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ABSTRACT
The Vose dynamical system model of the simple genetic algo-
rithm models the behavior of this algorithm for large popu-
lation sizes and is the basis of the exact Markov chain model.
Populations consisting of multiple copies of one individual
correspond to vertices of the simplex. For zero mutation,
these are fixed points of the dynamical system and absorb-
ing states of the Markov chain. The stability of vertex fixed
points is understood from previous work. We show that
as mutation increases from zero, hyperbolic asymptotically
stable fixed points move into the simplex, and hyperbolic
asymtotically unstable fixed points move outside of the sim-
plex. We calculate the derivative of local path of the fixed
point with respect to the mutation rate. Simulation analysis
shows how fixed points bifurcate with larger changes in the
mutation rate and changes in the crossover rate.
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1. INTRODUCTION
Remark—Alden: I am not sure whether we need a sep-

arate introduction, or what it would contain. Perhaps we
can just start with the next section.

But note the first paragraph of the Bistability section
where an example is given of using the fixed points of an in-
finite population model to predict GA behavior. This could
perhaps be moved to this introduction.

2. DYNAMICAL SYSTEM MODELS

2.1 The infinite population model
As the name suggests, the infinite population model (IPM)

of the simple genetic algorithm (SGA) is a model that de-
scribes the behavior of the SGA as the population size goes
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to infinity. It is also the basis for the exact mathemati-
cal description of the SGA, namely the exact Markov chain
model. The infinite population model and the exact Markov
chain model are primarily due to Michael Vose, but also to
collaborators Gunar Liepins, Alden Wright, A. E. Nix, and
others. See [11], [12], [15], [13], [5].

The SGA is a generational genetic algorithm over bit strings
of length `. As developed by Vose in [11], it includes any
mask-based crossover, a very general model of mutation, and
proportional, ranking, or tournament selection. (The model
for ranking and tournament selection assumes that no two
individuals have the same fitness.)

Populations are represented as vectors over the integers in
half-open interval [0, 2`) where these integers correspond to
length ` bit strings through their binary representation. A
population vector x has the properties

P
i xi = 1 and xi ≥ 0

for all i ∈ [0, 2`). The relative frequency of the bit string i
in the population is xi. The space of all possible population
vectors is the (n− 1)-simplex ∆ in Rn where n = 2`. Thus,
∆ = {x ∈ Rn :

P
i xi = 1 and xi ≥ 0}. The vertices of

the simplex are the unit vectors in Rn; the ith unit vector
ei corresponds to a uniform population consisting only of
individuals whose string representation is the binary string
representation of i.

Following [11], we use 1 as a notation for a column vec-
tor of all ones of length `, which corresponds to a string of
all ones. In particular, if i ∈ [0, n), then 1T i denotes the
number of ones in the binary representation of i. We also
use 1 as a notation for a column vector of all ones of length
n = 2`. The meaning of the 1 symbol should be clear from
the context.

Population vectors in the simplex can be viewed either as
populations of indeterminate size, or as sampling distribu-
tions for the next generation of the finite-population GA.
(The formula for the exact Markov chain model is simply
the application of the multinomial theorem to this sampling
distribution.)

The infinite population model is a discrete-time dynam-
ical system where time steps correspond to generations of
the SGA. The model is described by a continuously differ-
entiable (C1) map G : ∆→ ∆. If x is the current population
of the SGA, then the next generation population is obtained
by sampling from G(x). The IPM is deterministic with tra-
jectory x, G(x), G2(x), . . .. Vose [11] shows that the expected
next finite population is G(x), he also has theorems that
show that IPM is the limiting behavior of the SGA as the
population size goes to infinity.

The G map extends naturally to a neighborhood of the



simplex in Rn, and we will use G to denote this extended
map.

The map G is the composition of a selection map F and a
mixing map M: G = M ◦ F. Explicit formulas are given for
each of these: see [11], [12], [15], [13], [5].

An important property of the mixing map is that when
mutation is positive, M maps the simplex into its interior
[11]. Thus, G also has this property. This is stated as the-
orem 4.7 of [11]. We will not give the precise definition of
positive mutation, but bitwise mutation with a positive mu-
tation rate is positive mutation.

