (λ), ◦V

j
i (λ)) ⊗H∗(◦Uj

i,y, ◦Uj,−
i,y )

(3.7)

where y is any point in ◦Uj
i (λ).
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Now we take λ = [βi]. In the first line of the following computation we use
Claim 3.11 and Claim 3.12.

H∗(◦Bi, ◦Li ∩ ◦Bi)

∼= H∗(◦U i(β′i)× ◦Bi,γ , ◦L◦Bi,γ × ◦U i(β′i) ∪ (◦Lslow
i ∩ ◦Bi))

∼= H∗(◦U i(β′i)× ◦Bi,γ ,

◦L◦Bi,γ × ◦U i(β′i) ∪
⋃

y∈◦Vi∩◦Bi

◦Ny)

∼= H∗(◦U i(β′i)× ◦Bi,γ , ◦L◦Bi,γ × ◦U i(β′i) ∪ ◦Vi(β′i)× ◦Bi,γ)

∼= H∗(◦U i(β′i), ◦Vi(β′i))⊗H∗(◦Bi,γ , ◦L◦Bi,γ)

Here the third equality follows from
⋃

y∈◦Vi∩◦Bi

◦Ny 5 (◦Vi ∩ ◦Bi)× ◦Ny

5 (◦Vi ∩ ◦U i(β′i))× (γi ∩ ◦Bi)× ◦Ny

5 ◦V i(β′i)× ◦Bi,γ .

"

Theorem 3.15 If Θ is an isomorphism, (◦N, ◦Lslow∪◦Lfast) is an index bundle
over J .

Proof. By Theorem 3.14, each fiber of (◦N, ◦Lslow ∪ ◦Lfast) over the base J is
a product of a fiber of the index bundle (◦N, ◦Lslow) and a fiber of (◦N, ◦Lfast).
Since (◦N, ◦Lslow) is an index bundle, all fibers (◦N(λ), ◦Lslow(λ)) have the same
cohomology.

If Θ is an isomorphism, by Theorem 3.13, (◦N, ◦Lfast) is also an index bundle
and all the fibers of (◦N, ◦Lfast) have the same cohomology. It follows then that
all fibers of (◦N, ◦Lfast ∪ ◦Lslow) have the same cohomology. "

3.4 Key diagram

Lemma 3.16 ([20] 5.6.8) Let f : X → Y map A1 into B1 and A2 into B2

and let u ∈ Hp(Y, B1) and v ∈ Hq(Y, B2). Let f1 : (X, A1) → (Y, B1), f2 :
(X, A2) → (Y, B2) and q̄ : (X, A1 ∪ A2) → (Y, B1 ∪ B2) be maps defined by f .
In Hp+q(X, A1 ∪A2), we have

q̄∗(u ! v) = f∗
1 u ! f∗

2 v.

28



Theorem 3.17 The following diagram commutes for all λ:

H∗(◦Nfib, ◦Lfib,fast)⊗H∗(◦Nfib, ◦Lfib,slow) D∗fib

−→ H∗(◦Nfib, ◦Lfib,fast ∪ ◦Lfib,slow)

↓ ef ⊗ es ↓ ef ⊗ es

H∗(◦N, ◦Lfast)⊗H∗(◦N, ◦Lslow) D∗
−→ H∗(◦N, ◦Lfast ∪ ◦Lslow)

↓ i∗ ↓ i∗

H∗(◦N(λ), ◦Lfast(λ)) ⊗H∗(◦N(λ), ◦Lslow(λ))
D∗(λ)−→ H∗(◦N(λ), ◦Lfast(λ) ∪ ◦Lslow(λ))

where the map ef ⊗ es is given by D∗ ◦(ef ⊗es)◦(D∗fib)−1 and D∗, D∗fib, D∗(λ)
are given by the cup product. Notice that from Theorem 3.14, the horizontal
maps D∗(λ) and D∗fib in the diagram are isomorphisms.

Proof. We observe that (◦Lfast, ◦Lslow) is an excisive pair in ◦N and thus the
cup product map

D∗ : H∗(◦N, ◦Lfast)⊗H∗(◦N, ◦Lslow) !→ H∗(◦N, ◦Lfast ∪ ◦Lslow)

is well-defined. The same result holds for the fast part of the left vertical line
in the diagram, since it is formed by restriction of the above sets to the section
q−1
1 (◦U1(β′1)) of the set ◦N, and the right veritical line by the similar argument,

see Theorem 3.14.
The lower square of diagram commutes by Lemma 3.16 applied to the inclu-

sion i. The upper square of the diagram commutes by definition. "

Corollary 3.18 If Θ is an isomorphism, (◦N, ◦Lslow ∪ ◦Lfast) admits a coho-
mological extension ef ⊗ es.

Proof. By Theorem 3.13, if Θ is an isomorphism, (◦N, ◦Lfast) admits a coho-
mological extension ef . By Theorem 3.6, (◦N, ◦Lslow) admits a cohomological
extension es. By Theorem 3.15, (◦N, ◦Lslow ∪ ◦Lfast) is an index bundle. The
result now follows from the Key diagram in the above Theorem 3.17. "

4 Homology computation of an index bundle

In this section, we carry out the index computation.
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4.1 Leray-Hirsch Theorem for index bundles

For related argument for fiber bundles see [20]. Let (F, F ′) be a pair such that
H∗(F, F ′;K) is free and finitely generated over K. All results in this section
are valid for K being a principal ideal domain, but since such generality is not
needed, we will assume that K is a field.

Theorem 4.1 Let (X, Y ) be an index bundle with a compact base space A and
let (F, F ′) be its fiber. Assume that H∗(F, F ′) is finitely generated over a field
K. Assume also that, for any sufficiently small open set W ⊂ A, we have

H∗(X(W ), Y (W )) ∼= H∗(W )⊗H∗(F, F ′).

Then
H∗(X, Y ) ∼= H∗(A)⊗H∗(F, F ′).

Proof. By assumption, for all sufficiently small open neighborhoods W ⊂ A,
there is an isomorphism

i∗W : H∗(W )⊗H∗(F, F ′) → H∗(X(W ), Y (W )).

If W and W ′ are two such open neighborhoods, then by Theorem 4.6.3 in [20],
it is easy to see that {(X(W ), Y (W )), (X(W ′), Y (W ′))} is an excisive couple. It
follows, from the property 5.6.20 in [20], that the maps iW , iW ′ , iW∪W ′ , iW∩W ′

send the exact Mayer-Vietoris sequence of (X(W ), Y (W )) and (X(W ′), Y (W ′))
to the tensor product of the exact Mayer-Vietoris sequence of W and W ′ with
H∗(F, F ′). Since H∗(F, F ′) is free over K, its tensor product with any exact
sequence is exact. Therefore, if iW , iW ′ and iW∩W ′ are isomorphisms, it follows
from the five lemma that iW∪W ′ is an isomorphism. By induction, iW is an
isomorphism for any set W which is a finite union of sufficiently small open
sets. Since A is compact, A is such a set. "

Lemma 4.2 Let (X, Y ) be an index bundle with a compact base space A and
let (F, F ′) be its fiber. Assume that there is a cohomological extension of the
fiber. If W is a simply connected subset of A, then

H∗(X(W ), Y (W )) ∼= H∗(W )⊗H∗(F, F ′).

Proof. Since W is simply connected, the reduced cohomology H̃∗(W ) van-
ishes. By definition of the cohomological extension, denoted by e,

H∗(F, F ′) e→ H∗(X(W ), Y (W )) i∗→ H∗(X(a), Y (a))

is an isomorphism. Since (X, Y ) and therefore also (X(W ), Y (W )) is an index
bundle, the map i∗ is an isomorphism and hence so is e. Taking tensor product
with H∗(W ) = H0(W ) gives the desired result. "
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Corollary 4.3 Let (X, Y ) be an index bundle with a compact base space A
and let (F, F ′) be its fiber. Assume that H∗(F, F ′) is finitely generated over a
field K and that there is a cohomological extension of the fiber. Assume that A
admits an open cover {Wi} such that each Wi is simply connected, and that if
Wi ∩Wj (= ∅ then Wi ∩Wj =

⋃
k Ok, where each Ok is simply connected. Then

we have
H∗(X, Y ) ∼= H∗(A)⊗H∗(F, F ′).

Proof. By Lemma 4.2, for any two sets Wi, Wj from the open cover, we have

H∗(X(Wi), Y (Wi)) ∼= H∗(Wi)⊗H∗(F, F ′),
H∗(X(Wj), Y (Wj)) ∼= H∗(Wj)⊗H∗(F, F ′),

H∗(X(Wi ∩Wj)), Y (Wi ∩Wj) ∼= H∗(Wi ∩Wj)⊗H∗(F, F ′).

The rest follows from Theorem 4.1. "

4.2 Cohomology of index bundles

Theorem 4.4 Let (◦N, ◦L) be the index bundle obtained from a collection of
compatible local models LMi = (◦U0

i ,
◦U1

i ,
◦V0

i ,
◦V1

i ,
◦U0

i ,
◦U1

i ,
◦Bi, ◦Li, qi), i =

1, . . . , I. Assume it is of periodic type so that the base space J of (◦N, ◦L)
is a circle. Assume furthermore that for each i = 1, . . . , I,

CHj(M(1, i);Z2) ∼=
{

Z2 if j = s;
0 otherwise

and
Hj(◦U , ◦V ;Z2) ∼=

{
Z2 if j = p, p + 1;
0 otherwise.

If Θ is an isomorphism, then

Hj(◦N, ◦L;Z2) ∼=
{

Z2 if j = s + p, s + p + 1;
0 otherwise

.

Proof. Since the corridor is periodic, the base J for the index bundle will be a
circle S1. Clearly, S1 admits covering which satisfy assumptions of Corollary 4.3.
Let γ : K → ◦U \ ◦V be a section as a base for fast index bundle in the total
index bundle (◦N, ◦L). Since Θ is an isomorphism, it follows from Theorem 3.13
that (◦N, ◦Lfast) is an index bundle. We then have that

CH∗(M(1, 1)) ∼= H∗(◦N1,γ(β′1),
◦L1,γ(β′1)) (from (3.4))

∼= (q̄fast)(H∗(◦Nfib, ◦Lfib,fast)) (from (3.6) and Theorem 3.13)

∼= H∗(◦Nfib, ◦Lfib,fast) (from (3.5))
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is the fiber of the fast bundle. Also

H∗(◦U1(β′1),
◦V1(β′1)) ∼= H∗(◦Nfib, ◦Lfib,slow)

is a cohomology of a fiber in a slow index bundle. From the Leray-Hirsch
Theorem (Corollary 4.3), we have

H∗(γ)⊗H∗(◦U1(β′1),
◦V1(β′1)) ∼= H∗(◦U , ◦V).

Since Θ is an isomorphism, by Corollary 3.18, (◦N, ◦L) admits a cohomolog-
ical extension es ⊗ ef . By Theorem 3.14, the cohomology H∗(◦Nfib, ◦Lfib) of a
fiber of the index bundle (◦N, ◦L) is a product

H∗(◦Nfib, ◦Lfib) ∼= H∗(◦Nfib, ◦Lfib,slow)⊗ (◦Nfib, ◦Lfib,fast)

∼= H∗(◦U1(β′1),
◦V1(β′1))⊗ CH∗(M(1, 1)).

By Corollary 4.3, the cohomology of the total bundle is a product of the coho-
mology of a fiber and the cohomology of γ. It follows that

H∗(◦N, ◦L) ∼= H∗(◦Nfib, ◦Lfib)⊗H∗(γ)
∼= H∗(◦U , ◦V)⊗ CH∗(M(1, 1))

∼= H∗(◦U1(β′1),
◦V1(β′1))⊗H∗(γ)⊗ CH∗(M(1, 1))

∼=
{

Z2 if ∗ = s + p, s + p + 1;
0 otherwise.

"

Lemma 4.5 For all i = 1, . . . , I we have

H∗(◦Ni,
◦Li) ∼= H∗(◦Ni(β′i),

◦Li(β′i)).

Proof. Recall that ◦Ni = ◦U0
i ∪ ◦Bi ∪ ◦U1

i . Consider a Mayer-Vietoris
sequence

. . . → H∗(◦U0
i ∪ ◦Bi ∪ ◦U1

i ,
◦L ∩ (◦U0

i ∪ ◦Bi ∪ ◦U1
i ))

→ H∗(◦U0
i ∪ ◦Bi, ◦L ∩ (◦U0

i ∪ ◦Bi))⊕H∗(◦U1
i ,

◦L ∩ ◦U1
i )

→ H∗(◦Ni(β′), ◦Li(β′)) → . . .

