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Abstract

The study of dynamics of gene regulatory networks is of increasing interest in
systems biology. A useful approach to the study of these complex systems is to view
them as decomposed into feedback loops around open loop monotone systems. Key
features of the dynamics of the original system are then deduced from the input-output
characteristics of the open loop system and the sign of the feedback. This paper extends
these results, showing how to use the same framework of input-output systems in order
to prove existence of oscillations, if the slowly varying strength of the feedback depends
on the state of the system.

1 Introduction

One of the most important challenges facing biologists and mathematicians in the postge-
nomic era is to understand how the behaviors of the cells arise from properties of complex
signalling networks of proteins.

Networks that support bistable ([27, 29, 18, 6, 7, 30, 28]) and periodic ([14]) behaviors
have attracted much attention in recent years. Bistable systems are thought to be involved
in the generation of a switch-like biochemical responses ([18, 6]) as well as establishment of
cell cycle oscillations and mutually exclusive cell cycle phases ([30, 28]).
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DMS/NIH-4W0467.

†This research partially supported by grants NSF DMS-0614371 and NSF DMS-0504557
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In the recent work [2], Angeli and the second author developed a method that allows
the detection of bistability in certain networks with feedback by studying the properties of
the open loop system. The theory applies to systems that can be represented as a positive
feedback loop around a monotone system with well-defined steady-state responses to constant
inputs. The follow-up paper [5] described how this approach can be fruitfully applied in
interesting biological situations, and [15] developed extensions of the basic framework. In
principle, this approach applies to networks of arbitrary complexity. See [33] for a survey-
level discussion of the topic.

Biologically, relaxation oscillators appear to underlie many important cell processes, such
as the early embryonic cell cycle in frog eggs (Xenopus oocytes), cf. [30, 28]. Mathematically,
a typical way in which relaxation (or “hysteresis-driven”) oscillators arise is through the
interplay of a slowly acting parameter adaptation law and the dynamics of a bistable system.
Let us briefly review the (well-known) intuitive picture.

Suppose that a certain one-dimensional system ẋ = fλ(x) has a bifurcation diagram that
looks like the curve shown in Figure 1, where the horizontal axis indicates the parameter λ,
with solid arrows showing, for each value of the parameter, in which direction the state x
will move. Note the bistable region in the middle range of parameter space, where two stable
(and one unstable) states x exist for each parameter value, such as for instance for λ = q.
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Figure 1: Relaxation from bistability

For example, still referring to Figure 1, if the parameter value is λ = p, the point x = a
will converge towards x = b as the time t → ∞; when the parameter is λ = q, the point
x = c is unstable; and so forth. Now suppose that the parameter itself is a function of
the state x, with the “negative feedback” rule that the parameter will slowly decrease when
x is larger than x = c but will slowly increase when x < c. Let’s now analyze, for this
feedback situation, what happens when the initial state is x = d and the initial parameter
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is λ = r (point labelled “A” in the (λ, x) plane). The state x will move toward the positive
direction, approaching an equilibrium (dashed curve). However, the parameter will slowly
decrease, so that the equilibrium being approached keeps decreasing. In effect, the trajectory
in the (λ, x) plane will tend to follow the bifurcation curve, until a point at which there are
no stable equilibria nearby (parameter value “s”), A fast transition will occur towards the
bottom branch. Now the state is less than c, so the feedback rule forces the parameter to
increase, rather than decrease. There results an oscillation as shown by the dashed curve.
For systems in dimension 1, a rigorous proof that a periodic orbit indeed exists for the
joint (λ, x) dynamics can be based upon phase-plane techniques via the Poincaré-Bendixon
Theorem, or using singular perturbation tools.

In essence, the techniques from [2] allow one to analyze the dynamics of ẋ = fλ(x), for
states x of arbitrary dimension, using phase-plane-like techniques, where instead of the (λ, x)
plane of Figure 1 one uses the (λ, u) space, and u is an “input” associated to the full system.
In the case when u is scalar, the (λ, u) space is a plane and the the analysis required is as
simple as for Figure 1. Bifurcation diagrams such as the one shown in Figure 1 are used to
predict the behavior of the whole system.

This suggests that a slow feedback adaptation, acting entirely analogously to the de-
scription for one-dimensional systems, should again result in periodic orbits in this far more
general situation. This fact would represent another instance of the principle that monotone
input/output systems, as components of larger systems, behave in some sense like one-
dimensional subsystems. The purpose of this paper is to provide a proof of this fact. Our
proof is based upon a combination of i/o monotone systems theory and Conley Index theory.
We also illustrate our results with the analysis of a model of the mitogen-activated protein
kinase (MAPK) cascade in eukaryotic cells [18, 6, 7, 5]. We show that if the strength of the
feedback from p42 MAPK to Mos depends on the state of the system, then the cascade is
able to exhibit periodic behavior.

We observe that a totally different mechanism for the emergence of oscillations in feedback
loops around monotone systems arises from negative feedback. There is by now a rich set
of results characterizing conditions for non-oscillation in such negative feedback loops, see
e.g. [1, 16, 13, 17]. When these conditions fail, there often result oscillations, at least if
delays are inserted in the feedback loop ([3]). This other mechanism is closely related to
Hopf bifurcations, in contrast to the relaxation oscillation framework studied in the present
paper.

2 Preliminaries

We consider a finite-dimensional controlled system

ẋ = f(x, u), y = h(x) (1)

where u(t) ∈ U ⊆ Rm is the input, y(t) ∈ Y ⊆ Rm is the output, f, h are at least C2, and
the state space variable x(t) ∈ X ⊆ Rn. We assume that U, Y,X lie in the closure of their
interiors. We assume that the input space and the output space have the same dimension,
because we will investigate also a closed loop system, where, in addition to (1), we set

u = λy. (2)
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Here λ is a scalar parameter, where in case n > 1, λ is understood to be a matrix λI. In
order for (2) to be well defined we assume that λ ∈ L a real interval and that

⋃

λ∈L λY ⊂ U .
Our main motivation is the study of gene regulatory networks [5, 8], where often sys-

tems of the form (1),(2) have an additional structure of monotone systems. We now recall
necessary definitions and for more background we refer the reader to [1, 31].

A cone is a closed, convex set with nonempty interior and with αK ⊂ K for α ∈ R+ and
K ∩ (−K) = {0}. If a space Z is endowed with a cone Kz we will write

x � y if, and only if, x− y ∈ Kz and x � y if, and only if, x− y ∈ intKz.

We assume that the input space U , the state space X and the output space Y each has a
distinguished cone Ku ∈ U , Kx ∈ X and Ky ∈ Y .