2.2 A change of basis
In this subsection we show how to do an orthonormal

change of basis so that we can work in the hyperplane con-
taining the simplex. Recall that 1 is the vector of all ones.
Note that {x ∈ Rn : 1T x = 1} is the (n − 1)-dimensional
hyperplane that contains the simplex, and 1⊥ = {x ∈ Rn :
1T x = 0} is the translate of this hyperplane to the origin.

Lemma 1. For proportional selection, 1T dGx = 0.

Remark: Examples show that this is true for ranking
and tournament selection, and the full paper will extend
this result to those forms of selection.

Proof. The differential of G evaluated at x is given by

dGx = dMF(x)dFx. (1)

Vose shows (in theorem 6.13 of [11]) that

1T dMy = 2(
X

yu)1T . (2)

For proportional selection, let F denote the diagonal ma-
trix whose diagonal entries are the elements of the fitness
vector f . Then

F(x) =
Fx

fT x

dFx =
fT xF − FxfT

(fT x)2
.

Note that 1T F = fT . Thus,

1T dFx =
fT xfT − fT xfT

(fT x)2
=

fT − fT

fT x
= 0. (3)

Combining equations (1), (2), and (3) gives the result.

Lemma 2. Let A be an n × n real matrix. Suppose that
1T A = λ1T (so that 1 is an eigenvector of AT ). Then there
is an orthonormal change of basis with basis change matrix
B where the first column is 1 rescaled to have unit length,
and where

BT AB =

„
λ 0
∗ C

«
. (4)

(Here ∗ denotes possibly nonzero entries.) Then C repre-
sents the action of A on the hyperplane 1⊥ = {x ∈ Rn :
1T x = 0}. The eigenvalues of A in addition to λ are the
same as the eigenvalues of C.

Proof. This proof is adapted from the proof of theorem
6.12 of [11].

Since 1T A = λ1, it follows that A : 1⊥ → 1⊥. Let
{b0, b1, . . . , bn−1} be an orthonormal basis with b0 being 1

normalized to have unit length, and let B be the matrix
whose columns are this basis. (The Walsh basis is such a
basis.) Note that if j > 0, then

BT ABej = B−1Abj ⊆ B−1(1⊥) ⊆ e⊥0 .

(Recall that ej is the jth unit vector.) Thus, BT AB satisfies
equation 4.

Observe that eT
0 BT AB = (BT A1)T = λ(B−1b0)

T = λeT
0 .

Thus, the upper left entry of BT AB is λ.
With respect to the above basis the elements of 1⊥ have

the form

„
0
∗

«
. Thus, C represents A on 1⊥. The eigenvalues

of a matrix are invariant under a change of basis.

2.3 Dynamical system fixed points
Let g be a map that defines a discrete-time dynamical sys-

tem. A fixed point v of g is asymptotically stable if there is a
neighborhood U of the fixed point such that limk→∞ gk(y) =
v for all y ∈ U . The fixed point v is unstable if there is a
neighborhood U of v, such that for all δ > 0 there exists a
point y with |y− v| < δ such that gk(y) is not in U for some
k. Tomas: There are two concepts of stability: Lya-
punov stability and stronger one, asymptotic stabil-
ity. What I wrote down for definition of unstable is
the negation of Lyapunov stability. There are exam-
ples which are then neither asympotically stable nor
unstable, they are just Lyapunov stable., but this is
a good definition for our purposes.

A fixed point v is hyperbolic if no eigenvalue of the differen-
tial dgv has an eigenvalue with modulus 1. Vose and Eberlein
have shown that for proportional selection, the fixed points
of G are hyperbolic for a dense open set of fitness coefficients
in the positive orthant [11]. Gedeon, et al. [3] show that for
a “typical”mixing operator G has finitely many fixed points,
and Hayes and Gedeon have shown that the fixed points of
G are hyperbolic for a “typical” mixing operator [4].

For a hyperbolic fixed point v of g, the asymptotic stabil-
ity of v is related to the differential dgv at the fixed point.
If all eigenvalues of dgv have modulus less than 1, then v
is asymptotically stable. And if any eigenvalue of dgv has
modulus greater than 1, then v is asymptotically unstable.
We will define a hyperbolic fixed point to be a saddle fixed
point if some eigenvalues have modulus less than 1 and some
eigenvalues have modulus greater than 1. Clearly, a saddle
fixed point is asymptotically unstable.