(4.1)

Observe that by Theorem 3.14, we have

H∗(◦Ni(β′i),
◦Li(β′i)) ∼= H∗(◦U i(β′i),

◦V i(β′i))⊗H∗(◦Ui,y, ◦U−
i,y)

for some y. Since (◦U i, ◦V i) is an index bundle by Lemma 3.3,

H∗(◦U0
i ,

◦V0
i ) ∼= H∗(◦U i(β′i),

◦V i(β′i)).
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It follows that

H∗(◦U1
i ,

◦L ∩ ◦U1
i ) ∼= H∗(◦Ui,y × ◦U1

i ,
◦Ui,y × ◦V1

i ∪ ◦U−
i,y × ◦U1

i )
∼= H∗(◦U1

i ,
◦V1

i )⊗H∗(◦Ui,y, ◦U−
i,y)

∼= H∗(◦U i(β′i),
◦Vi(β′i))⊗H∗(◦Ui,y, ◦U−

i,y)
∼= H∗(◦Ni(β′i),

◦Li(β′i)).

In view of (4.1), we have

H∗(◦U0
i ∪ ◦Bi∪ ◦U1

i ,
◦L∩ (◦U0

i ∪ ◦Bi∪ ◦U1
i )) ∼= H∗(◦U0

i ∪ ◦Bi,
◦L∩ (◦U0

i ∪ ◦Bi)).

Similar argument leads to

H∗(◦U0
i ,

◦L ∩ ◦U0
i ) ∼= H∗(◦Ni(βi), ◦Li(βi)),

and therefore, in view of another Mayer-Vietoris sequence

. . . → H∗(◦U0
i ∪ ◦Bi, ◦L ∩ (◦U0

i ∪ ◦Bi))

→ H∗(◦U0
i ,

◦L ∩ ◦U0
i )⊕H∗(◦Bi, ◦L ∩ ◦Bi)

→ H∗(◦Ni(βi), ◦Li(βi)) → . . .

it follows that

H∗(◦U0
i ∪ ◦Bi,

◦L ∩ (◦U0
i ∪ ◦Bi)) ∼= H∗(◦Bi,

◦L ∩ ◦Bi).

Now we compute H∗(◦Bi, ◦L ∩ ◦Bi).

H∗(◦Bi,
◦L ∩ ◦Bi) ∼= H∗(◦U i(β′i),

◦Vi(β′i))⊗H∗(◦Bi,γ , L ∩ ◦Bi,γ)
id⊗Ψ(i)∼= H∗(◦U i(β′i),

◦Vi(β′i))⊗ CH∗(M(1, i))
∼= H∗(◦U i(β′i),

◦Vi(β′i))⊗H∗(◦Ui,y, ◦U−
i,y)

∼= H∗(◦Ni(β′i),
◦Li(β′i)),

where first and last isomorphism follows from Theorem 3.14, and Ψ(i) is the
isomorphism from Proposition 4.6 [9]. "

Let ◦N〈1, j〉 :=
⊔j

i=1(
◦U0

i ∪ ◦Bi ∪ ◦U1
i )/∼ and ◦L〈1, j〉 :=

⊔j
i=1

◦Li/∼.

Theorem 4.6 For all j = 1, . . . , I we have

H∗(◦N〈1, j〉, ◦L〈1, j〉) ∼= H∗(◦N1(β′1),
◦L1(β′1)).

Proof. Consider Mayer-Vietoris sequence

. . . → H∗(◦N〈1, j + 1〉, ◦L〈1, j + 1〉)

→ H∗(◦N〈1, j〉, ◦L〈1, j〉)⊕H∗(◦Nj+1, ◦Lj+1)

→ H∗(◦Nj+1(β′1), ◦Lj+1(β′1)) → . . . .

(4.2)

33



By Lemma 4.5

H∗(◦Nj+1,
◦Lj+1) ∼= H∗(◦Nj+1(β′1),

◦Lj+1(β′1))

and so
H∗(◦N〈1, j + 1〉, ◦L〈1, j + 1〉) ∼= H∗(◦N〈1, j〉, ◦L〈1, j〉)

for all j. In particular, for j = 0 we get

H∗(◦N〈1, 2〉, ◦L〈1, 2〉) ∼= H∗(◦N〈1, 1〉, ◦L〈1, 1〉) = H∗(◦N1,
◦L1)

where for the last set we have from Lemma 4.5

H∗(◦N1,
◦L1) ∼= H∗(◦N1(β′1),

◦L1(β′1)).

The rest now follows by induction. "

Corollary 4.7 There is an isomorphism

H∗(◦N〈1, I〉, ◦L〈1, I〉) ∼= H∗(◦N1(β′1),
◦L1(β′1))

5 Periodic and heteroclinic corridors

In this section we provide precise definitions of periodic and heteroclinic cor-
ridors, which were refered to in the introduction. From the corridors we de-
fine a neighborhood †N and associated exit set †L. We formulate Theorems
which prove that †N is a singular isolating neighborhood. Further we show that
(†N, †L) can be cut into pieces and reassembled to form a compatible collection
of local models that is defined in Section 2.

Recall, that we have defined slow sheets in Definition 1.4, which are basic
building blocks of the isolating neighborhood on slow manifolds.

Definition 5.1 Let †R :∼= D!−1×[a, b] be an "-dimensional disc in R! the space
of slow variables. Let †Ra := D!−1 × {a} and †Rb := D!−1 × {b} be (" − 1)-
dimensional discs in the boundary ∂†R. We assume that for y ∈ †Ra∪†Rb there
is no connecting orbits in the invariant set Sy under parameterized flow. We
call such set †R a shaft.

Let us consider a collection of slow sheets {Ei}I
i=0 determined by local sec-

tions Σi of slow manifolds Mi, and a collection of shafts {†Ri}I
i=1 such that:

(H1) The set
†Bi := Π(Ei) ∩ †Ri ∩Π(Ei−1)) (= ∅ (5.1)

for all i = 1, . . . , I.

(H2) Let †Bσi := †Rσi ∩ †Bi for σ = a, b. Then †Bi
∼= D!−1 × [0, 1], where

†Ba
i ∪ †Bb

i = D!−1 × {0, 1}.
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(H3) The flow Π ◦ ϕslow
i is transverse to all fibers †Rt

i := D!−1 × {t}, t ∈ [a, b]
and also the flow Π ◦ ϕslow

i−1 is transverse to all fibers †Rt
i := D!−1 × {t},

t ∈ [a, b].

Π(Ei+1)

Π(Ei)

Π(Ei−1)

z

z′

z′′
τ in
i (z)

τout
i (z)

τ in
i (z′) = τout

i (z′)

†Ba
i

†Bb
iσin

i (z′′) = σout
i (z′′)

σin
i (z) σout

i (z)

Figure 6: Time functions.

Given a collection {†Bi}I
i=1, we let

†Bi = Π−1(†Bi) ∩Ei and †B
′
i = Π−1(†Bi+1) ∩Ei

be the corresponding sets on Ei. Let

†Bside
i := cl(∂†Bi \ (†Ba

i ∪ †Bb
i)),

†B
σ
i := Π−1(†Bσi ) ∩ †Bi and †B

′σ
i := Π−1(†Bσi+1) ∩ †B

′
i for σ = a, b;

†B
side
i := Π−1(†Bside

i ) ∩ Ei and †B
′side
i = Π−1(†Bside

i+1) ∩ Ei

The slow flow ϕslow
i on †Bi is transverse to both †B

a
i and †B

b
i and these

sets are in the boundary of †Bi, the flow entering †Bi through one of them and
leaving through the other. We call †B

in
i the entrance part and †B

out
i the exit

part of †Bi. Similarly we identify †B
′in
i and †B

′out
i as parts of †B

′
i. Notice that

these assignments make sense only relative to the flow on Ei and it may be that
Π(†Bin

i ) = Π(†B
′out
i−1 ).

We define the time functions σin
i (z), σout

i (z), τ in
i (z), and τout

i (z) as follows:
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• For z ∈ Σi, if ϕslow
i (z, [0, Ti(z)]) ∩ †B

′
i (= ∅, then let

σin
i (z) = inf{t | ϕslow

i (z, t) ∈ †B
′
i};

σout
i (z) = sup{t | ϕslow

i (z, t) ∈ †B
′
i}.

• For z ∈ Σi, if ϕslow
i (z, [0, Ti(z)]) ∩ †Bi (= ∅, then let

τ in
i (z) = inf{t | ϕslow

i (z, t) ∈ †Bi};
τout
i (z) = sup{t | ϕslow

i (z, t) ∈ †Bi}.

We now assume that

(H4) the time functions σin
i (z), σout

i (z), τ in
i (z), and τout

i (z) can be extended to
all z ∈ Σi such that

(1) if ϕslow
i (z, [0, Ti(z)]) ∩ †B

′
i = ∅, then σin

i (z) = σout
i (z) ≥ 0;

(2) if ϕslow
i (z, [0, Ti(z)]) ∩ †Bi = ∅, then τ in

i (z) = τout
i (z) ≤ Ti(z);

(3) they are all continuous functions on Σi.

Observe that if such extension is possible, then these time functions auto-
matically satisfy

0 ≤ σin
i (z) ≤ σout

i (z) ≤ τ in
i (z) ≤ τout

i (z) ≤ Ti(z).

We set
†U i :=

⋃
z∈Σi

ϕslow
i (z, [σin

i (z), τout
i (z)]),

†̃U i :=
⋃

z∈Σi
ϕslow

i (z, [σout
i (z), τ in

i (z)]).
(5.2)

We observe that by definition

†U i = †̃U i ∩ †Bi ∪ †B
′
i.

Define
†U

in
i := {ϕslow

i (z,σin
i (z)) | z ∈ Σi}

†U
out
i := {ϕslow

i (z, τout
i (z)) | z ∈ Σi}

†U
side
i := cl(∂†U i \ (†U

in
i ∪ †U

out
i ))

†̃U
in

i := {ϕslow
i (z,σout

i (z)) | z ∈ Σi}

†̃U
out

i := {ϕslow
i (z, τ in

i (z)) | z ∈ Σi}

Furthermore, define

†V
+
i := cl{ϕslow

i (z, t) | z ∈ Σi, t ∈ [0, Ti(z)],ϕslow
i (z, [0, Ti(z)]) ∩ †B

′
i = ∅} ∩ †U i

†V
−
i := cl{ϕslow

i (z, t) | z ∈ Σi, t ∈ [0, Ti(z)],ϕslow
i (z, [0, Ti(z)]) ∩ †Bi = ∅} ∩ †U i.

See Figure 7.
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†V
−
i

†V
+
i

†B
′
i

†Bi †U
out
i

†U
side
i

†U
side
i

†U
in
i

†̃U i

Figure 7: The set †U i and other relevant sets. The shape of the set †U i matches
Figure 3.

Remark 5.2 By the continuity of functions τout
i (z) and τ in

i (z), for all z ∈
Σi ∩ †V

−
i we have τout

i (z) = τ in
i (z). It follows that for all such z, if ϕslow

i (z, t)
reaches boundary †U

out
i the flow strictly exits †U i. Similarly, the continuity of

σout
i (z) and σin

i (z), implies that for all z ∈ Σi ∩ †V
+
i we have σout

i (z) = σin
i (z)

and thus for z ∈ Σi ∩ †V
+
i , if ϕslow

i (z, t) ∈ †U
in
i then the flow strictly enters †U i.

Let
†U i := Π(†U i), †V±

i := Π(†V
±
i )

and similarly with the other sets: by script letters we will denote a projection
Π of the unscripted objects.

Recall that a subset C of a slow manifold M is a cap, if it is an isolating
block under the slow flow ϕslow on M . Let C− denote the exit set of a cap
C under the slow flow ϕslow. Let Br(A) denote an r-neighborhood of a set A.
Recall that we defined boxes in the Introduction.

Definition 5.3 A collection {Ei}I
i=0 of slow sheets with E0 = EI , correspond-

ing sets †U i, †Bi, †B
′
i ⊂ Ei and sets †V

±
i ⊂ †U i, together with a collection of

boxes {†Bi | i = 1, . . . , I} form a periodic corridor if

(1) †Bi = Π(†Bi) for all i;

(2) For each i there is an r > 0 such that

†Bside
i \ †U side

i ⊂ †V−
i−1 (5.3)
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†̃U
out

i

†̃U
in

i

h0

h0

h1

h1
Π(Ei) †B

in
i

Figure 8: Homotopy equivalences.

†U
side
i ⊂ int†U i

†V
+
i ∪ int†Ui

†V
−
i ; (5.4)

(3) Let †Bin
i := Π(†Bin

i ) and †Bout
i := Π(†B

′out
i−1 ). For each i = 1, . . . , I there

are homotopy equivalences of pairs

h0 : (†Bin
i , †Bin

i ∩ †V−
i−1) ↪→ (†̃U

out

i , †̃U
out

i ∩ †V−
i ),

h1 : (†Bout
i , †Bout

i ∩ †V−
i−1) ↪→ (†̃U

in

i−1, †̃U
in

i−1 ∩ †V−
i−1).

(5.5)

See Figure 8.