We say that the controlled dynamical system (1) is a monotone system with outputs if
the following two implications hold

u1(t) � u2(t) ∀t, x1 � x2 =⇒ ϕ(t, x1, u1) � ϕ(t, x2, u2)

x1 � x2 =⇒ h(x1) � h(x2)

where ϕ is the flow generated by (1), and the � is with respect to appropriate cones. We
say that the controlled dynamical system is strongly monotone if it is monotone and

u1(t) � u2(t) ∀t, x1 � x2 =⇒ ϕ(t, x1, u1) � ϕ(t, x2, u2)

Infinitesimal characterizations of monotonicity, which are more suitable for verification, can
be found in [1] and [31]. We say that two points x, y ∈ Z are order related if either x � y or
y � x with respect to cone Kz.

The most important set of questions in this context concerns the predictability of the
closed loop dynamics

ẋ = f(x, λh(x))

based on the properties of the open loop system (1),(2).

Definition 2.1 We say that the controlled dynamical system (1) is endowed with input-state
characteristic kx(u) : U → X if for each constant input u(t) ≡ ū there exists a (necessary
unique) globally asymptotically stable equilibrium kx(ū) of system (1). We also define the
input-output characteristic as

k(u) := h(kx(u)), k : U → U.

Lemma 2.2 [1, Proposition V.5] The input-state characteristic kx(u) is a continuous func-
tion, which is monotone i.e u �Ku

v implies kx(u) �Kx
kx(v).

3 Statement of the main result

The goal of this paper is to prove the existence of a periodic orbit in a closed loop system
with a variable feedback strength
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ẋ = f(x, λh(x)), (3)

λ̇ = −εq(x, λ)

where q(x, λ) : Rn ×R → R is a suitable function that will be specified later. The function
q(x, λ) can always be constructed so that q(x, 0) = 0 which implies λ(t) ≥ 0 for all t > 0 if
λ(0) ≥ 0. This is often desirable in biological applications.

The system (3) has two time scales. Setting ε = 0 we obtain a fast subsystem

ẋ = f(x, λh(x)) (4)

where λ is a parameter. We will explore the correspondence between dynamics of the pa-
rameterized system (4) and the parameterized system

u̇ = k(u) − 1

λ
u. (5)

We are ready to state our main Theorem. Our approach is especially useful when m << n
and thus the dimension of the input and the output space are much smaller then that of the
state space X. Thus the dimensionality of the system (5) is much smaller then that of (4).
Therefore we impose all technical assumptions of the next Theorem 3.1 on system (5), but
the conclusions are drawn about the system (3). In the applications to gene regulation, the
input-output function k(u), as well as the strength λ of the feedback, are often experimentally
accessible and controllable.

Theorem 3.1 Assume that the system (1) is monotone and is endowed with an input-state
characteristic kx(u). Further assume that

• for all λ the system (4) is strongly monotone and its solutions are bounded;

• there are values 0 < λmin < λ1 < λ2 < λmax in L such that (5) has one stable
equilibrium for λ = λmin, two stable and one unstable equilibrium for λ ∈ (λ1, λ2) and
one stable equilibrium for λ = λmax;

• for each λ ∈ [λmin, λmax] these equilibria are order-related with respect to the cone Ku;

• the set of equilibria is connected.

Then, for a generic function f , there is a function q(x, λ) with q(x, 0) = 0, and an ε0, such
that for all ε with 0 < ε ≤ ε0 there is a periodic orbit of the system (3).

If, in addition, the control is scalar (m = 1) then the function q(x, λ) can be constructed
as

q(x, λ) = λ(h(x) − h(x0)) = u− u0.

where (λ0, u0) an unstable equilibrium of (5) and x0 = kx(u0).

Remark 3.2 Notice that the Theorem is not necessarily true for all nonlinearities f , but
only for an open and dense subset of C2 functions Rn+m → Rn in the compact-open topology.
In fact, we need the following generic properties in the proof:
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1. the input-state characteristic kx is not constant on any open set in Rm;

2. the limit-point bifurcations of equilibria in the fast subsystem (4) with the bifurcation
parameter λ are generic;

3. homoclinic orbits, if they exist, are isolated;

4. solutions of (4) with λ = λ1 and λ = λ2 on the unstable manifold of the semi-stable
equilibrium at the limit-point bifurcation converge to the set of equilibria. Recall that
by [31, Theorem 4.3] in a strongly monotone system for a generic x ∈ Rn, ω(x) is
contained in the set of equilibria. Therefore this assumption is generic in the class of
functions satisfying assumption 1 of Theorem 3.1.

Remark 3.3 We will show below that the assumptions of Theorem 3.1 imply that there is
an S-shaped set of equilibria of (5) in U × R. We will call the two branches that contain
stable equilibria upper Vtop and lower branch Vbot. The assumption that the equilibria are
order related is used to show that there are corresponding disjoint equilibria branches of (4)
in X ×R. Since the branches are disjoint, we construct the function q(x, λ) : X ×R in such
a way that the upper branch of equilibria belongs to the set where q(x, λ) > 0 and the lower
branch of equilibria to the set where q(x, λ) < 0.

We now outline the proof of the main result. In section 4 we describe what the assump-
tions of Theorem 3.1 imposed on the system (5) imply for the system (4). In section 5 we
formulate a simple two dimensional model which exhibits bistability and an S-shaped curve
of equilibria. Using geometrical techniques we show that such system admits a positively in-
variant set in the shape of an annulus. Existence of such set together with a Poincaré section
implies existence of a periodic orbit in the model problem in R2. There is generalization of
this result to higher dimensional spaces, based on the Conley index theory, due to McCord
et. al. [26]. We verify the assumption of this result in a couple of steps. As the first step we
identify a local 2-dimensional manifold in the neighborhood of the equilibria of the system
(4) which can be mapped diffeomorphically to a neighborhood of the set of equilibria of the
model problem. This map respects the direction of the flow.

The inverse image by this map takes the annular neighborhood of the equilibria of the
model problem to a set, which can be extended to a neighborhood of the equilibria of (4).
We show that, for all ε small enough, this neighborhood is an isolating neighborhood for
system (3) and compute its Conley index. After verifying that the neighborhood admits
a Poincaré section, we conclude that there is a periodic orbit in the neighborhood for all
sufficiently small ε.

4 Correspondence between (5) and (4)

Definition 4.1 A vector field u̇ = φ(λ, u), where φ : R×R → R, undergoes a generic limit
point bifurcation at (λ∗, u∗) when

φ(λ∗, u∗) = 0 ,
dφ

du
(λ∗, u∗) = 0, φuu 6= 0 and φλ 6= 0.

6



Definition 4.2 A limit point bifurcation of vector fields in Rn, generated by u̇ = g(λ, u),
is generic, if the Lyapunov-Schmidt reduction φ(λ, u) to the one-dimensional kernel of
dgu(λ

∗, u∗) satisfies Definition 4.1.

Lemma 4.3 Assume all assumptions of Theorem 3.1.