The stable Manifold theorem (see theorem 10.1 of [6])
characterizes the behavior of g in a sufficiently small neigh-
borhood of a hyperbolic fixed point. If there are s eigen-
values whose modulus is less than 1, then there is a stable
manifold of dimension s, and if there are u eigenvalues whose
modulus is greater than 1, then there is an unstable mani-
fold of dimension u. The stable manifold consists of points
x such that limk→∞ gk(x) = v and the unstable manifold
consists of points x such that limk→∞(g−1)k(x) = v where
g−1 denotes the inverse of g when the inverse exists. When
g is not locally invertible, the unstable manifold can be de-
fined in terms of the past history of its points. See [6] or
other books on dynamical systems for details.

2.4 Fixed points of the SGA IPM
The Perron-Frobenius theorem states that there can exist

only one fixed-point in the simplex for a linear system with
positive irreducible transition matrix [2]. Further, this fixed



point is asymptotically stable.
This is exactly the situation for the SGA IPM with pro-

portional selection, positive mutation, and zero crossover
since the normalization of proportional selection can be ig-
nored in determining the long-term behavior of the IPM.
Thus, in this situation, G has one stable fixed point in the
interior of the simplex.

When the mutation rate is 1/2, the mutation map takes
all populations to the center of the simplex. Hence, G with
crossover, any selection method, and any fitness function has
the same property.

Vose [11] conjectures that when started at a point in the
simplex ∆, the iterates of G converge to a fixed point. Wright
and Bidwell [16] empirically tested this conjecture and found
what appeared to be cyclic behavior. However, these ex-
amples used a non-standard mutation which is not bitwise
mutation with a rate. Given the extensive experience with
GAs, the conjecture seems very likely to be true for bitwise
mutation by a rate where the rate is less than or equal to
1/2.

2.5 Vertex fixed points
Mask-based crossover is pure in that crossing an individ-

ual with itself results only in that individual. Thus, when
mutation is zero, the mixing map M applied to a uniform
population gives that population. Selection applied to a uni-
form population cannot produce any new individuals, and
thus the selection map F applied to a uniform population
also gives that population. Thus, we have shown the follow-
ing:

Lemma 3. Assume no mutation. If v is a vertex of the
simplex ∆, G(v) = v. In other words, v is a fixed point of G.

The SGA Markov chain model is absorbing when mutation
is zero, and the vertex populations are the absorbing states.

For vertex fixed points of G, there are some special results
on stability [14], section 11.3 of [11]. The differential of G

is upper triangular, so the eigenvalues are the diagonal ele-
ments. In the case of proportional selection, there are simple
formulas for the eigenvalues based on the fitness coefficients
for one-point and uniform crossover [14]. These are given in
the next theorem.

If i ∈ (0, n), let hi(i) and lo(i) be the smallest and largest
k such that i⊗2k 6= 0. In other words, hi(i) is the position of
the leftmost one in the binary representation of i, and hi(i)
is the position of the rightmost one in the binary represen-
tation of i. Let δ(i) = hi(i) − lo(i) + 1; δ(i) is commonly
called the defining length of i.

Theorem 4. Assume proportional selection. Let χ de-
note the crossover rate for one-point or uniform crossover.
For one-point crossover, the spectrum of dGek is given by

spec(dGek ) =


fi⊕k

fk

„
1− χ + χ` `− δ(i)

`− 1

«ff
∪ {0}.

For uniform crossover, the spectrum of dGek is given by

spec(dGek ) =


fi⊕k

fk
(1− χ + χ21−1T i)

ff
∪ {0}.

Proof. This theorem is a restatement of theorem 3.4 and
lemma 5.1 of [14].

Remark by Neal: We should explicitly state here
via equation/thm that stable fixed points have a
dG > 1.

Remark. In the full version of this paper, we should
be able to extend this result to ranking and tournament
selection.

Note that theorem 4 shows that each eigenvalue (except
for 0) of the differential of G at vertex fixed point ek corre-
sponds to the fitness of some other search space point i⊕ k.