Definition 5.4 A collection {Ei}I
i=0 of slow sheets, corresponding sets †U i ⊂

Ei, †Bi, †B
′
i ⊂ Ei and sets †V

±
i ⊂ †U i, together with a collection of boxes

{†Bi | i = 1, . . . , I} and a pair of caps †CA and †CR, such that †CA ∩ †U
out
0 (= ∅

and †CR∩ †U
in
I (= ∅, form a heteroclinic corridor, if they satisfy all the condition

for a periodic corridor, and, in addition, there are homotopy equivalences

(†CR ∩ †U in
I , †C−

R) ↪→ (†U in
I , †U in

I ∩ †V−
I )

(†Uout
0 , †Uout

0 ∩ †V−
0 ) ↪→ (†CA ∩ †Uout

0 , †C−
A).

(5.6)

Remark 5.5 For heteroclinic corridor the two slow sheets E0 and EI must be
treated slightly differently. In E0, since there is no shaft †R−1, there is no set
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†B0 and we define T0(x) := τ in
0 (x) = τout

0 (x) for all x ∈ Σi. Similarly, there is
no set †B

′
I ⊂ EI and so we set σin

I (x) = σout
I (x) = 0.

5.1 Main technical results

The goal of this subsection is to construct a singular isolating neighborhood
for periodic and heteroclinic coridors and formulate two Theorems, which will
allow us to prove Theorem 1.7 and Theorem 1.9. We will adhere strictly to the
notation of Appendix A, concerning the singular index theory.

We begin by considering periodic and heteroclinic corridors. Recall that
they consist of a collection of slow sheets {Ei}i=0,...,I , sets †U i, †V

±
i , †Bi ⊂ Ei

and a collection of boxes {†Bi}i=1,...,I . In the case of heteroclinic corridor, we
also have caps †CR and †CA.

Let
†Ui := [−r, r]k × †U i, (5.7)

where r is selected in such a way that

([−r, r]k × †Bi) ∪ ([−r, r]k × †B
′
i−1) ⊂ †Bi

for all i. We also let

†CA := [−r, r]k × †CA, †CR := [−r, r]k × †CR.

We are ready to define singular isolating neighborhood. For a periodic cor-
ridor, let

†N :=
I⋃

i=0

†Ui ∪
I⋃

i=1

†Bi,

and for a heteroclinic corridor, let

†N :=
I⋃

i=0

†Ui ∪
I⋃

i=1

†Bi ∪ †CR ∪ †CA.

We are ready for main technical results of this paper.

Theorem 5.6 Let {Ei}i=0,...,I with E0 = EI be a periodic corridor. Then we
have the following:

(1) If r > 0 chosen sufficiently small, †N is an isolating neighborhood for ϕε
for sufficiently small ε > 0;

(2) Assume furthermore that for each i = 1, . . . , I,

CHj(M(1, i);Z2) ∼=
{

Z2 if j = s;
0 otherwise
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and for all i = 0, . . . , I

Hj(†U i,
†V

−
i ;Z2) ∼=

{
Z2 if j = p, p + 1;
0 otherwise.

If T ∗
†Bi

(2, 1) is an isomorphism for all i = 1, . . . , I, then

CHj(Inv(†N,ϕε);Z2) ∼=
{

Z2 if j = s + p, s + p + 1;
0 otherwise

.

Theorem 5.7 Let {Ei}i=0,...,I with caps †CA and †CR be a heteroclinic corri-
dor. Then we have

(1) For r > 0 sufficiently small, †N is an isolating neighborhood for ϕε;

(2) (Inv(†CR,ϕε), Inv(†CA,ϕε)) gives an attractor-repeller decomposition for
Inv(†N,ϕε);

(3) If T ∗
†Bi

(2, 1) (= 0 for all i = 1, . . . , I and

CH∗+1(Inv(†CR)) ∼= H∗(†CR ∩ †U I , †CR ∩ †V
−
I ),

CH∗(Inv(†CA)) ∼= H∗(†CA ∩ †U0, †CA ∩ †V
−
0 ),

(5.8)

then

CH∗(Inv(†N,ϕε)) (∼= CH∗(Inv(†CA,ϕε))⊕ CH∗(Inv(†CR,ϕε)).

5.2 Singular isolating neighborhood

The goal is to show that †N is a singular isolating neighborhood. Perhaps the
first observation that needs to be made is that †N is not an isolating neighbor-
hood. To see this let

S := Inv(†N,ϕ0)

and
S∂ := S ∩ ∂†N.

Observe that (x, y) ∈ †U i ∩ ∂†N then {x} is an invariant set of the flow ψy;
thus z := (x, y) ∈ S∂ .

Let †Qi ⊂ †U i be a set such that if y ∈ †Qi there is a connecting orbit from
the My(2, i) to My(1, i) lying in the boundary ∂†N. Then by definition of †N,
we must have that †Qi ⊂ ∂†U i, and since Π(†Bi) = †Bi we also have †Qi ⊂ ∂†Bi.
Therefore

†Qi ⊂ ∂†Bi ∩ ∂†U i.

Note that ∂†Bi = †Bin
i ∪ †Bout

i ∪ †Bside
i and ∂†U i = †U in

i ∪ †Uout
i ∪ †U side

i .
From definition of these sets it follows that

∂†Bi ∩ ∂†U i = (†Bside
i ∩ †U side

i ) ∪ †Bout
i ∪ (†Bside

i ∩ †Uout
i ).
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By definition of the set †Bout
i there are no connecting orbits in Sy for y ∈ †Bout

i

and so
†Qi ⊂ (†Bside

i ∩ †U side
i ) ∪ (†Bside

i ∩ †Uout
i ).

It follows from (5.4) that †U side
i ⊂ †V+

i ∪ †V−
i . Note however, that if w ∈

†U
side
i ∩ †V

−
i then

w = ϕslow
i (z, t) z ∈ Σi and t ≤ τ in

i (z) = τout
i (z),

where τ in
i (z) = τout

i (z) by Remark 5.2. From definition of †B
side
i if y ∈ †B

side
i

then
w = ϕslow

i (z, t) z ∈ Σi and t > τ in
i (z).

Thus it follows that †Bside
i ∩ †U side

i ∩ †V−
i = ∅ and

†Bside
i ∩ †U side

i ⊂ †V+
i .

Finally, it follows from (5.3) that

†Bside
i ∩ †Uout

i ⊂ †V−
i−1,

which implies
†Qi ⊂ †V+

i ∪ †V−
i−1.

The connecting orbit from the My(2, i) to My(1, i) for y ∈ †Qi lies on the
boundary of †N and hence this connecting orbit is a part of S∂ . Set Ci,y be the
set of connecting orbits connecting My(2, i) to My(1, i), lying in the boundary
of †N. Note that †U i ∩ ∂†N = ∂†U i. Therefore

S∂ :=
I⋃

i=1

∂†U i ∪
I⋃

i=1

⋃

y∈†Qi

Ci,y. (5.9)

Since this set is not empty, †N is not an isolating neighborhood under ψY .
Now we show that †N is a singular isolating neighborhood. We shall first

deal with a periodic corridor.

Periodic corridor. Recall, that we denote by S−
∂ the set of slow exit points,

by S+
∂ the set of slow entrance points.

Note that the first part of the set S∂ decomposes as

∂†U i = †U
side
i ∪ †U

in
i ∪ †U

out
i .

Lemma 5.8 For a periodic corridor,

S− :=
I⋃

i=0

†V
−
i ∪

I⋃

i=1

⋃

y∈†Qi∩†V−
i−1

Ci,y ∪
I⋃

i=0

†U
out
i
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is a set of C-slow exit points, and

S+ :=
I⋃

i=0

†U
in
i ∪

I⋃

i=0

(†U
side
i \ †V

−
i ) ∪

I⋃

i=1

⋃

y∈†Qi\†V−
i−1

Ci,y

is a set of C-slow entrance points.
Comparing to (5.9) this implies S∂ ⊂ S−∪S+, and therefore †N is a singular

isolating neighborhood.

Proof. See Appendix B. "

Heteroclinic corridor. Recall from Definition 1.8 and Definition 5.4 that
†CR and †CA are isolating blocks in the corresponding slow flow and †C

−
R and

†C
−
A are their corresponding exits sets. Let

†C
L
R := †C

−
R \ †UI and †C

L
A := †C

−
A (5.10)

and let

†C
E
R := (†CR ∩ ∂†N) \ †C

L
R and †C

E
A := (†CA ∩ ∂†N) \ †C

L
A.

Lemma 5.9 For a heteroclinic corridor

S− := (†C
L
R ∩ ∂†N) ∪ (†C

L
A ∩ ∂†N) ∪

I⋃

i=0

†V
−
i

∪
I⋃

i=1

⋃

y∈†Qi∩†V−
i−1

Ci,y ∪
I⋃

i=1

†U
out
i ∪ (†U

out
0 \ †CA)

is a set of C-slow exit points, and

S+ := †C
E
R ∪ †C

E
A ∪

I−1⋃

i=0

†U
in
i ∪ (†U

in
I \ †CR)

∪
I⋃

i=0

(†U
side
i \ †V

−
i ) ∪

I⋃

i=1

⋃

y∈†Qi\†V−
i−1

Ci,y

is a set of C-slow entrance points.
Comparing to (5.9) this implies S∂ ⊂ S−∪S+, and therefore †N is a singular

isolating neighborhood.

Proof. See Appendix B. "
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5.2.1 Immediate exit set

The next step is to identify the immediate exit set †N− and then construct the
set †L.

Since Mi is normally hyperbolic there are Fenichel coordinates (ξ, η) in the
neighborhood of the slow manifold Mi ([6]). In these coordinates the flow ψY

has the form
ξ̇1 = Aξ1 + f1(ξ, η), ξ̇2 = Bξ + f2(ξ, η),

where ξ = (ξ1, ξ2), eigenvalues of A have negative real part and eigenvalues of
B have positive real part. Functions f1 and f2 contain higher order terms. We
denote by s the size of square matrix B.

In the coordinates (ξ1, ξ2, η) the immediate exit set †U−
i from the set †Ui

has the form
†U

−
i := ∂[−r, r]s × [−r, r]k−s × †U i. (5.11)

Similarly, the immediate exit set from the caps †CR and †CA have the form

†C
−
∗ := ∂[−r, r]s × [−r, r]k−s × †C∗

for ∗ = A, R.
Finally, let †B−

i be the immediate exit set of the box †Bi and let †Ny :=
†N ∩ (Rk × {y}).

Lemma 5.10 Given a singular isolating neighborhood †N for a periodic corri-
dor, the immediate exit set of †N under ϕ0 is:

†N
−

=

[(
I⋃

i=0

†U
−
i

)
∪

(
I⋃

i=1

†B
−
i

)]
\

I⋃

i=1

(
†Bi ∩

(
†U

−
i ∪ †U

−
i+1

))
.

Proof. Since we are working with the flow ϕ0, it is sufficient to consider ψy

for each relevant value of y.
First consider a set †Ui. Choose y ∈ †U i. By normal hyperbolicity, for

sufficiently small q the set †Uy is an isolating block and by definition of †N−

and the choice of Fenichel coordinates we have x ∈ †Uy ∩ †N− if and only if
x ∈ †U−

y .
Now we assume y ∈ †Bi. Then †Ny ⊂ †By and by definition of †N−, x ∈ †By

is in †N− if and only if x ∈ †B−
y . "

A similar argument, in which one only needs to consider, in addition, the
caps, leads to the following lemma.

Lemma 5.11 For a singular isolating neighborhood †N for a heteroclinic cor-
ridor, the immediate exit set of †N under ϕ0 is:

†N
−

=

[(
I⋃

i=0

†U
−
i

)
∪

(
I⋃

i=1

†B
−
i

)
∪ †C

−
A ∪ †C

−
R

]
\

I⋃

i=1

(
†Bi ∩

(
†U

−
i ∪ †U

−
i+1

))
.
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5.3 Singular index pair

We denote the unstable manifold of a set A in set X by Wu
X(A).

Proposition 5.12 Given a singular isolating neighborhood †N for a periodic
corridor (†U , †V), let

†L := ρ(cl(†N
−

), †N,ϕ0) ∪
(

I⋃

i=1

Wu
†Bi

(†U
out
i )

)
∪




I⋃

i=0

⋃

y∈†V−
i

Ny



 .

Then there is a pair ( ¯†N, †̄L) homotopically equivalent to the pair (†N, †L) such
that ( ¯†N, †̄L) is a singular index pair.

Proof. See Appendix B. "

Proposition 5.13 Given a singular isolating neighborhood †N for a heteroclinic
corridor, let

†L := ρ(cl(†N
−

), †N,ϕ0) ∪
⋃

y∈cl(†CL
R)

†Ny ∪
⋃

y∈†CL
A

†Ny

∪
(

I⋃

i=1

Wu
†Bi

(†U
out
i )

)
∪




I⋃

i=0

⋃

y∈†V−
i

†Ny



 .

Then there is a pair ( ¯†N, †̄L), homotopically equivalent to the pair (†N, †L), such
that ( ¯†N, †̄L) is a singular index pair.