1. If the pair (λ∗, u∗) ∈ Λ × Rm is an equilibrium of (5) then (λ∗, kx(u
∗)) ∈ Λ × Rn is

an equilibrium (4). On the other hand, if (λ∗, x∗) ∈ Λ×Rn is an equilibrium (4) then
there exists u∗ such that x∗ = kx(u

∗) and (λ∗, u∗) is an equilibrium of (5).

2. The system (5) undergoes a limit point bifurcation at λ = λ∗, if and only if, (4)
undergoes a limit point bifurcation at the same value of λ = λ∗.

Proof. 1. The equilibria of (4) satisfy the equation f(x∗, λ∗h(x∗)) = 0. This means that
if we apply the constant input

u∗ := λ∗h(x∗), (6)

then the system (1) converges to the equilibrium x∗. By the definition of the function kx

this means that x∗ = kx(u
∗). Inserting the last expression into (6) we get u∗ = λh(kx(u

∗)) =
λk(u∗), which implies that u∗ is an equilibrium of (5). This shows that if (λ∗, x∗) is an
equilibrium of (4) then there exists u∗ with x∗ = kx(u

∗) and (λ∗, u∗) is an equilibrium of (5).
Now we assume that (λ∗, u∗) is an equilibrium of (5). Then u∗ = λh(kx(u

∗)) by the
definition of the function k. Set x∗ := kx(u

∗). By definition of the I/S function kx we
have f(kx(u), u) ≡ 0 and so f(kx(u

∗), u∗) = 0. Taking into account the definition of x∗,
this equation can be rewritten as f(x∗, λh(x∗)) = 0. This shows that (λ∗, kx(u

∗)) is an
equilibrium of (4).

2. The normal form of the limit point bifurcation [19, Proposition 9.1] that we can
parameterize the equilibrium set f(x∗, λ∗h(x∗)) = 0 of (4) in a neighborhood of a limit point
bifurcation by a C2 function (0, 1) → Λ×Rn+m, t→ (λ∗(t), x∗(t)). Since kx is continuous by
Lemma 2.2, it follows from 1. of this Lemma that there is a corresponding parameterization
t → (λ∗(t), u∗(t)) of equilibria of (5) such that the equilibria of (4) are then parameterized
by the induced parametrization t → (λ∗(t), kx(u

∗(t))). The limit point bifurcation happens

at a parameter value t∗ that satisfies dλ∗(t∗)
dt

= 0. Since this condition holds at the same value
t∗ for both parameterizations, the limit point bifurcations of (4) happens at the same values
λ1, λ2 as limit point bifurcations of (5). 2

Set

g(λ, u) := k(u) − 1

λ
u. (7)

It follows from the assumptions of Theorem 3.1 that g undergoes a limit point bifurcation
at λ1 and at λ2.

If (λ, u) is a regular zero of g, that is, g(λ, u) = 0 and dgu(λ, u) is nonsingular, then
by the Implicit Function Theorem there is a C2 function u : (λ − ε, λ + ε) → Rm such
that g(λ, u(λ)) = 0. It follows from the assumptions on genericity of f that the limit point
bifurcation in the system (4) is generic at λ1. Therefore the equilibria of (4), and, as a
consequence of Lemma 4.3.2, the zero set of g(λ, u) = 0 as well, can be parameterized by
a C2 function (0, 1) → [λ1, λ1 + ε) × Rm, t → (λ(t), u(t)). A similar function exists in the
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neighborhood (λ2−ε, λ2]×Rm of the limit point bifurcation at λ2 . Since the set of equilibria
is connected we paste all local functions together to obtain a parameterization of the set of
equilibria of (5) by a C2 embedding

z : [0, 1] → Λ × Rm (8)

which maps t → (λ(t), u(t)). There are two values t2 < t1 ∈ [0, 1] that correspond to limit
point bifurcations at λ2 and λ1, respectively. That is, the lambda coordinate of z(t2) is λ2

and of z(t1) is λ1. Let V := z([0, 1]), Vbot := z([0, t2]), Vmid := z([t2, t1]) and Vtop := z([t1, 1])
be the equilibria branches of (5) in Λ × Rm.

Definition 4.4 We define sets

M∗ := {(λ, kx(u)) | (λ, u) ∈ V∗}

where ∗ = mid, top, bot. Observe that M∗ ⊂ Λ × Rn.

It follows from Lemma 4.3.1 that the set M consists of equilibria of the system (4). Next,
we address the stability of these equilibria.

Lemma 4.5 Assume all assumptions of Theorem 3.1.

1. If v ∈ Rm spans the kernel of Dgu(λ
∗, u∗) then Dkxv ∈ Rn spans the kernel of Dfx at

(λ∗, kx(u
∗)).

2. (λ∗, u∗) is a stable equilibrium of (5) if, and only if, (λ∗, kx(u
∗)) is a stable equilibrium

(4).

3. If for every λ ∈ Λ the equilibria of (5) are order related, then Mbot ∩Mtop = ∅.

Proof. 1. Along the curve z(t) of equilibria of (5) we have

h(kx(u(t))) −
1

λ(t)
u(t) ≡ 0

for all t ∈ [0, 1] and by the chain rule

Dh(kx(u(t)) ◦Dkx

du

dt
+

1

λ2(t)

dλ

dt
u(t) − 1

λ(t)

du

dt
≡ 0. (9)

At the limit point bifurcation (λ∗, u∗) we have dλ
dt

(λ∗, u∗) = 0, from which we obtain

(Dh(kx(u
∗) ◦Dkx(u

∗) − 1

λ(t)
I)
du

dt
= 0. (10)

Since (compare (7))

Dgu(λ
∗, u∗) = Dh(kx(u

∗)) ◦Dkx(u
∗) − 1

λ(t)
I
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we see that the vector

v :=
du

dt

is a zero eigenvector of Dgu(λ
∗, u∗). By assumption this is the unique zero eigenvector of

Dgu(λ
∗, u∗).

Now we analyze the system (4). The equilibria of (4) satisfy the identity

f(x(t), λh(x(t))) ≡ 0.

We differentiate to obtain

Dfx

dx

dt
= Df1

dx

dt
+ (Df2)

(

dλ

dt
h(x(t)) + λ

dh

dx

dx

dt

)

≡ 0, (11)

where Dfi, i = 1, 2 denotes the derivative of f with respect to the i-th argument. At the
bifurcation point dλ

dt
= 0 and we get

Dfx

dx

dt
= [Df1 +Df2λ

dh

dx
]
dx

dt
= 0.

Since x(t) = kx(u(t)) along the set of equilibria, the null vector at the bifurcation is

dx

dt
= Dkx

du

dt
= Dkxv.

Therefore Dkxv spans the kernel of Dfx at (λ∗, kx(u
∗)).