Proof. See Appendix B. "

Let
†L

slow
:=

I⋃

i=0

⋃

y∈†V−
i

†Ny (5.12)

and
†L

fast
:= ρ(cl(†N

−
), †N,ϕ0) ∪

(
I⋃

i=1

Wu
†Bi

(†U
out
i )

)
. (5.13)

5.4 Verification of assumptions of local models

Our first step is to define a collection of sets ◦U i, i = 1, . . . , I from the sets †U i,
i = 0, . . . , I.

Select for each i = 1, . . . , I and each z ∈ Σi a value αi(z) ∈ (σout
i (z), τ in

i (z))
such that the function αi : Σ→ R is continuous. For heteroclinic case we need
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to treat †U0 and †U I differently. We set α0(z) := T0(z) and αI(z) := 0. Let

†U
α
i := {ϕslow

i (z,αi(z)) | z ∈ Σi}

†U
top
i := {ϕslow

i (z, t) | z ∈ Σi, t ∈ [αi(z), τ in
i (z)]}

†U
bot
i := {ϕslow

i (z, t) | z ∈ Σi, t ∈ [σout
i (z),αi(z)]}.

Observe that both †U
top
i and †U

bot
i are subsets of †̃U i. Keeping up our previous

notational agreements, we set

†V
∗,±
i := †V

±
i ∩ †U

∗

where ∗ = α, top, bot, and by the corresponding script symbols we represent
projection of these objects to the slow variable space Rl under Π.

Let
◦Bi := †Bi

and
◦U1

i := (†Ubot
i−1 9 †Bi)/ ∼1

be a disjoint union of †Ubot
i−1 and †Bi, with some points identified by equivalence

∼1. Let y ∈ †̃U
in

i−1 and y′ ∈ †Bout
i . Then y ∼1 y′ is and only if h1(y′) = y, where

h1 is a homotopy equivalence in (5.5). Similarly, let

†U0
i := (†U top

i 9 †Bi)/ ∼0

be a disjoint union of †U top
i and †Bi, with some points identified by equivalence

∼0: Let z ∈ †̃U
out

i and w ∈ †Bin
i . Then z ∼0 w if and only if h0(w) = z, where

h0 is a homotopy equivalence in (5.5).
Let

◦V1
i := [†Vbot−

i−1 9 (†Bi ∩ †V−
i )]/ ∼1

◦V0
i := [†Vtop−

i 9 (†Bi ∩ †V−
i )]/ ∼0 .

Lemma 5.14 For each i = 1, . . . , I, the collection (◦U0
i ,

◦U1
i ,

◦V0
i ,

◦V1
i ,

◦Bi) is a
slow local model.

Proof. The first property is satisfied immediately by construction with h =
id. To define required fibrations, we first observe that sets †U top

i and †Ubot
i−1 have

natural fibrations given by slow flows ϕslow
i and ϕslow

i−1 , respectively. Indeed, let
us rescale time in the flow ϕslow

i in such a way that, for all z, αi(z) = αi and
τ in
i (z) = β′i for some constant β′i. Then the map p0 : †U top

i → [αi,β′i] given by

Π ◦ ϕslow
i (z, t) 2→ t
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†Ubot
i

†U top
i

†Ubot
i−1

†Uα

αi(z)
τ in
i (z)

σout
i (z)

∼

∼0 ∼1

z

†Vtop−
i

†Vbot−
i−1

◦V1
i

◦V0
i

†Bi

◦U0
i

◦U1
i

Figure 9: Construction of a local model from a corridor.

for z ∈ Σi, is a fibration.
Similarly, we rescale time in the flow ϕslow

i−1 in such a way that, for all x,
σout

i−1(z) = βi and αi(z) = α′
i. Then the map p1 : †Ubot

i−1 → [βi,α′
i] given by

Π ◦ ϕslow
i−1 (z, t) 2→ t

for z ∈ Σi−1, is a fibration.
What remains to be done is to define a fibration p on the set †Bi in such

a way that it seamlessly meshes with the p0 and p1 fibrations on †U top
i and

†Ubot
i−1. However, this is guaranteed by definition of the shaft †Ri which asserts

the existence of such fibration for the set †Bi ⊂ †Ri and assumption (H3) which
implies that this fibration meshes with fibrations on †U top

i and †Ubot
i−1. Indeed, the

pair (†̃U
out

i , †̃U
out

i ∩†V−
i ) is a fiber of a p-fibration of †U top

i and (†Bin
i , †Bin

i ∩†V−
i−1)

is a fiber of a p-fibration of †Bi. The identification ∼0 identifies these two

leaves. Similarly, the identification ∼1 identifies fiber (†̃U
in

i−1,
†̃U

in

i−1 ∩ †V−
i−1) of

a p-fibration of †Ubot
i−1 and the fiber (†Bout

i−1,
†Bout

i−1 ∩ †V−
i−1) of p-fibration of †Bi.

It follows that using the identifications ∼0 and ∼1 the p-fibrations of the
individual sets join in a p-fibration of the union ◦U i. "
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We extend the equivalence defined by ∼0 to a tube †Ui. If (x, y) and (x′, y′)
are two points in †Ui we write

(x, y) ∼2 (x′, y′), x, x′ ∈ [−r, r]k, y, y′ ∈ R!

if and only if y ∼0 y′ and x = x′.
Similarly we define ∼3 for a tube †Ui−1 using ∼1 for slow coordinate. Then

let

◦U1
i := [(†Ui−1 ∩Π−1(†̃U

top

i−1)) 9 (†Ui−1 ∩ †Bi)]/ ∼2

◦U0
i := [(†Ui ∩Π−1(†̃U

bot

i )) 9 (†Ui ∩ †Bi)]/ ∼3 .

Now let ◦Li, ◦Lslow
i and ◦Lfast

i be the images of the sets †L, †Lslow and †Lfast
i ,

respectively, in the above construction in the set ◦U0
i ∪ ◦Bi ∪ ◦U1

i . The map
qi : ◦U0

i ∪ ◦Bi ∪ ◦U1
i → ◦U i is given by projection Π factored through the

equivalences ∼2 and ∼3. Finally, let

◦U1
i := [†Ubot

i−1 9 †Bi]/ ∼3, ◦V 1
i := [†V bot−

i−1 9 (†Bi ∩ †V
−
i−1)]/ ∼3

◦U0
i := [†U top

i 9 †Bi]/ ∼2, ◦V 0
i := [†V top−

i : (†Bi ∩ †V
−
i−1)]/ ∼2 .

Lemma 5.15 For each i the collection (◦U0
i ,

◦U1
i ,

◦V 0
i ,

◦V 1
i ,

◦U0
i ,

◦U1
i ,

◦Bi, ◦Li)
with the map qi is a local model.

Proof. Observe that q−1
i (y) = [−r, r]k for all y ∈ ◦U i \ ◦Bi by construction of

the tubes. For y ∈ ◦Bi we have q−1
i (y) = ◦Bi,y which is a k-disc by definition of

the box ◦Bi. The rest of the first part of the assumptions of local model follows
from the fact that Π|Ei is a homeomorphism for each i.

A parametrized flow is defined naturally for our sets and they satisfy the
second group of assumptions of a local model by the definition of the tubes and
boxes.

Now we verify the third group of the assumptions. From definition (5.12) of
†Lslow and the construction of the sets †Ui, †Vi using (5.5) it follows that

◦Lslow
i = q−1

i (◦Vi).

The second part follows from definition (5.7) of †Ui and definition (5.11) of
†U−

i . We start the proof of the last condition by observing that

†U
out
i = (†U

out
i \ ∂†Bi) ∪ (†U

out
i ∩ ∂†Bi)

= (†U
out
i \ ∂†Bi) ∪ (†U

out
i ∩ †B

side
i ) ∪ †B

out
i ,

where we used the fact that ∂†Bi = †B
in
i ∪ †B

side
i ∪ †B

out
i , that †B

in
i ∩ †U

out
i = ∅

and that †B
out
i ⊂ †U

out
i .
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SubLemma 5.16 From (5.3) in Definition 5.3, we have

†Uout
i ⊂ (†Uout

i \ ∂†Bi) ∪ †Bout
i ∪ †V−

i−1; (5.14)

†̃U i

out
⊂ (†̃U i

out
\ ∂†Bi) ∪ †Bin

i ∪ †V−
i−1. (5.15)

Proof. From ∂†Bi = †Bin
i ∪ †Bside

i ∪ †Bout
i and †Bout

i ⊂ †Uout
i , we have

†Uout
i ∩ ∂†Bi ⊂ (†Uout

i ∩ †Bside
i ) ∪ †Bout

i ,

where †Uout
i ∩ †Bside

i is clearly a subset of †Bside
i \ †U side

i which is assumed to be
a subset of †V−

i−1 from (5.3). Therefore

†Uout
i = (†Uout

i \ ∂†Bi) ∪ (†Uout
i ∩ ∂†Bi) ⊂ (†Uout

i \ ∂†Bi) ∪ †Bout
i ∪ †V−

i−1.

A similar argument shows the second assertion. "

By construction of the set †V
−
i , we have

†U
out
i \ ∂†Bi ⊂ †V

−
i ,

and by (5.14)
†Uout

i ∩ †Bside
i ⊂ †V−

i−1.

It follows that the term

I⋃

i=1

Wu
†Bi

(†U
out
i ) ⊂ †L

slow ∪
I⋃

i=1

Wu
†Bi

(†B
out
i ).

Comparing to (5.13) we see that after passing through the reassembly defined
by ∼2 and ∼3, the term ρ(cl(†N−), †N,ϕ0) becomes

◦B− ∪ ρ(cl(∪y∈◦Bin
i

◦U−
i,y), ◦Bi,ψ) ∪ ρ(cl(∪y∈◦Bout

i

◦U−
i,y), ◦Bi,ψ)

and the term Wu
†Bi

(†Uout
i ) becomes Wu

◦Bi
(◦Bout

i ) since the other part is a subset

of †Lslow
i . Therefore,

◦Lfast
◦Bi

= ◦B−
i ∪ ρ(cl(∪y∈◦Bin

i

◦U−
i,y), ◦Bi,ψ)

∪ρ(cl(∪y∈◦Bout
i

◦U−
i,y), ◦Bi,ψ) ∪Wu(◦Bout

i ).

This finishes the verification of all assumptions for a local model. "

Lemma 5.17 Collection of sets (◦U0
i ,

◦U1
i ,

◦V 0
i ,

◦V 1
i ,

◦U0
i ,

◦U1
i ,

◦Bi, ◦Li) and maps
qi for i = 1, . . . , I forms a collection of compatible local models.
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Proof. We only need to observe that

p−1
1,i+1(α

′
i+1) = p−1

0,i (αi) = †U i(αi)

†V
1
i+1 ∩ p−1

1,i+1(1) = †V
0
i ∩ p−1

0,i (0) = †V i(αi).

"

Since all identifications used in definition of sets ◦U , ◦V , ◦B, ◦U, ◦U, ◦V , ◦L
from the corresponding sets ◦U , ◦V , ◦B, ◦U, ◦U, ◦V , ◦L are done using homotopy
equivalencies, we have a following corollary:

Corollary 5.18 For all i = 0, . . . , I and λ = αi or λ = α′
i

H∗(†Ni(λ), †Li(λ)) ∼= H∗(◦Ni(λ), ◦Li(λ)) (5.16)

and
H∗(◦U i(λ), ◦V i(λ)) ∼= H∗(†U i(λ), †V i(λ)). (5.17)

Furthermore, for all y ∈ ◦U

H∗(◦Uy, ◦Vy) ∼= H∗(†Uy, †Vy). (5.18)

5.5 Proof of main theorems

5.5.1 Periodic corridor

Proof of Theorem 5.6
The statement (1) of the theorem was proven in Lemma 5.8. Now we prove

the second part. Given a slow periodic corridor, by Subsection 5.4, there is a
collection of compatible local models such that the singular index pair ( ¯†N, †̄L)
for the periodic corridor (†N, †L) has the same cohomology as that of the index
bundle (◦N, ◦L) constructed from the compatible local models. This last asser-
tion is obvious from the Mayer-Vietoris sequence and the homotopy equivalence
conditions in the definition of the corridor, see Definition 5.3. Therefore the
statement (2) follows from Theorem 4.4. "

Proof of Theorem 1.7
The results follows immediately from Theorem 5.6 and and [14, Theorem

1.3], provided that the periodic corridor †N admits a Poincaré section. The
proof of existence of a section is very similar to the proof presented in Section
6 of [9] and is therefore omitted. "
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5.5.2 Heteroclinic corridor

Observe that the assumptions of the Theorem 5.7 are weaker than those of
Theorem 5.6. We only assume that the map Θ (= 0. Since Θ is not necessarily
an isomorphism the pair (†N, †L) may not (necessarily) be an index bundle and
it does not (necessarily) admit a cohomological extension.

Proof of Theorem 5.7
The first statement of the theorem was proven in Lemma 5.9. Since the

slow flow in each †U i flows from †B
′
i to †Bi, and since each slow manifold Mi is

normally hyperbolic and r is small, it follows that there is no connecting orbit
connecting Inv(†CA) to Inv(†CR) inside †N. This proves the second statement
of the theorem.