2. This is the result [15, Theorem 2].
3. Assume that Mtop ∩ Mbot 6= ∅. By the definition of branches Mbot and Mtop this

means there are equilibria (λ1, u1) ∈ Ubot and (λ2, u2) ∈ Utop of (5) such that (λ1, kx(u1)) =
(λ2, kx(u2)). This implies λ1 = λ2 and kx(u1) = kx(u2). Since kx is monotone by Lemma 2.2,
we must have kx(u1) = kx(u) = kx(u2) for any constant input u satisfying u1 � u � u2. By
the assumption the equilibria u1 and u2 at the parameter value λ are order related, let us
say u1 � u2 and u1 6= u2. Therefore the set of such u contains an open set in Rm. This is a
contradiction with the assumption that kx is not constant on open sets, see Remark 3.2. 2

We summarize the results of this section in a Proposition.

Proposition 4.6 Assume all assumptions of Theorem 3.1. Then there is an S-shaped curve
of equilibria M = Mbot ∪Mmid ∪Mtop in Λ × Rn and a function q(x, λ) : Rn × Λ → R such
that

1. at λ1, λ2 ∈ Λ a generic limit point bifurcations take place;

2. the relative interior of Mtop and Mbot consist of stable equilibria of (4);

3. q(x, λ) > 0 on Mtop, q(x, λ) < 0 on Mbot and the set

G := {(x, λ) ∈ Rn × Λ | q(x, λ) = 0}

has a distance from Mbot ∪Mtop bounded away from 0;

9



4. q(x, 0) = 0.

Proof. By the discussion after Lemma 4.3 there is an S-shaped curve of equilibria of the
system (5) in Λ × Rm and the bifurcations at λ1, λ2 are generic limit point bifurcations.
By the definition of the set M and Lemma 4.3.1, M consists of equilibria of (4) and by
Lemma 4.3.2 and 4.5.1 there are generic limit point bifurcations at λ1, λ2. By Lemma 4.5.2
the relative interior of Mtop and Mbot consists of stable equilibria of (4) since by assumption
the relative interior of Vtop and Vbot consists of stable equilibria of (5).

Since by Lemma 4.5.3 Mbot ∩Mtop = ∅ there exists a separating n dimensional manifold
G ⊂ Rn × Λ that is given by q(x, λ) = 0 for some real-valued function q. Without loss of
generality we may assume that q(x, λ) > 0 on Mtop and q(x, λ) < 0 on Mbot. Since G is
closed, the distance from G to either Mtop or Mbot is bounded below by a nonzero constant.
Finally, we may select function q with additional property that q(x, 0) = 0 in order for λ in
the equation (3) to remain positive. Since all the equilibria satisfy λ > 0, we can guarantee
such property by modifying the function q locally in the neighborhood of λ = 0. 2

5 Planar problem

Define a model planar problem

ẏ = ζ − y(y2 − 1) (12)

ζ̇ = −εy.

The fast subsystem is obtained by setting ε = 0 in (12)

ẏ = ζ − y(y2 − 1) =: ζ −G(y) (13)

ζ̇ = 0

with ζ ∈ [−1, 1]. Let S := {(ζ, y) ∈ R2|ζ = G(y)}. The set S has three branches Sbot, Smid

and Stop defined by y < −1/
√

3, by 1/
√

3 > y > −1/
√

3 and by y > 1/
√

3, respectively. We
denote by Z a curve in R2 depicted in Figure 2.A, that consists of Sbot ∪ Stop and the two
vertical connecting pieces.

We now recall a classical construction, where we follow Jones [22]. Similar constructions
also appear in Lefschetz [23] and Hale [20].

Lemma 5.1 For any δ > 0 there exists an ε0 > 0 and an open set N , lying entirely within
a distance δ of Z, that is positively invariant for (12).

Proof. The construction is seen most easily with the aid of a picture, see Figure 2.B. We
construct the boundary of the set N . Draw graphs of ζ = G(y) ± h; take a point A on the
graph of ζ = g(y) − h just above (in y-coordinate) the left turning point of ζ = g(y) − h,
draw a line with positive slope to a point B on the horizontal axis, and then draw a vertical
line to a graph ζ = G(y) at point C. This is followed by a horizontal line to a point D on
graph of ζ = G(y)+h and then piece of graph of ζ = G(y)+h to a point E just below of the
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Figure 2: (a) The Z curve, (b) The set N in the neighborhood of the Z curve, that is
positively invariant under the flow of (12)

right turning point of ζ = G(y) + h. This point is symmetric to the point A and we finish
the construction in a symmetric way by constructing points F,G and H. This finishes the
outer boundary of N . The inner boundary consists of 2 pieces of graphs ζ = G(y) ± h, two
vertical pieces and two pieces with negative slope, see Figure 2.B.

Now we show that the flow of (12) is pointing inward on the outer boundary of N . As a
guidance we will use the vector field generated by (13); if it points inward on the boundary
of N , so does the vector field of (12) for small ε. On the segment AB the slope is positive and
vector field of (13) is vertical and pointing down so it points in on AB. Analogous reasoning
applies for segments CD and DE, using the fact that the slope is positive on DE, since E
is below the right turning point of ζ = G(y) + h. By symmetry, the vector field points in on
EF,GH and HA. The argument for BC and FG cannot be made using (13), since these
lines are vertical. However, the second equation in (12) causes the vector field to point right
along BC and left along FG, as desired.

Analogous arguments can be used for the inner boundary and by choosing h sufficiently
small, we can make N to be in a δ neighborhood of Z for any δ > 0. 2

6 Correspondence between (13) and (4)

The essential step in description of the correspondence between (13) and (4) is to define
special coordinates in the neighborhood of the set of equilibria M . We start by using the

11



Lyapunov-Schmidt reduction ([19]) at the limit point bifurcation (λ1, x1). Since the limit
point bifurcation at λ1 is generic, by [19, Proposition 9.1] in the neighborhood U1 of the
point (λ1, x1) there are local coordinates (λ, v1, v2) ∈ R×R×Rn−1 in which the flow of (4)
has the form

v̇1 = (λ− λ1) − v2
1

v̇2 = A1(λ)(v1, v2)
T + h1(λ, v1, v2)

where h1(λ, v) = O(||v||2) as ||v|| → 0. Since we assume that Mbot consists of stable points,
all eigenvalues of A1(λ) are negative and bounded away from zero.

Similarly, near (λ2, x2) there are local coordinates (λ, w1, w2) ∈ R × R × Rn−1 in a
neighborhood U2 of (λ2, x2) in which the flow of (4) has the form

ẇ1 = (λ2 − λ) − w2
1 (14)

ẇ2 = A2(λ)(w1, w2)
T + h2(λ, w1, w2),

with h2 and A2 having the same properties as h1 and A1 respectively. By taking U1 and U2

smaller, if necessary, we can assure that Ui ∩ G = ∅ for i = 1, 2.
Now we prove a global result which uses in an essential way the fact that for each fixed

λ the system (4) is monotone.

Lemma 6.1 Assume all assumptions of Theorem 3.1. Take x in the branch of the unstable
manifold of a point w ∈Mmid∩U2 that leaves U2 in finite time. Then ω(x) ⊂Mtop. Similarly,
for x in the branch of the unstable manifold of a point w ∈Mmid ∩U1 that leaves U1 in finite
time, we have ω(x) ⊂ Mbot.

Proof. We prove only the first part, since the proof of the second part is analogous. Let

π : Rn × Λ → Λ

be the coordinate projection. The system (4) generates a parameterized flow ψ, that is, for
each λ fixed, the flow preserves the λ-slice of the phase space. We denote the induced flow
by ψλ. Let (µ, λ2] be the set of all values of λ in Π(U2) smaller then λ2.

Take arbitrary λ ∈ (µ, λ2]. Then by (14) there are two equilibria wλ
mid and wλ

bot in U2;
the second being stable and the first one with one-dimensional unstable manifold. Further,
one branch of the unstable manifold of wλ

mid connects to wλ
bot. We denote by Ξλ the other

branch of W u(wλ
mid). By the assumptions of Theorem 3.1 there exist three equilibria of ψλ;

the third one lies on Mtop and we denote it by wλ
top.

We now show that there is an interval (ν, λ2] ⊂ (µ, λ2] such that for all λ ∈ (ν, λ2] and
all xλ ∈ Ξλ, ω(xλ) = wλ

top.

First, for a generic f (see Remark 3.2.4) and all xλ2 ∈ W u(wλ2

mid) = Ξλ2 the omega-limit
set ω(xλ2) is contained in the set of equilibria. Further, by assumption the flow ψλ is strongly
monotone. It follows from [31, Theorem 4.3] that for a generic x ∈ Rn, ω(x) is contained in
the set of equilibria. Therefore there is µ1 < λ2 such that for all λ ∈ (µ1, λ2] and all xλ ∈ Ξλ,
ω(xλ) is contained in the set of equilibria.
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Since the bifurcation at λ = λ2 is generic (see Remark 3.2.2), there is no homoclinic
orbit to wλ2

mid. Further, for a generic f , (see Remark 3.2.3) the homoclinic orbits are isolated.
Therefore there is an µ2 with µ1 ≤ µ2 < λ2 such that for all λ ∈ (µ2, λ2] and any xλ ∈ Ξλ,
the omega-limit set ω(xλ) 6= wλ

mid.
Finally, since by assumption all solutions of (4) are bounded, for all λ ∈ (µ2, λ2] and all

xλ ∈ Ξλ either ω(xλ) = wλ
top or ω(xλ) = wλ

bot. We first note that these conditions are open,

that is, if ω(xλ0) = wλ0

top, then for all λ with |λ− λ0| sufficiently small we have ω(xλ) = wλ
top

for all x ∈ Ξλ. Therefore there is either a ν with µ2 ≤ ν < λ2 such that for all λ ∈ (ν, λ2]
and all xλ ∈ Ξλ we have ω(xλ) = wλ

top, or there is a sequence {ζn}∞n=1 ⊂ (µ2, λ2] such that

limn→∞ ζn = λ2 such that for all xζn ∈ Ξζn, ω(xζn) = wζn

bot.
We assume the second case and show that this leads to a contradiction. Observe that

in the second case all solutions on both branches of W u(wζn

mid) converge to the point wζn

bot,
and this is true for all n. By continuity and by the fact that the bifurcation at λ2 is generic,
there exists a periodic orbit for λ > λ2, with λ− λ2 << 1. See Figure 3.

Figure 3: Limit point bifurcation gives rise to a stable periodic orbit

Again, since the bifurcation at λ2 is generic limit point bifurcation and since the branch
Mbot consists of stable equilibria, this periodic orbit must be stable for λ > λ2, with λ −
λ2 << 1. This contradicts the fact that the stable periodic orbits do not exist in monotone
dynamical systems [31, Theorem 4.3]. Therefore there is an interval (ν, λ2] such that for all
λ ∈ (ν, λ2] and all xλ ∈ Ξλ ω(xλ) = wλ

top. The result now follows if we choose U2 satisfying
π(U2) ⊂ (ν,∞). 2

Let
M := Mtop ∪Mbot ∪ (Mmid ∩ (U1 ∪ U2)).

We extend the local coordinates defined around the bifurcation points to a neighborhood of
M.

Lemma 6.2 There is a neighborhood U of M with U1 ∪ U2 ⊂ U and coordinates (λ, u, v) ∈
R × R × Rn−1 in U in which the flow has the form

u̇ = h(λ, u)

13



v̇ = A(λ)(u, v)T +H(λ, u, v)

such that

1. u = v1 and v = v2 in U1;

2. u = w1 and v = w2 in U2;

3. H(λ, u, v) = O(||(u, v)||2) as ||(u, v)|| → 0.

Proof. We first review the information about the set of equilibria M . By Proposition 4.6
there are generic limit-point bifurcations at λi, i = 1, 2, the equilibria in the relative interior
of Mbot ∪ Mtop are stable. Since limit point bifurcations in U1 and U2 are generic, each
equilibrium w ∈Mmid ∩ (U1 ∪ U2) has one-dimensional unstable manifold.

Now we extend coordinates (w1, w2) ∈ U2 to a neighborhood of Mbot. Let Aw be the
linearization of (4) at w = Mbot ∩π−1(λ). Then the map x→ Awx is monotone with respect
to KX ([2, Lemma 6.4]) and the matrix Aw admits a Perron-Frobenius eigenpair (µw, ew).
Since the equilibrium w is stable, the eigenvalue µw ≤ 0. We would like to select a one
dimensional stable manifold that is tangent to the eigenvector ew which changes continuously
with the base point w. Unfortunately, such manifold is not unique, as one can see from the
following example in the plane. Consider the vector field

ẋ1 = −x1, ẋ2 = −2x2.

In this example, the choice of two points, one in the left and one in the right half-plane
determines unique manifold, that is tangent to x1 axis in the origin. A result of Brunovsky [9]
generalizes this observation. Let Σ1 = {µw} and let Σ2 contains the rest of the spectra of
Aw. Assume for the moment that there is β, γ, µ such that λ < β < γ < µw < µ < 0 for all
λ ∈ Σ2. Let Pi be spectral projection corresponding to Σi, let Xi = PiX and Ai = PiAw. By
the standard theory, there are local coordinates x1, x2 in the neighborhood of w such that

γ|x1|2 < 〈x1, A1x1〉 < µ|x1|2, 〈x2, A2x2〉 < β|x2|2.

For given η let Γη := {x1 : |x1| = η} which in our case is a two point set, since x1 ∈ R. Then
a result of Brunovsky [9] states, that for sufficiently small η and any function σ : Γη → X2,
there is a unique manifold Ow, tangent to ew, such that graph(σ) ⊂ Ow. In our case, the
function σ has only two values, one for x1 = η and one for x1 = −η.