Now we prove the third statement. Let us consider the middle part of the
heteroclinic corridor denoted by (†NM

, †LM ), which is given by

†N
M

=
I⋃

i=0

†Ni,
†L

M
= †L ∩ †N

M
,

and let ◦NM , ◦LM be corresponding ideal models of these sets. Recall that the
set †L ∩ †CA is a union of the immediate exit set †C−

A and the set
⋃

y∈†CL
A

†Ny.

The set †C
L
A, as well as the set †C

L
R, have been defined in (5.10). Let †NA :=

†NM ∪ †CA and †LA := †LM ∪ (†L∩ †CA). Notice, that the ideal models do not
involve caps and thus we set

◦CR := †CR, ◦CA := †CA.

We first prove a Lemma.

Lemma 5.19 We have the following isomorphims:

H∗(†NI(αI), †LI(αI)) ∼= H∗(†CR ∩ †U , †CR ∩ †V)⊗H∗(†Uy, †U
−
y );(5.19)

CH∗(Inv(†CR)) ∼= CH∗(Inv(†CR))⊗H∗(†CR,y, †C
−
R,y). (5.20)

H∗(†N1(α′
1),

†L1(α′
1)) ∼= CH∗(Inv(†CA))⊗H∗(†CA,y,

†C
−
A,y); (5.21)

CH∗(Inv(†CA)) ∼= CH∗(Inv(†CA))⊗H∗(†CA,y,
†C

−
A,y). (5.22)

Proof. The idea of the proof is similar to that of Theorem 3.14. We shall
give the proof of first two isomorphisms. The other two isomorphisms can be
proven exactly the same manner. From Theorem 3.14, we have

H∗(◦NI(αI), ◦LI(αI)) ∼= H∗(◦U I(αI), ◦VI(αI))⊗H∗(◦NI,γ(αI), ◦LI,γ(αI)).

By (5.17) we have

H∗(◦U I(αI), ◦VI(αI)) = H∗(†UI(αI), †VI(αI))
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and by construction of the heteroclinic corridor we have

H∗(†UI(αI), †VI(αI)) = H∗(†CR ∩ †U , †CR ∩ †V).

From the definition of the fast index bundle

H∗(◦NI,γ(αI), ◦LI,γ(αI)) ∼= H∗(◦Uy, ◦U−
y )

for some y. By (5.18)

H∗(◦Uy, ◦U−
y ) = H∗(†Uy, †U

−
y )

and from (5.16)

H∗(◦NI(αI), ◦LI(αI)) = H∗(†NI(αI), †LI(αI)).

The existence of the first isomorphism follows from these identifications.
The second isomorphism is obtained by

CH∗(Inv(†CR)) = H∗(†CR, †CR ∩ †L)

∼= H∗([−r, r]k × †CR, †C
−
R ∪

⋃

y∈†CL
R

†Ny)

∼= H∗([−r, r]k × †CR,

[−r, r]s × ∂[−r, r]k−s × †CR ∪
⋃

y∈†CL
R

†CR,y)

∼= H∗(†CR,y × †CR, †C−
R,y × †CR ∪ †CR,y × †C

L
R)

∼= H∗(†CR, †C
L
R)⊗H∗(†CR,y, †C−

R,y)

∼= CH∗(Inv(†CR))⊗H∗(†CR,y, †C−
R,y).

"

The proof of the third statement of the Theorem 5.7 will follow from a series
of Claims.

Claim 1: H∗(†NA, †LA) ∼= H∗(†NM
, †LM ).

Proof. Consider the Mayer-Vietoris sequence

. . . → H∗(†NA, †LA) → H∗(†CA, †L ∩ †CA)⊕H∗(†N
M

, †L
M

)

→ H∗(†CA ∩ †N
M

, †L ∩ †CA ∩ †L
M

) → . . .

Since (†CA ∩ †NM
, †L∩ †CA ∩ †LM ) = (†N1(α′), †L1(α′)) and CH∗(Inv(†CA)) =

H∗(†CA, †L ∩ †CA) by definition, we have

H∗(†CA, †L ∩ †CA) ∼= H∗(†CA ∩ †N
M

, †L ∩ †CA ∩ †L
M

)
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from (5.21) and (5.22). Thus the claim follows from the above exact sequence.
"

Claim 2: The following sequence is exact:

→ H∗(†N, †L) → H∗(†N
M

, †L
M

)
†X→ H∗(†NI(αI), †LI(αI)) →

Proof. Consider the Mayer-Vietoris sequence

. . . → H∗(†N, †L) → H∗(†CR, †C−
R ∪

⋃
y∈†CL

R

†Ny)⊕H∗(†NA, †LA)

→ H∗(†CR ∩ †NA, (†C−
R ∪

⋃
y∈†CL

R

†Ny) ∩ †LA) → . . . .

From (5.20) of Lemma 5.19, we have

H∗(†CR, †C
−
R ∪

⋃

y∈†CL
R

†Ny) = CH∗(Inv(†CR))

∼= CH∗(Inv(†CR))⊗H∗(†CR,y, †C
−
R,y)

= H∗(†CR, †C
L
R)⊗H∗(†CR,y, †C

−
R,y).

By definition

H∗(†CR ∩ †NA, (†C
−
R ∪

⋃

y∈†CL
R

†Ny) ∩ †LA) = H∗(†NI(αI), †LI(αI)),

and therefore the claim follows if H∗(†CR, †C
L
R) = 0. Indeed, since by (5.10)

†C
L
R = †C

−
R \ †U I , we have another Mayer-Vietoris sequence,

. . . → H∗(†CR, †C
−
R) → H∗(†CR, †C

L
R)⊕H∗(†U I(αI), †U I(αI))

→ H∗(†U I(αI), †V I(αI)) → H∗+1(†CR, †C
−
R) . . . .

Noticing that H∗+1(†CR, †C
−
R) = CH∗+1(Inv(†CR)) ∼= H∗(†CR ∩ †U I , †CR ∩

†V I) ∼= H∗(†U I(αI), †V I(αI)) from the assumption of Theorem 5.7, we obtain

H∗(†CR, †C
L
R)⊕H∗(†UI(αI), †U I(αI)) = H∗(†CR, †C

L
R) = 0.

"

As a consequence of Claim 2 and the ideal model identification, there is a
commutative diagram

→ H∗(†N, †L) → H∗(†NM
, †LM )

†X→ H∗(†NI(α), †LI(α)) →
↓ ↓ ↓

→ H∗(◦N, ◦L) → H∗(◦NM , ◦LM )
◦X→ H∗(◦NI(α), ◦LI(α)) →

(5.23)
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where vertical maps are isomorphisms induced by model identification and ver-
tical lines are exact.

Claim 3: The maps †X and ◦X above are not zero maps.

Proof. Since the digram commutes and vertical maps are isomorphisms, it is
enough to prove that ◦X is non-zero. Observe that this map is nothing but the
map i∗ in the Key diagram (Theorem 3.17). Therefore the conclusion follows if
we show that the right vertical line of the Key diagram is non-zero.

We identify the map ◦X in more detail using the Key diagram for the pair
(◦N, ◦L). Take a generator η ∈ H∗(◦Nfib, ◦Lfib,fast) such that η′ = i∗ ◦ ef(η) (= 0
in H∗(◦N(α′), ◦Lfast(α′)). This is possible, since i∗ ◦ ef = Θ, which by assump-
tion is not a zero map. We can also choose a non-trivial δ ∈ H∗(◦Nfib, ◦Lfib,slow)
and we have δ′ = i∗ ◦ es(δ) (= 0 in H∗(◦N(α′), ◦Lslow(α′)), since es is a cohomo-
logical extension of the index bundle (◦N, ◦L).

Since, by the commutativity of the Key diagram, δ′ ! η′ = (i∗ ◦es ⊗ ef )(δ !
η), ◦X = i∗ is not a zero map if δ′ ! η′ (= 0. Since the cup product is an
isomorphism if it is restriced to the fiber, it is equivalent to δ′ ⊗ η′ (= 0 which is
obvious from the definition of the tensor product and δ′ (= 0, η′ (= 0. "

Claim 4: H∗(†N, †L) (∼= H∗(†NM
, †LM )⊕H∗(†NI(αI), †LI(αI)).

Proof. This is a direct consequence of Claim 3 and Lemma 5.2 in [9]. "

In the last two Claims we identify the homology groups on the right hand
side of Claim 4.

Claim 5: H∗(†NI(αI), †LI(αI)) ∼= CH∗+1(Inv(†CR)).

Proof. From (5.19), we have

H∗(◦NI(αI), ◦LI(αI)) ∼= H∗−s(◦CR ∩ ◦U , ◦CR ∩ ◦V)⊗Hs(◦Uy, ◦U−
y ). (5.24)

By definition we also have

H∗−s(◦CR ∩ ◦U , ◦CR ∩ ◦V) ∼= H∗−s(◦CR ∩ ◦U, ◦CR ∩ ◦V ),

and, by construction,

H∗−s(◦CR ∩ ◦U, ◦CR ∩ ◦V ) = H∗−s(◦U I(αI), ◦V I(αI)).

Since by (5.17) of Corollary 5.18

H∗−s(◦UI(αI), ◦V I(αI)) ∼= H∗−s(†UI(αI), †V I(αI))

we can use the (5.8) to compute the latter as

H∗−s(†UI(αI), †V I(αI)) ∼= CH∗−s+1(Inv(†CR)).
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Therefore at this point of calculation equation (5.24) reads

H∗(◦NI(αI), ◦LI(αI)) ∼= CH∗−s+1(Inv(†CR))⊗Hs(◦Uy, ◦U−
y ). (5.25)

Since
CH∗−s+1(Inv(◦CR)) = CH∗−s+1(Inv(†CR))

and Hs(◦Uy, ◦U−
y ) ∼= Hs(◦CR,y, ◦C−

R,y), it follows from (5.20) that

CH∗−s+1(Inv(◦CR))⊗Hs(◦Uy, ◦U−
y ) ∼= CH∗+1(Inv(◦CR))

∼= CH∗+1(Inv(†CR))

for some y ∈ ◦CR. Therefore from (5.25) and (5.16) of Corollary 5.18 we get

H∗(†NI(αI), †LI(αI)) ∼= H∗(◦NI(αI), ◦LI(αI))
∼= CH∗−s+1(Inv(◦CR))⊗Hs(◦Uy, ◦U−

y )
∼= CH∗+1(Inv(†CR)).

Note that here we have used CH0(Inv(†CR)) = 0 in order to obtain the last
isomorphism, which follows from the fact that the repelling cap †CR is homeo-
morphic to a disc and has non-empty exit set. "

Claim 6: H∗(†NM
, †LM ) ∼= CH∗(Inv(†CA)).

Proof. It follows from Proposition 5.13 that

H∗(†N
M

, †L
M

) ∼= H∗(◦NM , ◦LM ).

We note that from Corollary 4.7,

H∗(◦Nfib, ◦Lfib) ∼= H∗(◦NM , ◦LM ).

Also by (3.7),

H∗(◦Nfib, ◦Lfib) ∼= H∗−s(◦U1(α′
1),

◦V 1(α′
1))⊗Hs(◦Uy, ◦U−

y ),

for some y ∈ ◦U i(α′
1). By (5.18)

H∗−s(◦U1(α′
1),

◦V 1(α′
1)) ∼= H∗−s(†U1(α′

1),
†V 1(α′

1)).

Since by (5.8) we have

H∗−s(†U1(α′
1),

†V 1(α′
1)) ∼= CH∗−s(Inv(†CA)),

it follows

H∗(†N
M

, †L
M

) ∼= H∗(◦NM , ◦LM ) ∼= H∗(◦Nfib, ◦Lfib)
∼= H∗−s(◦U1(α′

1),
◦V 1(α′

1))⊗Hs(◦Uy,
◦U−

y )

∼= CH∗−s(Inv(†CA))⊗Hs(†Uy, †U
−
y ).
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By definition of †CA the last product is

CH∗−s(Inv(†CA)⊗Hs(†Uy, †U
−
y ) ∼= CH∗(Inv(†CA))

from which we obtain the conclusion. "

Since †X (= 0 by Claim 3, it follows from Claims 4, 5, 6 that H∗(†N, †L) is
not isomorphic to a direct sum of CH∗(Inv(†CA)) and CH∗(Inv(†CR)). This
finishes the proof of Theorem 5.7. "

Proof of Theorem 1.9
By Theorem 5.7.2 (Inv(†CR), Inv(†CA)) is an attractor-repeller decomposi-

tion for Inv(†N,ϕε) and by Theorem 5.7.3

CH∗(Inv(†CR,ϕε))⊕ CH∗(Inv(†CA,ϕε)) (∼= CH∗(Inv(†N,ϕε)).

Therefore, by [1, Theorem 3.3.1], there exists a heteroclinic orbit connecting
Inv(†CR) to Inv(†CA)) in †N for all sufficiently small ε. "

A Appendix: Conley index theory

This section contains a brief review of relevant portions of the Conley index
theory. For the general theory the reader is referred to [1, 3, 19] and references
therein. Throughout this section we shall let ϕ : R ×Rn → Rn denote a flow
on Rn.