An important observation is that the manifold changes continuously with the point w ∈
Mbot, if the function σ changes continuously.

We assumed in the above argument that µw is an isolated point of the spectra. If µw has
higher multiplicity k, the set Σ1 would have dimension k. Non-uniqueness is still present, but
once we select a particular k-dimensional manifold tangent to the eigenspace corresponding
to Σ1, this manifold is foliated by one dimensional sub-manifolds, since all eigenvalues in
Σ1 are identical. Thus we specify a continuous function σ to select a continuous set of k
dimensional manifolds parameterized by the base point w, and then select one dimensional
sub-manifolds in such a way that they change continuously as a function of w ∈Mbot.

We will now select a particular one dimensional manifold for each w ∈ Mbot. By
Lemma 6.1, if λ ∈ U1 and λ1 < λ then one branch of the unstable manifold of wmid at
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this λ has to connect to wbot. By continuity, all points (x, λ) on such a branch of W u
mid, with

λ < λ1 and ||x− x∗|| < ε converge to Mbot and we can assume without loss that this is true
for all (x, λ) ∈ U1. We select the one dimensional manifolds along Mbot in such a way that
they coincide with the unstable manifold W u(wmid) for all wmid ∈Mmid ∩U1 and extend this
choice continuously for λ < λ1. We select variables u along these sub-manifolds and select v
to be the complementary variables.

A similar construction allows the extension of the local coordinates v1, v2 from U2 to a
neighborhood of Mtop. The result now follows. 2

Definition 6.3 Using the coordinates of Lemma 6.2, define a 2-dimensional manifold in the
neighborhood U of M (see Figure 4),

U := {(λ, u, v) ∈ U | v = 0}.

Having defined local coordinates in neighborhood U of M we relate them to local coor-
dinates in the neighborhood of S. Recall that ψ denotes the parameterized flow of (4) and
let ϕ denotes the parameterized flow of (13).

Define a mapping F : U → R2 in two stages. First, since (13) undergoes a generic limit
point bifurcation at ζ = ±1/

√
3 and the parameterization e of M is continuous, there exists

a diffeomorphism F taking M to S in such a way that Mtop,Mbot and Mmid map to Stop, Sbot

and Smid, respectively and F (G ∩Mmid) = (0, 0). Take an arbitrary wλ0

top ∈ Mtop. Take B a
neigborhood of λ0 in (λ,∞) and let UB := {(λ, u, v) ∈ U | λ ∈ B, v = 0} be a 2-dimensional
manifold, that is foliated by one-dimensional stable sub-manifolds W s(wλ

top), λ ∈ B. There

is also a neighborhood Ū ∈ R2 of F (wλ0

top) that is foliated by the stable manifolds of points
F (wλ

top), λ ∈ B. We extend F to UB in such a way that it maps flow lines of ψ on UB to
flow lines of ϕ on Ū and preserves the direction of the flow. By a similar argument we can
define the map F on a neigborhood UB of an arbitrary point wλ0

bot.
If wλ0

mid ∈ Mmid ∩ U1 or wλ0

mid ∈ Mmid ∩ U2, then there is a 2-dimensional manifold UB,
given by v = 0, such that B := Π(U) is a neigborhood of λ0. The manifold UB is foliated
by unstable manifolds W u(wλ

mid) with λ ∈ B. There is a also a neighborhood of Ū ∈ R2 of
F (wλ0

mid) that is foliated by unstable manifolds of points F (wλ
mid) with λ ∈ Π(B). We can

again extend F to UB in such a way that it maps flow lines of ψ on UB to flow lines of ϕ in
Ū and preserves direction of the flow.

Finally, since both systems undergo generic limit point bifurcations, the map F can be
defined in the union U1 ∪ U2.

Definition 6.4 ([24]) Two Cr flows ϕ on M and ψ on N are Cm orbit equivalent (m ≤ r)
if there is a Cm diffeomorphism h : M → N such that χ(t) = h ◦ ψ(t) ◦ h−1 is a time
re-parameterization of the flow ϕ.

We summarize our construction in the following Lemma.

Lemma 6.5 The flow ψ restricted to the U , is orbit equivalent to the flow ϕ in the neigh-
borhood of S, via the map F .
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By Lemma 6.1 the omega limit set of x ∈ U ∩ U1 lies in Mbot and the omega limit set of
x ∈ U ∩ U2 lies in Mtop.

We now show that the map F can be extended the set

⋃

x∈U2∪U1

⋃

t≥0

ψ(t, x).

By Lemma 6.5 there is a flow χ(t) on R2 defined by χ(t) = F ◦ϕ(t) ◦F−1 and an increasing
function τ(t) such that

ϕ(τ(t)) = χ(t).

Fix λ ∈ π(U1), λ > λ1. For such λ the flow ψλ has equilibria wλ
mid ∈ Mmid, w

λ
bot ∈ Mbot

and one branch of the unstable manifold connects wλ
mid to wλ

bot. We denote this branch by
W̄ u(wλ

mid). Fix a point xλ ∈ W̄ u(wλ
mid) ∩ U1 and observe that there are intervals (−∞, aλ)

and (bλ,∞) such that ψ(t, xλ) ∈ U for t ∈ (−∞, aλ) ∪ (bλ,∞). It is on these intervals that
the function τ(t) is defined.

By the construction of the neighborhood U1 we have G ∩ U1 = ∅. Since q(α(xλ), λ) < 0
and q(ω(xλ), λ) > 0 for α− and ω− limit sets of xλ, there is a at least one time T λ ∈ [aλ, bλ]
such that ψ(T λ, xλ) ∈ G. By the flow box theorem the flow emanating from all such xλ ∈
W̄ u(wλ

mid) is parallelizable. Therefore, by changing the function q if necessary, we can assure
that this time T λ is in fact unique for every xλ ∈ W̄ u(wλ

mid), where wλ
mid ∈Mmid ∩ U1. Now

we extend the function τ(t) = τ(λ, t) continuously and monotonically to

(π(Λ) ∩ {λ > λ1}) × [aλ, bλ]

in such a way that
F (λ, ψ(T λ, xλ)) = (λ, 0). (15)

Finally, for a pair (λ, y) where λ > λ1, λ ∈ π(Λ) and y = ψλ(t, xλ) for some t ∈ [aλ, bλ]
we define

F (λ, y) := ϕ(τ(t), F (λ, ψλ(−t, y))).
Since we renormalized the time in the interval [aλ, bλ], this map is well defined. A similar
extension can be done for λ ∈ π(U2), λ < λ2 and xλ ∈ W u(Mmid). The choice (15) implies
that the map F maps points lying on G into the line y = 0 in R2.

Now we consider λ ∈ π(U1), λ < λ1. By making the neighborhood U1 smaller, if necessary,
we can assure that for (λ, xλ) such that xλ ∈ U ∩U1 and λ < λ1, ω(xλ) ∈Mbot. This follows
by continuity on initial conditions and the fact that Mbot consists of stable equilibria. The
analogous construction to the one above allows an extension of F to all trajectories starting
at such pairs (λ, xλ); this obviously also holds in the neighborhood U2 of the other turning
point.