To simplify the notation we let z = (x, y) ∈ Rn = Rk ×Rl and write

ż = F (z) = F0(z) + εF1(z) + . . . + εkFk(z) + . . . (A.1)

in place of equation (1.1). As will be seen, it is not necessary that F be analytic
or C∞ in ε, only that F have enough derivatives to apply Theorem A.6 below.

Definition A.1 A compact set N ⊂ Rn is called a singular isolating neighbor-
hood if N is not an isolating neighborhood for ϕ0, but there is an ε̄ > 0 such
that for all ε ∈ (0, ε̄], N is an isolating neighborhood for ϕε.

Definition A.2 A pair of compact sets (N, L) with N ⊂ L is a singular index
pair if cl(N \L) is a singular isolating neighborhood and there is an ε̄ > 0 such
that for all ε ∈ (0, ε̄]

H∗(N, L) ∼= CH∗(Inv(cl(N \ L),ϕε)).

Observe that the last two definitions are most useful if we find a way to con-
struct singular isolating neighborhoods and singular index pairs using primarily
the ϕ0 flow, along with minimal information about the higher order terms of F .
The conditions for the existence of a singular isolating neighborhood were given
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by Conley [4] and the construction of a singular index pair was done in [16]. We
shall follow the latter paper in our exposition.

Let N be a compact set and let S = Inv(N,ϕ0). Observe that if N is not
an isolating neighborhood for ϕ0, then by definition there exists z ∈ S ∩ ∂N .
If N is to be a singular isolating neighborhood, then such an z has to leave in
forward or backward time under ϕε for all ε > 0. This leads to the following
definition.

Definition A.3 Let N be a compact set and let z ∈ S. z is a slow exit [resp.
entrance] point if there exists a neighborhood U of z and an ε̄ > 0 such that for
all ε ∈ (0, ε̄] there exists a time T (ε, U) > 0 [resp. T (ε, U) < 0] satisfying

ϕε(T (ε, U), U) ∩N = ∅.

Theorem A.4 ([16] Theorem 1.5) Let N be a compact set. If S ∩ ∂N con-
sists of slow entrance and slow exit points, then N is a singular isolating neigh-
borhood.

It follows from the last theorem that, in order to construct a singular isolating
neighborhood, it is important to be able to recognize slow exit and slow entrance
points. Before we quote a theorem which does just that, we introduce some
notation. We let S− [resp. S+] denote the set of slow exit [resp. entrance]
points. Set S∂ := S ∩ ∂N and S±

∂ := S∂ ∩ S±. Given an invariant set K, let
R(K) denote the chain recurrent set of K under ϕ0.

Definition A.5 The average of h on S, Ave(h, S) is the limit as t →∞ of the
set of numbers { 1

t

∫ t
0 h(ϕ0(s, x))ds | x ∈ S}. If Ave(h, S) ⊂ (0,∞), then h has

strictly positive averages on S.

Theorem A.6 ([4]) w ∈ S is a slow exit point if there exists a compact set
Kw ⊂ S invariant under ϕ0, a neighborhood Uw of R(Kw), an ε̄ > 0 and a
function l : cl(Uw)× [0, ε̄] → R such that the following conditions are satisfied.

(1) ω(w,ϕ0) ⊂ Kw;

(2) l is of the form

l(z, ε) = l0(z) + εl1(z) + . . . + εmlm(z);

(3) If L0 = {z | l0(z) = 0}, then

Kw ∩ cl(Uw) = S ∩ L0 ∩ cl(Uw),

and furthermore l0|S∩cl(Uw) ≤ 0;

(4) Let

hj(z) = ∇zl0(z) · Fj(z) +∇zl1(z) · Fj−1(z) + . . . +∇zlj(z) · F0(z).

Then for some m, hj ≡ 0 if j < m,and hm has strictly positive averages
on R(Kw).
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A slow exit point which satisfies the conditions of Theorem A.6 is called a
C-slow exit point. If we reverse time we can use the Theorem A.6 to test for
slow entrance points. Slow entrance points of this form will be called C-slow
entrance points.

Now, given a singular isolating neighborhood N , we want to identify a sin-
gular index pair. We need a few definitions. The immediate exit set for N is
defined by

N− := {z ∈ ∂N | ϕ0((0, t), z) (⊂ N for all t > 0}.

Given Y ⊂ N its push forward set in N under the flow ϕ0 is defined to be

ρ(Y, N,ϕ0) := {z ∈ N | ∃w ∈ Y, t ≥ 0 such that ϕ0([0, t], w) ⊂ N,ϕ0(t, w) = z}.

Finally, the unstable set of an invariant set Y ⊂ N under ϕ0 is

Wu
N (Y ) := {z ∈ N | ϕ0((−∞, 0), z) ⊂ N and αϕ0(z) ⊂ Y }.

A slow entrance point z is a strict slow entrance point if there exists a neigh-
borhood Θz of z and an ε̄ > 0 such that if w ∈ Θz ∩N and ε ∈ (0, ε̄], then there
exists tw(ε) > 0 for which

ϕε([0, tw(ε)], w) ⊂ N.

We will let S++
∂ denote the strict slow entrance points.

Theorem A.7 ([16] Theorem 1.16) Let N be a singular isolating neighbor-
hood. Assume

(1) S−
∂ consists of C-slow exit points.

(2) S∂ ⊂ S++
∂ ∪ S−

∂ .

(3) (S++
∂ \ S−

∂ ) ∩ cl(N−) = ∅

For each z ∈ S−
∂ , let Kz denote a compact invariant set as in Theorem A.6.

Define
L := ρ(cl(N−), N,ϕ0) ∪Wu

N (
⋃

z∈S−
∂

R(Kz)).

If L is closed, then (N, L) is a singular index pair for the family of flows ϕε.

B Appendix: Singular index pairs

B.1 Proof of Lemma 5.8

We first define a convenient set of coordinates on any slow sheet Ei ⊂ M , where
M is a normally hyperbolic slow manifold. We choose new variables (ξ, η) such
that

M := {(ξ, η) ∈ Rk ×R! | ξ = 0},
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and the flow on the flow box Ei is given by

ξ̇ = 0, η̇1 = 1, η̇i = 0, i = 2, . . . , ". (B.1)

By rescaling the time interval [σin
i (z), τout

i (z)] to the interval [0, 1] for all z and
all i, we can, in the new coordinates, write

†U i = {0}× [0, 1]× [0, b]!−1.

Our proof consists of three parts.

(1) First we show that the set

I⋃

i=0

†V
−
i ∪

I⋃

i=1

⋃

y∈†Qi∩†V−
i−1

Ci,y (B.2)

consists of C-slow exit points.

(2) The second step is to show that

I⋃

i=0

(†U
side
i \ †V

−
i ) ∪

I⋃

i=1

⋃

y∈†Qi\†V−
i−1

Ci,y (B.3)

consists of C-slow entrance points

(3) As a last step we show that
⋃I

i=1
†U

in
i consists of C-slow entrance points

and
⋃I

i=1
†U

out
i consists of C-slow exit points.

Step 1: Let Ci :=
⋃

w∈†Qi∩†V−
i−1

Ci,w. We use notation of Theorem A.6 in

the next computation. For every z ∈ Ci ∪ †V
−
i−1, we take Ki

z := †V
−
i−1 and then

R(Ki
z) = †V

−
i−1. It follows by definition that the omega limit set ω(z) ⊂ †V

−
i−1

for any z ∈ Ci ∪ †V
−
i−1.

Fix i ∈ {1, . . . , I} and choose a neighborhood U of Ki
z = †V

−
i−1. We con-

struct l = l0 + εl1 as follows: Let

l0(ξ, η) = p(η2, . . . , η!)− (ξ21 + ξ22 + . . . + ξ2k),

where the smooth function p satisfies p(η2, . . . , η!) ≡ 0 for all (ξ, η) with η ∈
†V

−
i−1 and p(η) is negative elsewhere.
Since †V

−
i−1 is invariant under the flow ϕslow

i−1 , which in the rescaled version
is flow η̇1 = 1, it is possible to choose function p as a function of variables
η2, . . . , η! only.

Define function l1 by
l1 = η1.

We now identify the set L0 := {u | l0(u) = 0}. Observe that u = (ξ, η) ∈ L0

if and only if p(η) = 0 and ξ = 0.
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By our choice of the function p, conditions p(η) = 0 and ξ = 0 are satisfied,
if and only if that u ∈ †V

−
i−1. Since Ki

z = †V
−
i−1, this shows that

Ki
z ∩ cl(U) = S ∩ L0 ∩ cl(U).

This, together with the fact that l0 is negative on Ci ⊂ S, implies that

l0|S∩cl(U) ≤ 0.

This verifies assumptions 1-3 of Theorem A.6 for z ∈ Ci ∪ †V
−
i−1 with Kz =

R(Kz) = †V
−
i−1. Recall that F = F0 + εF1 = (f, 0) + ε(0, g). Now we compute

the averages, where we evaluate these averages on †V
−
i−1. Observe that if u =

(ξ, η) ∈ R(Kz) = †V
−
i−1, then ξ = 0. It follows from the construction of l0 that

∇l0|R(Kz)
may have nonzero components only in directions w2, . . . , wl. Since

F0 has nonzero components only in ξ-directions, we have h0 := ∇l0 · F0 = 0.
Since ∇l1 has a nonzero component only in the w1 direction, ∇l1 · F0 = 0.

In our new coordinates (z, w) the function F1 has nonzero component only in
the w1 direction. Therefore, ∇l0 · F1 = 0 and thus

h1 := ∇l1 · F0 +∇l0 · F1 = 0.

Finally,
h2 = ∇l2 · F0 +∇l1 · F1 +∇l0 · F2 = ∇l1 · F1 = 1 > 0.

This finishes the proof of (B.2).
Step 2: By assumption (5.4), we have that †U

side
i ⊂ int†Ui

†V
+
i ∪ int†Ui

†V
−
i .

It follows that (†U side
i \ †V

−
i ) ⊂ †V

+
i . Similarly, †Qi \ †V−

i−1 ⊂ †Qi ∩ †V+
i . There-

fore, the left hand side of (B.3) is analogous to the left hand side of (B.2),
where †V

+
i plays the role of the set †V

−
i−1. If we reverse the flow ϕslow

i (x, t) then
the analogy is complete, since the entrance set becomes the exit set under the
reversed flow.

So using the function l = l0 + εl1 from Step 1, where p = 0 on †V
+
i and the

function k(ξ1) is chosen in the same way, and working with the reverse of the
flow ϕslow

i (z, t), we get the analogous result.
Step 3: Observe that †U

in
i is a strict entrance set under the slow flow ϕslow

i

and the set †U
out
i is a strict exit set under ϕslow

i . These situations are equivalent
under reversion of the flow ϕslow

i . We will show that the fact that †U
out
i is a

strict exit set under ϕslow
i implies that †U

out
i is in C-slow exit set for each i. By

an analogous argument with reversed slow flow the set †U
in
i is in C-slow entrance

set for each i.
We will prove the result for the set †U

out
i by choosing an arbitrary point

z ∈ †U
out
i and showing that it is a C-slow exit point. Observe that the flow ϕslow

i

is transversal to †U
out
i by definition of †U

out
i and continuity of the functions τ in

i

and τout
i (assumption (H4)). Let v(z) be the ϕslow

i direction at z. Obviously,
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v(z) lies in the tangent space of the slow manifold M . For this z ∈ †U
out
i , take

Kz = R(Kz) = †U
out
i . Let l = l0 be a continuous function, defined in the

neighborhood U of †U
out
i , strictly increasing in the direction v(z) at y ∈ †U

out
i ,

with l(y) ≤ 0 for y ∈ †U i ∩ U and l(†Uout
i ) = 0. Since Kz = †U

out
i this implies

Kz ∩ cl(U) = †U
out
i ∩ L0 ∩ cl(U).

Computing the averages, we get ∇l0 ·F0 = 0, since ∇l0 lies in the tangent space
of the manifold M , which is level set of F0. The next average

∇l0 · F1 +∇l1 · F0 = ∇l0 · F1 = 1,

since F1 represents the slow flow transverse to †U
out
i and l1 ≡ 0. Since z ∈ †U

out
i

was arbitrary, †U
out
i consists of C-slow exit points. "

Remark B.1 Observe that transversality of the slow flow ϕslow
i to †U

in
i shows

that
⋃I

i=1
†U

in
i consists of strict entrance points.

B.2 Proof of Lemma 5.9

The only difference between a heteroclinic corridor and a periodic corridor are
the caps. However, the boundary of the cap consists of sections of the slow flow
since caps are isolating blocks. The set †C

L
R ∩ ∂†N is a slow immediate exit set

as is every set †U
out
i and the set †C

E
R ∩ ∂†N is a slow immediate entrance set as

is the set †U
in
i . Thus, the analogous construction of h, as in the previous lemma

for †U
out
i , works for †C

L
R∩∂†N and shows that †C

L
R∩∂†N consists of C-slow exit

points. A similar argument for the reverse flow shows that †C
E
R∩∂†N consists of

C-slow entrance points. Obviously, this also applies to the attracting cap †CA.

B.3 Singular index pair

The goal of this section is to prove Propositions 5.12 and 5.13. We shall prove
only Proposition 5.12 since the proof of Proposition 5.13 is analogous.

Our basic tool is Theorem A.7, which prescribes how to build a singular index
pair out of singular isolating neighborhood. However, there are two reasons
why this theorem is not directly applicable. One is that the assumption (2) of
Theorem A.7 is not satisfied, since we have only shown that S∂ ⊂ S− ∪S+ and
consists of C-slow exit and entrance points. To verify this assumption we would
have to show that all points in S+ are actually strict entrance points. However,
since †U i is a flow box, the set †U

side
i \ †V

−
i is not a strict entrance set. Even if

this set was a strict entrance set, the set
⋃

y∈†Qi\†V−
i−1

Ci,y is not (necessarily) a
part of strict slow entrance set S++

∂ . Indeed, after perturbation, the flow along
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the connecting orbit can leave the neighborhood †N, even though its α-limit set
does strictly enter †N.

The second deviation from Theorem A.7 is that we have defined the exit set
†L in a different way. Instead of using

⋃
y∈†V− Wu(y) (where †V− :=

⋃I
i=1

†V−
i ),

we chose a larger set
⋃

y∈†V−
†Ny consisting of all fibers which project to †V−.

We will deal with the first problem in two steps. First we modify (“shave”)
flow boxes †U i in such a way, that all points in †U

side
i \ †V

−
i are strict entrance

points. This can be done by arbitrarily small perturbations of the sets †U i.
Based on this new collection of sets ¯†U i, we build sets ( ¯†N, †̄L) in analogous way
to (†N, †L). We then show that the pair (†N, †L) is homotopically equivalent to
( ¯†N, †̄L).

The second step is to modify the flow in the neighborhood of the set of
connecting orbits

⋃I
i=1

⋃
y∈†Qi\†V−

i−1
Ci,y in such a way that this set is a strict

slow entrance set. With this new flow we essentially repeat the proof of Theo-
rem A.7 ([16]) with the exit set defined using

⋃
y∈†V−

†Ny instead of
⋃

y∈†V− Wu(y).
This will solve the second problem and we will show that ( ¯†N, †̄L) is a singular
index pair for the modified flow.

To finish the proof we homotope the modified flow to the original flow and
show that the set

⋃I
i=1

⋃
y∈†Qi\†V−

i−1
Ci,y is part of C-slow entrance set through-

out the homotopy. This implies that ¯†N is a singular isolating neighborhood
throughout the homotopy, hence it is isolating the same invariant set and the
index is preserved. Thus ( ¯†N, †̄L) is a singular index pair for the original flow
as well.

We modify †U
side
i slightly inside the set †V

+
i . By assumption (5.4)

†U
side
i \ †V

−
i ⊂ int†U i

†V
+
i . (B.4)

We want to shave †U i in such a way that all points in †U
side
i \ †V

−
i are strict

entrance points. Reparameterize †U i so that

†U i
∼= D!−1 × [0, 1]

where †U
in
i
∼= D!−1 × {0} and †U

out
i

∼= D!−1 × {1}. In this reparamterization
the slow flow ϕslow

i is parallel to the second variable. Since both †U
side
i and †V

−
i

are flow boxes under ϕslow
i , we can identify

†U
side
i \ †V

−
i =: Y × [0, 1].

Further, we separate radial coordinate on D!−1 by setting D!−1 ∼= (S!−1 ×
[0, 1])/S#−1×{0}. Then the set Y ⊂ S!−1 × {1}. From (B.4) follows that there is

a δ-neighborhood BS#−1(Y, δ) in S!−1 such that

BS#−1(Y, δ)× [0, 1] ⊂ †V
+
i ∩ †U

side
i .
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It also follows from (B.4) that there is ζi > 0 such that

Y × [1− 2ζi, 1]× [0, 1] ⊂ int†V
+
i .

Define a bump function ρ : S!−1 × {1}→ [0, 1] such that

ρ(y) :=
{

1 y ∈ Y
0 y (∈ BS#−1(Y, δ).

We define an isotopy Hi : S!−1 × [0, 1]× [0, 1]× [0, 1] → S!−1 × [0, 1]× [0, 1] by

Hi(y, r, s, t) = (y, ρ(y)q(r, s, t), s)

where r is radial direction in D!−1, s is direction along †U i in direction of flow
ϕslow

i and t is isotopy parameter. Finally, the function q(r, s, t) is given by

q(r, s, t) :=
{

[tr + (1− t)(1− 2ζi)](1 − s) + s if r ≥ 1− 2ζi
r if r < 1− 2ζi.

Observe, that the first three variables in Hi describe coordinates of a point
in †U i while the last one is the isotopy parameter. We write

ht
i(u) := Hi(y, r, s, t)

where u = (y, r, s) ∈ †U i. Then we note that h1
i (†U i) = †U i and h0

i (†U
side
i \ †V

−
i )

consists of strict entrance point under the flow ϕslow
i . Let hi := h0

i and

†̄U i := hi(†U i), ¯†V
±
i := hi(†V

±
i )

be the images of these sets under hi.
We want to extend the family of homeomorphisms hi, i = 0, . . . , I to the

neighborhood N . We first define a new homeomorphism h̃i : †U i → †U i by

h̃i := Π ◦ hi,

and let †̃U i := h̃i(†U i) be the shaved set †U i.
We have to address the issue of consistency. Since †U i ∩ †U i−1 = †Bi, for

points in †Bi both h̃i and h̃i−1 may be defined there. More specifically, the iso-
topy Hi effects a 2ζi- neigborhood of the set †U

side
i \†V −

i ⊂ int†Ui

†V
+
i . Therefore,

the map h̃i effects points in †U side
i ∩ †V+

i . Similarly, the map h̃i−1 effects points
in †U side

i−1 ∩ †V+
i−1. We need to show that these two sets do not intersect in †Bi

if ζi, given in the definition of q, is sufficiently small. This is resolved in the
following lemma.

Lemma B.2 †U side
i ∩ †V+

i ∩ †Bi ⊂ int†U i−1 ∪ int†U in
i−1 ∪ int†Ui−1

†V−
i−1.
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Proof. Since †U i ∩ †U i−1 = †Bi we have that

†U side
i ∩ †V+

i ∩ †Bi ⊂ †U i−1.

We write †U i−1 = int†U i−1 ∪ ∂†U i−1 and

∂†U i−1 = int†U in
i−1 ∪ int†Uout

i−1 ∪ †U side
i−1.

Clearly †Uout
i−1 ∩ †Bi = ∅. Now by assumption (5.4) we have

†U side
i−1 ⊂ int†Ui−1

†V−
i−1 ∪ int†Ui−1

†V+
i−1.

Together, this implies

(†U side
i ∩ †V+

i ∩ †Bi) ⊂ int†U i−1 ∪ int†U in
i−1 ∪ int†Ui−1

†V−
i−1 ∪ int†Ui−1

†V+
i−1.

We finish the proof of this lemma by showing that †Bi ∩ int†Ui−1
†V+

i−1 = ∅.
Indeed, if y ∈ int†Ui−1

†V+
i−1 then the trajectory ϕslow

i−1 (Π−1(y),−t) of the re-
versed slow flow on †U i−1 exits †U i−1 without intersecting †B

′
i−1. Therefore

int†U i−1
†V

+
i−1 ∩ †B

′
i−1 = ∅, and, after projecting to R!, int†Ui−1

†V+
i−1 ∩ †Bi = ∅.

Therefore

†U side
i ∩ †V+

i ∩ †Bi ⊂ int†U i−1 ∪ int†U in
i−1 ∪ int†Ui−1

†V−
i−1. (B.5)

"

From this lemma it follows that the domains of homeomorphisms h̃i for
sufficiently small choice of ζi are disjoint. Therefore there is a well defined
homeomorphism

h̃(y) := h̃i(y) for y ∈ †U i.

We extend h̃ to entire neighborhood †N by

η(x, y) := (x, h̃i(y))

for (x, y) ∈ †N and y ∈ †U i. Notice that η is homotopic to the identity using a
homotopy induced from a collection of isotopies Hi, i = 0, . . . , I. Let

¯†N := η(†N), †̄L := η(†L).

We note that the isotopies Hi do not effect the caps †CR and †CA, and therefore,
η induces an isomorphism

η∗ : H∗( ¯†N, †̄L) → H∗(†N, †L).

Our next observation is that during a homotopy of the map η to the identity
only points in int†V +

i are affected. These points leave †N in finite time under
the backward flow ϕslow

i (y,−t). It follows that throughout the homotopy the
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intermediate sets †Nt are singular isolating neighborhoods. In particular, †N0 =
¯†N isolates Inv(†N).

It follows from (B.5) that for sufficiently small ζi (B.5) holds also for the
pair ( ¯†N, †̄L). Therefore the new set †̄L has the same structure as the set †L. In
particular, for a heteroclinic corridor we have

†̄L := ρ(cl( ¯†N
−

), ¯†N,ϕ0) ∪
⋃

y∈cl(†CL
R)

¯†Ny ∪
⋃

y∈†CL
A

¯†Ny

∪
(

I⋃

i=1

Wu
†̄B(i)

(†̄U
out
i )

)
∪




I⋃

i=0

⋃

y∈†̄V
−
i

¯†Ny



 . (B.6)

and for a periodic corridor

†̄L := ρ(cl( ¯†N
−

), ¯†N,ϕ0) ∪
(

I⋃

i=1

Wu
†̄B(i)

(†̄U
out
i )

)
∪




I⋃

i=0

⋃

y∈†̄V
−
i

¯†Ny



 . (B.7)

We summarize the first step of the construction. Given sets (†N, †L) we
found a pair ( ¯†N, †̄L) which is homotopically equivalent to (†N, †L), isolates the
same invariant set and

¯†U
side
i \ ¯†V

−
i

is strict entrance set under ϕslow
i for all i. Using Remark B.1 and the construc-

tion above, in the new pair ( ¯†N, †̄L) the part

I⋃

i=0

¯†U
in
i ∪

I⋃

i=0

†̄U
side
i \ †̄V

−
i (B.8)

of the set S+ is actually a subset of strict entrance set S++
∂ .

We need to address the last part of the set S+ and that is the set

I⋃

i=1

⋃

y∈†̄Qi\†̄V−
i−1

Ci,y.

This brings us to the second step in the proof. Let Co
i :=

⋃
y∈†̄Qi\†̄V−

i−1
Ci,y .

We modify the flow in the neighborhood of the set
⋃I

i=1 Co
i . We fix i and do a

modification in the neighborhood of the set Co
i . This modification can be done

in the same way in the neighborhood of the other sets Co
j , j (= i.

Given w ∈ R! and ρ > 0, let Bρ(w) := {y ∈ R! | ||w − y|| < ρ} and given
a set Z ⊂ R!, let Bρ(Z) := ∪w∈ZBρ(w). Let ci := Π(Co

i ) ⊂ R!. Take δ > 0,
sufficiently small, and let

Y i
δ := Bδ(Π(ci)).
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Notice that Y i
δ is a neighborhood in the space of slow variables R!. The set Co

i is
the set of connecting orbits in the fast flow, that connect the invariant manifolds
M i

2 to M i
1. These manifolds are, locally in a neighborhood of C0(i), given by

functions mi
1(y) and mi

2(y), respectively. The slow flow on these manifolds is
given by

ẏ := g(mi
1(y), y) and ẏ := g(mi

2(y), y), (B.9)

respectively (compare (1.1)). Clearly,

¯†Qi \ †̄V−
i−1 ⊂ †̄U side

i ∩ †̄V+
i ∩ †̄Bi.

Since (B.5) holds for new pair ( ¯†N, †̄L) we have

¯†Qi \ †̄V−
i−1 ⊂ int†U i−1 ∪ int†U in

i−1.

For a point (x, y) with y ∈ ( ¯†Qi \ †̄V−
i−1) ∩ int†U in

i−1 define a function G(x, y) as
follows. For y ∈ Y i

δ and x = tmi
1(y) + (1− t)mi

2(y), set

G(x, y) := tg(mi
1(y), y) + (1− t)g(mi

2(y), y). (B.10)

For (x, y) with y ∈ ( ¯†Qi \ †̄V−
i−1) ∩ int†U i−1 we define G(x, y) slightly differ-

ently. Let y ∈ Y i
δ and let (x∗(y), y), hi

2(y) > x∗(y) > hi
1(y), be a point such

that for all x = tx∗(y) + (1− t)mi
1 we have (x, y) ∈ int†Ui−1. Such x∗(y) exists

since †Ui−1 is a tubular neighborhood of †U i−1 and (m1
i (y), y) ∈ †U i−1. Then

G(x, y) :=
{

g(mi
2(y), y) if x ≥ x∗(y)

tg(mi
1(y), y) + (1 − t)g(mi

2(y), y) if x = tx∗(y) + (1− t)mi
1.