We call the resulting map, defined on

H := U ∪
⋃

x∈U2∪U1

⋃

t≥0

ψ(t, x),

again F . Observe that the range F contains a neighborhood of the curve Z in Figure 2.
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Figure 4: Map F maps the 2-dimensional manifold in the neighborhood of the set M to its
image in R2. The flow ψ (left figure), generated by (4), is orbit equivalent to the flow ϕ
(right figure), generated by (13). The neighborhoods U1 and U2 of the turning points on M
are also indicated.

6.1 Lifting of the planar problem.

Let ψε denotes the flow of (3) and let ϕε denotes the flow of (12).
A set N is an isolating neighborhood if Inv N ⊂ int N ; that is, if the maximal invariant

set S in N lies in the interior of N .
An isolating neighborhood N is an isolating block if ∂N = N+ ∪ N−, where N− is the

immediate exit set and N+ is the immediate entrance set

N− := {x ∈ N | ϕ([0, t], x) 6⊂ N for all t > 0}
N+ := {x ∈ N | ϕ([t, 0], x) 6⊂ N for all t < 0};

and both N+ and N− are subsets of local sections of the flow.

Lemma 6.6 Let N ′ := F−1(N) ⊂ H, where N ⊂ R2 is the neighborhood of the Z-curve
constructed in Lemma 5.1.

Then there is an neighborhood N of N ′ in Λ × Rn and ε0, such that N is positively
invariant under ψε, for all ε < ε0 and ε0 sufficiently small. In particular, N is an isolating
block under ψε.

Proof. We will extend the set N ′ ⊂ H to its neighborhood N ∈ Λ × Rn, i.e. a set with
a nonempty interior, in such a way that the flow ψε on the boundary is transversal inward.
This will imply that N is an isolating block.

We start with the neighborhood U1 and use the local coordinates of Lemma 6.2. Since
the matrix A1 has spectrum bounded away from zero, there is η > 0 and the set

K1 := {(u, v) ∈ U1 | u ∈ N ′ ∩ U1, |v| ≤ η1},

such that ψε points inward on the part of the boundary ∂K1 given by

{(u, v) ∈ U1 | u ∈ N ′ ∩ U1, |v| = η1}.
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Now we need to check the other parts of the boundary. Lemma 6.5 and continuity implies
that for sufficiently small η the flow ψ points inward on ∂K1 ∩ F−1(AB), where AB is the
segment of the boundary of N in R2, see Figure 2. Therefore ψε for small ε points also
inward on ∂K1 ∩ F−1(AB). On ∂K1 ∩ F−1(IJ), which is by construction a λ = const
hyperplane, the flow ψε points inward since the map F maps G to y = 0 line and thus
λ̇ < 0 on ∂K1 ∩ F−1(IJ). Observe now that W u(Mmid) ∩ ∂K1 6= ∅ and therefore there is
a neighborhood B1 of W u(Mmid) ∩ ∂K1 such that the vector field of (3) points outward in
B1. The last part of the boundary ∂K1 is the part where Mtop ∩ ∂K1 6= ∅. We now extend
K1 along Mtop so that this will not be part of ∂N . Along the branch Mtop the equilibria are
stable and there is a neighborhood of Mtop ∩N ′ of the form

K̄1 := {(u, v) ∈ U | u ∈ N ′, |v| ≤ η′1},
which coincides with K1 in U1. Again we choose η′1 small enough so that ψε on the subset
of ∂K̄1 of the form

{(u, v) ∈ U | u ∈ N ′, |v| = η′1}
points inward. Similar observations as above show that ψε points inward on ∂(K1 ∪ K ′

1)
except for the set B1 ⊂ ∂K1.

A similar construction can be done in the neighborhood U2 of the other bifurcation point
to construct K2 and then extend K2 to a neighborhood K̄2 of Mbot ∩N ′. Then flow ψε points
inward along the boundary ∂(K2∪K ′

2), except a neighborhood B2 ⊂ ∂K2 ofW u(Mmid)∩∂K2.
The last step in the construction of the set N is to extend N ′ along the pre-images by F

of the vertical connections from the turning points to the other branch of S.
Take the set B1 ⊂ K1 and flow it forward by the flow ψ. Observe that B1 is a neigh-

borhood of a collection of orbits for which the omega-limit set lies in Mtop and Mtop ⊂ K̄2.
By choosing η smaller, if necessary, we can assure that ψ(x, t(x)) ∈ intK̄2 for all x ∈ B1

and some t(x), which depends on x. The flow ψ between B1 and the arrival in K̄2 is a
parallelizable flow. Take B̄1 a neighborhood of the set B1 and set

X̄ :=
⋃

x∈B̄1,t∈[0,t(x)]

ψ(t, x), X :=
⋃

x∈B1,t∈[0,t(x)]

ψ(t, x).

We shave the set X̄ in the way indicated in Figure 5 (b) in such a way that the flow ψ points
inward along its boundary. The same property then holds for ψε for small ε.

We call this set K ′
1 and construct an analogous set K ′

2 by flowing the exit set B2 of K2

until it enters K̄1. Set
N := K1 ∪K ′

1 ∪ K̄1 ∪K2 ∪K ′
2 ∪ K̄2.

By construction the flow ψε points inward along the boundary ∂N . 2

7 The Conley Index theory

We recall basic definitions of the Conley index theory. Recall that a set N is an isolating
neighborhood if InvN ⊂ intN ; that is, if the maximal invariant set S in N lies in the interior
of N . Such set S is an isolated invariant set.

The pair of compact sets L ⊂ N is an index pair for an isolated invariant set S if
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Figure 5: (a) A projection of various sets into 2-dimensional manifold Ū . (b) Shaving between
flow boxes X and X̄. The picture on the right is in complementary directions to the picture
on the left.

1. S = Inv(cl(N \ L)) and N \ L is a neighborhood of S;

2. L is positively invariant in N , i.e. given x ∈ L and ϕ([0, t], x) ⊂ N then ϕ([0, t], x) ⊂ L;

3. L is an exit set for N , i.e. given N and T > 0 such that ϕ(T, x) /∈ N , there is t ∈ [0, T ]
such that ϕ([0, t], x) ⊂ N and ϕ(t, x) ∈ L.

Observe that if N is an isolating block then (N,N−) is an index pair.
The cohomological Conley index CH(N ) of an isolating neighborhood N is defined as a

cohomology
CH(N ) := H∗(N,L).

It can be shown [10], that the index is independent on the choice of the index pair and on
the choice of the isolating neighborhood. In fact, it only depends on the maximal invariant
set S := InvN and so we use notation CH(S) and talk about the Conley index of an isolated
invariant set S.