(B.11)
We define a family of bump functions Ωi

δ : R! → [0, 1] such that

• supp Ωi
δ ⊂ Yδ,

• Bδ/2(ci) ⊂ (Ωi
δ)

−1(1) .

We modify the original system (1.1) as follows

ẋ = f(x, y)

ẏ = ε[ΩδG(x, y) + (1− Ωδ)g(x, y)].
(B.12)

Observe that if the y-component of a point (x, y) is in the δ/2 neighborhood
of

⋃
i Co

i , then the second equation becomes

ẏ = εG(x, y). (B.13)

Since both vector fields (B.9) point strictly into the set ¯†N, the vector field
(B.13) with function G given by (B.10), as a linear combination, also points
strictly into the set ¯†N in the δ/2 neighborhood of

⋃
i Co

i . The vector field
(B.13) with function G given by (B.11) points strictly into ¯†N for x ≥ x∗(y)
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since the boundary of ¯†N is parallel to the boundary of ¯†N∩ †Ui and g(hi
2(y), y)

points strictly into ¯†N ∩ †Ui. The second part of definition (B.11) effects only
points in the interior of ¯†N.

Since we have only changed the ε terms in the flow (1.1) the maximal in-
variant set in

⋃
i Y i
δ remains the same. It follows that all the arguments in

Lemma 5.8 and Lemma 5.9 remain valid for the modified system (B.12). Fur-
thermore, by construction the set

⋃
i Co

i is now a part of a strict slow entrance
set. This finishes the second step of the construction.

In the last step we show, following an argument in [16], that the new pair
( ¯†N, †̄L) is a singular index pair under the modified flow (B.12). We introduce
some notation from [16]. Define

Q−
ν := Bν(∪z∈S−

∂
R(Kz)), Q+

ν := Bν(S+
∂ ), (B.14)

where Bν is now an ν neighborhood on the full phase space Rn. We set Qν =
Q−
ν ∪Q+

ν . Define a family of smooth bump functions µν : Rn → [0, 1] such that

• supp µν ⊂ Qµ,

• Bν/2(∪z∈S−
∂
R(Kz)) ⊂ µ−1

ν (1).

Consider the two parameter singular perturbation problem given by the
equation

ż = F (z, ε, ν) = F0(z) + µν(z)εF1(z),

where z = (x, y) and

F0 :=
(

f(x, y)
0

)
and F1 :=

(
0

g(x, y)

)
,

and let ψεν denote its flow. Notice that for ν sufficiently large ψεν = ϕε. We first
observe that ¯†N is an isolating neighborhood for flows ψεν for small enough ε
and ν.

Lemma B.3 ([16]Lemma 3.7) Assume that S∂ consists of C-slow entrance
and exit points and let r be a diameter of ¯†N. Then there is a continuous
function ε̃ : (0, r] → (0,∞) with the property that ¯†N is an isolating neighborhood
for ψεν for all (ν, ε) such that 0 < ν ≤ r and 0 < ε ≤ ε̃(ν).

Now we consider singular index pair. Let

†̄L
ε
ν := cl(ρ(cl(Q−

ν ), ¯†N,ψεν)) ∪ cl(ρ(cl( ¯†N
−

), ¯†N,ϕ0)).

Lemma B.4 There exists ν̄ > 0 such that given ν ∈ (0, ν̄], there is an ε̄ > 0
such that for ε ∈ (0, ε̄]

( ¯†N, †̄L
ε
ν ∪ †̄L

slow
)

is an index pair for ψεν .
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Proof. This proof is motivated by the proof of Lemma 3.8 of [16].
Step 1: By definition †̄L

ε
ν is closed. Since †̄L

slow
is closed trivially, the first

condition in the definition of an index pair is satisfied.
Step 2: We need to show that †̄L

ε
ν ∪ †̄L

slow
is positively invariant for ψεν .

The proof for †̄L
ε
ν is found in Lemma 3.8 of [16]. Assume z0 ∈ †̄L

slow
and z :=

ψεν(t, z0) ∈ ¯†N. We need to show that z ∈ †̄L
ε
ν ∪ †̄L

slow
. If ψεν([0, t], z0)∩Q−

ν (= ∅,
then also ψεν([0, t], z0) ∩ †̄L

ε
ν (= ∅ and by positive invariance of †̄L

ε
ν we have

z ∈ †̄L
ε
ν . So assume ψεν([0, t], z0) ∩ Q−

ν = ∅. Then ψεν = ϕ0 and z = ϕ0(t, z0).
Since the set †̄L

slow
is positively invariant under the flow ϕ0, we have z ∈ †̄L

slow
.

Step 3: We need to show that †̄L
ε
ν ∪ †̄L

slow
is an exit set. For ν̄ > 0

sufficiently small and ν < ν̄, no orbit can leave through Q+
ν since the slow

entrance points are, in fact, strict slow entrance points. Let z0 ∈ ¯†N and assume
that ψεν(t0, z0) (∈ ¯†N. If

ψεν([0, t0], z0) ∩Qν = ∅,

then there is t1 ∈ [0, t0] such that ψεν(t1, z0) ∈ ¯†N
−

and ψεν([0, t1], z0) ∈ ¯†N,
since ψεν = ϕ0 on ¯†N\Qν. So assume that the forward trajectory does not leave
through ¯†N \ Qν . By the choice of ν, the forward trajectory through z0 leaves
through Q−

ν , which is a subset of †̄L
ε
ν . "

The following result follows from Lemma 3.9 [16].

Lemma B.5 There is sequence νi decreasing to zero and a choice of ε(νi) ∈
(0, ε̄(νi)] such that †̄L

ε(νi+1)
νi+1 ⊂ †̄L

ε(νi)
νi

.

Lemma B.6 ∩i≥1
†̄L
ε(νi)
νi

∪ †̄L
slow

= †̄L
fast ∪ †̄L

slow
.

Proof. By Lemma 3.10 [16] we get that the first line in following computation.

∩i≥1
†̄L
ε(νi)
νi

∪ †̄L
slow

= ρ((cl( ¯†N
−

), ¯†N,ϕ0) ∪
I⋃

i=1

Wu
¯†N

(S−) ∪ †̄L
slow

= ρ((cl( ¯†N
−

), ¯†N,ϕ0) ∪
I⋃

i=0

Wu
¯†N

(†̄Uout
i ) ∪

I⋃

i=0

Wu
¯†N

(†̄V−
i )

∪
I⋃

i=1

⋃

y∈†̄Qi∩†̄V−
i−1

Ci,y ∪ †̄L
slow

.

The first two terms in last line form the set †̄L
fast

while all other are subsets
of †̄L

slow
. "

Theorem B.7 Let ¯†N be a singular isolating neighborhood defined above. As-
sume
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(1) S−
∂ consists of C-slow exit points.

(2) S∂ ⊂ S++
∂ ∪ S−

∂ .

(3) (S++
∂ \ S−

∂ ) ∩ cl( ¯†N
−

) = ∅.

Let †̄L be defined as in (B.6) for heteroclinic corridor or as in (B.7) for
periodic corridor.

If †̄L is closed, then ( ¯†N, †̄L) is a singular index pair for family of flows
(B.12).

Proof. Let r be a diameter of the set ¯†N. Let G := {(ν, ε) | 0 < ν ≤ r, 0 < ε ≤
ẽ(ν)}. By weak continuity property of the Alexander-Spanier cohomology [20],
the inclusion maps ιi : ( ¯†N, †̄L) → ( ¯†N, †̄L

ε(νi)
νi

∪ †̄L
slow

) induce an isomorphism

lim
−→

H∗( ¯†N, †̄L
ε(νi)
νi

∪ †̄L
slow

) ∼= H∗( ¯†N, †̄L),

where we use Lemma B.6, the fact that
⋃I

i=0 Wu
¯†N

( ¯†V i) ⊂ †̄L
slow

and that †̄L =
†̄L

slow ∪ †̄L
fast

. On the other hand, by the standard continuation theorem for
the Conley index, for (ν, ε), (ν′, ε′) ∈ G, we have

CH∗(Inv( ¯†N,ψεν)) ∼= CH∗(Inv( ¯†N,ψε
′

ν′)),

which by Lemma B.4 is the same as

H∗( ¯†N, †̄L
ε
ν ∪ †̄L

slow
) ∼= H∗( ¯†N, †̄L

ε′

ν′ ∪ †̄L
slow

).

This implies
H∗( ¯†N, †̄L

ε(r)
r ∪ †̄L

slow
) ∼= H∗( ¯†N, †̄L)

and so ( ¯†N, †̄L) is a singular index pair. "

B.4 Proof of Propositions 5.12 and 5.13

We first verify the assumptions of Theorem B.7 to conclude that the pair ( ¯†N, †̄L)
is an index pair for for the flow (B.12).

We show first that †̄L is closed. Since †V−
i is closed, clearly †̄L

slow
=⋃I

i=0

⋃
y∈†V−

i

¯†Ny is closed.

We now consider the set ρ(cl( ¯†N
−

), ¯†N,ϕ0). Observe that if (x, y) ∈ ¯†N
−

,
then ρ((x, y), ¯†N,ϕ0) = (x, y). So consider (x, y) ∈ cl( ¯†N

−
) \ ¯†N

−
. Then,

x ∈ ¯†U
−
y (i) ∩ ¯†By where y ∈ †̃U

out

i for some i. By (5.15) this implies that

y ∈ (†̄Uout
i \ ¯†Bi) ∪ †̄Bin

i ∪ †̄V−
i−1.

68



If y ∈ †̄V−
i−1, then (x, y) ∈ †̄L

slow
which we discussed earlier.

If, on the other hand, y ∈ †̄Bin
then by assumption (H2) for the slow corridor

y ∈ †Ra
i ∪ †Rb

i .

Therefore by Definition 5.1, the forward orbit of (x, y) leaves the set ¯†By in
finite, uniformly bounded time. Finally, if y ∈ †̄Uout

i \ ¯†Bi then (x, y) ∈ ¯†Ui \
¯†Bi and the forward orbit of (x, y) also leaves the set ¯†Ui in finite, uniformly

bounded time. Therefore, ρ((x, y), ¯†N,ϕ0) is closed, which in turn implies that
ρ(cl( ¯†N

−
), ¯†N,ϕ0) is closed.

Now we discuss the set Wu
†Bi

(†̄U
out
i ). By (5.14)

†̄Uout
i ⊂ (†̄Uout

i \ †̄Bi) ∪ †̄Bout
i ∪ †̄V−

i−1.

As above, if y ∈ †̄V−
i−1 then (x, y) ∈ †̄L

slow
and we considered such points above.

The case y ∈ †̄Uout
i \ †̄Bi was also discussed above. Finally, if y ∈ †̄Bout

i , then by
assumption (H2) for the slow corridor, we have

y ∈ †Ra
i ∪ †Rb

i .

Therefore all trajectories in Wu
†̄Bi

(†̄Uout
i ) leave the set ¯†N in finite time. It follows

that Wu
†̄B(i)

(†̄Uout
i ) is closed for each i. Therefore, †̄L is closed.

Since the change (B.12) only effected the ε terms in the flow (1.1), the max-
imal invariant set in

⋃
i Y i
δ remains the same. It follows that all the arguments

in Lemma 5.8 and Lemma 5.9 remain valid for the modified system (B.12) and
therefore assumption (1) of Theorem B.7 is satisfied. Furthermore, by construc-
tion of (B.12) the set

⋃
i Co

i is now a part of a strict slow entrance set. In view
of (B.8) and using Lemmas 5.8, 5.9, 5.10 and 5.11 assumptions (2) and (3) of
Theorem B.7 are satisfied for the flow (B.12).

Thus we can conclude from Theorem B.7 that ( ¯†N, †̄L) is singular index pair
for flow (B.12).

To conclude the argument, we need to show that there is a homotopy from
(B.12) to (1.1) such that the set

⋃
i Co

i is a C-slow entrance set. Then it follows
from this and Lemmas 5.8, 5.9 that ¯†N is a singular isolating neighborhood
throughout the homotopy. Consequently ( ¯†N, †̄L) is a singular index pair for
the original flow (1.1).

Consider a straight line homotopy

H(x, y, s) := sg(x, y) + (1− s)(ΩδG(x, y) + (1− Ωδ)g(x, y)).

Since the homotopy effects only the ε component of the flow,
⋃

i Co
i is the

invariant set throughout the homotopy. The slow flow on the manifolds M i
1 and

M i
2 is the same

ẏ := g(mi
1(y), y) and ẏ := g(mi

2(y), y),
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respectively, throughout the homotopy. Since calculation to show that
⋃

i Co
i

consists of C-slow entrance points only depends on the behavior of ω-limit set
under the slow flow, we see that this behavior does not change throughout the
homotopy. Finally, Lemma 5.8 shows that

⋃
i Co

i consists of C-slow entrance
points for s = 1. "
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