Given isolating neighborhood N and the flow ϕ, we say that Σ is a Poincaré section for
ϕ in N if Σ ∩N is closed and for every x ∈ N

ϕ(x, (0,∞)) ∩ Σ 6= ∅.

Now we are ready to recall a theorem relating Conley index of N to the existence of a
periodic orbit in N .

Theorem 7.1 [26, Theorem 1.3] Assume X is an absolute neighborhood retract and Ψ :
X × [0,∞) → X is a semi-flow with compact attraction. If N is an isolating neighborhood
for ψ which admits a Poincaré section Σ and either

dimCH2n(N,Ψ) = dimCH2n+1(N,Ψ) for n ∈ Z

or
dimCH2n(N,Ψ) = dimCH2n−1(N,Ψ) for n ∈ Z

where not all the above dimensions are zero, then Ψ has a periodic trajectory in N .
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8 Proof of Theorem 3.1

We apply the Theorem 7.1 to the neighborhood N ∈ Λ × Rn and the flow Ψ := ψε for
sufficiently small ε. First we observe that Λ × Rn is an absolute neighborhood retract and
all flows ψε are trivially semi-flows with compact attraction.

Next we verify that N admits a Poincaré section. We start with the set B1 defined in
Lemma 6.6. All trajectories starting at B1 must enter the set K̄2 in finite time. Since λ̇ > 0
in K̄2 and the flow on the boundary of N points inward, these solutions have to enter K2

in finite time. In K2 we still have λ̇ > 0, so there are is no invariant set in K2. Since B2 is
the exit set of K2, all the trajectories entering K2 have to leave through B2 in finite time.
Therefore all trajectories starting at B1 arrive at B2 in finite time. A symmetric argument
starting at B2 finishes the proof that B1 is a Poincaré section of N .

We can make a cohomology calculation for the flow (12). Since N is an annulus in the
plane

H∗(N) =

{

Z for ∗ = 0, 1
0 otherwise.

Now we compute the Conley index of N . By Lemma 6.6 N is an isolating block and the
flow on the boundary is inward. It follows that (N , ∅) is an index pair. Therefore

CH∗(N ) = H∗(N , ∅).

By construction of N this is set is a topological product of the set N ′ and a small n − 1
dimensional disc Dn−1 in the v-directions. Therefore

H∗(N , ∅) = H∗(N ) = H∗(N ′ ×Dn−1) = H∗(N ′) = H∗(F−1(N)).

Finally, since F is a homeomorphism we have

H∗(F−1(N)) = H∗(N).

Therefore CH∗(N ) = H∗(N) and the Conley index satisfies the index assumptions of The-
orem 7.1. Since N admits a Poincaré section, Theorem 7.1 implies existence of a periodic
orbit in N for all sufficiently small ε. 2

9 An application

In this section we apply Theorem 3.1 to a well-known model of mitogen-activated protein
kinase (MAPK) cascades in eukaryotic cells ([18, 6, 7, 5]), and specifically in Xenopus oocytes.
All enzymatic reactions are considered fast, and hence a quasi-steady state approximation
allows them to be modelled by Michaelis-Menten expressions for reaction rates, as functions
of protein substrate concentrations. (For a similar model, but using negative feedback rather
than positive feedback, see [25].) MEK is assumed to activate p42 MAPK by a nonprocessive,
dual phosphorylation mechanism, so (see for instance [5]) we suppose there are three main
MAPK species: unphosphorylated MAPK (z1), MAPK-YP (z2), and MAPK-YP/TP (z3).
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Dephosphorylations are assumed to occur in separate steps, as indicated from experiments
in Xenopus oocytes and extracts ([32]). Similarly, there are three forms of MEK (y1, y2, y3).
Activation of Mos (concentration of active Mos is indicated by x) is known to be a function
of many regulatory processes. As in [5], we assume that the amount of active Mos is directly
stimulated by active MAPK (z3). Such a positive feedback loop from MAPK (or from some
species downstream from MAPK) into Mos is known to operate in intact oocytes ([18]).

With parameters as in [5], we obtain the following model, after eliminating y2 and z2
by use of stoichiometry conservation laws (total MAPK = 300, total MEK = 1200). It is
five-variable system of differential equations that describes the dynamics of the cascade:

ẋ = − V2x

K2 + x
+ V0z3 + V1

ẏ1 =
V6(1200 − y1 − y3)

K6 + (1200 − y1 − y3)
− V3xy1

K3 + y1

ẏ3 =
V4x(1200 − y1 − y3)

K4 + (1200 − y1 − y3)
− V5y3

K5 + y3

ż1 =
V10(300 − z1 − z3)

K10 + (300 − z1 − z3)
− V7y3z1
K7 + z1

ż3 =
V8y3(300 − z1 − z3)

K8 + (300 − z1 − z3)
− V9z3
K9 + z3

,

where V0 = 0.0015, V1 = 0.09, V2 = 1.2, V3 = V4 = 0.64, V5 = V6 = 5, V7 = V8 = 0.06

V9 = V10 = 5, K2 = 200, K3 = K4 = K5 = K6 = 1200, K7 = K8 = K9 = K10 = 300.

We set the control u := z3 in the first equation and let the output function h(x, y1, y3, z1, z3) =
z3. Therefore the variable feedback will be applied in the first equation which will change to

ẋ = − V2x

K2 + x
+ λV0u+ V1.

The monotonicity and boundedness assumptions of Theorem 3.1 have been verified in ([5]).
The input-output function k(u) : R → R has been computed numerically in Figure 5.C of
the same paper. We will reproduce it here together with lines z3 = 1

λ
u for different value of

the feedback parameter λ, see Figure 6.a.
The intersections of these lines with the graph of the input-output function k(u) are

the equilibria of (5) in Figure 6.b. These equilibria satisfy the rest of the assumptions of
Theorem 3.1, except genericity. Since the function k(u) is computed numerically and thus
represents an approximation of the true input-output function, we can justifiably assume
genericity of k. To construct the function q in (3) we choose u0 = 150. By Theorem 3.1 the
function q then has the form

q(x, y1, y3, z1, z3, λ) = λ(z3 − 150).

We do not have biological justification for this adaptation law. We pick it in order to
illustrate our theorem. However, the rate of synthesis of Mos could well be regulated by yet
undiscovered feedback loops.
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Figure 6: (a) The graph of the function k(u) and lines with slopes 0.9, 1.8 and 2.3; (b) The
set of equilibria of the system 5 as a function of λ. These are the intersections of the graph
of k(u) and the lines 1

λ
u.

With such q and ε = 0.000005, the projections of solutions starting at four different initial
conditions into the λ, z3 plane is in the Figure 7.a. The time evolution of the variable y3 for
the same four initial conditions are shown in Figure 7.b. The matching colors in these two
figures correspond to the same initial condition. These solutions converge to a periodic orbit
predicted by Theorem 3.1.
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