More precisely, it is the fitness ratio
fi⊕k

fk
times a factor that

depends on i and on the crossover method.
For a crossover rate of zero (pure selection), only the ver-

tices corresponding to global optima are stable fixed points.
Global optima with no globally optimal neighbors are asymp-
totically stable. As the crossover rate increases, more ver-
tices may become stable fixed points. But vertices corre-
sponding to search space points with more fit neighbors can
never be stable.

The following lemma shows that stability in Rn for vertex
fixed points is the same as stability in the simplex.

Lemma 5. If v is a vertex fixed point with the spectral ra-
dius (modulus of largest eigenvalue) of dGv greater than 1,
then v is an asymptotically unstable fixed point of G consid-
ered as a map from the hyperplane containing the simplex to
itself.

Proof. This is theorem 4.3 of [14]. Or lemma 2 can be
used to prove this theorem.

2.6 Bistability
In dynamical systems theory, bistability refers to a situ-

ation where there are two stable fixed points with distinct
domains of attraction. The fixed point that the system con-
verges to depends on the initial conditions.

It is easy to construct fitness functions with multiple peaks
(local maxima) so that the SGA IPM with no mutation has
stable fixed points which are the uniform populations con-
sisting only of multiple copies of the fitness peaks. See the-
orem 4 for details. (Note, howerver, that a local maximum
of the fitness function does not necessarily correspond to a
stable fixed point.) It is one of the main results of this pa-
per (see theorem 19) that with a sufficiently small increase
in mutation, these fixed points move inside the simplex.

This, it is easy to construct examples where the SGA IPM
has dynamical systems bistability, and these example are
not surprising. However, there is a more restricted form
of bistability that can happen in infinite population models
which is surprising.

When the mutation rate is 1/2, then there is a single stable
fixed point of the SGA IPM at the center of the simplex.
One might guess that if there was a single fitness peak, then
as the mutation rate decreased from 1/2 to zero, this stable
fixed point would migrate from the center of the simplex to
the uniform population corresponding to the fitness peak.
However, something more complex can happen [19]: at a
critical mutation rate, the stable fixed point can bifurcate
into two stable fixed points and an unstable fixed point. One
of the stable fixed points moves towards the fitness peak,
and the other stays closer to the center of the simplex. For
a range of mutation rates less than this critical mutation
rate, there are two stable fixed points which is bistability
in the sense defined above. But it is surprising since it is
not caused by multiple fitness peaks, but is rather related



to the disruptiveness of the combination of mutation and
crossover. This situation with two stable fixed points and
one fitness peak was called bistability in [19].

As the mutation rate continues to decrease, at another
smaller critical mutation rate, the center of the simplex sta-
ble fixed point disappears or stops being stable. As the
mutation rate continues to decrease to zero, the other stable
fixed point moves to the uniform population corresponding
to the fitness peak. The above descripton is based on the
gene pool model given in [19]. This model is similar to but
not the same as the SGA IPM.

In practical terms, when there is bistability, a GA initial-
ized with a random population is likely to be trapped close to
the center of the simplex fixed point which prevents it from
accumulating points of the optimal population. This is illus-
trated by the results of Suzuki and Iwasa [9] on the needle-in-
the-haystack fitness (which they called a “babel-like fitness
landscape”). They found that crossover accelerated time to
convergence if the crossover rate was not too high, but over
a critical crossover rate, the time to find the needle diverged.
The discovery of the bistability phenomenon explained their
results.

The phenomenon was discovered by Boerjlist et al [1] in
a quasi species model of virus reproduction, and was ana-
lyzed for the needle-in-the-haystack and the bineedle fitness
functions and proportional selection in [19]. These results
were extended to truncation selection in [17] and to a “slop-
ing plateau” fitness function in [18]. The model used in the
latter three papers was a gene pool model where crossover
always takes the population directly to linkage equilibrium.
For this model, the fixed point equations reduce to a single
equation in one variable and the existence of bistability can
be rigorously proved. Iterating the SGA infinite population
model demonstrates bistability for the infinite population
SGA model.

Bistability (in the more restricted sense) is only known to
occur in the presence of crossover, mutation, and selection.
When bistability occurs, there is one fixed point “close” to
the fitness peak, and one fixed point “close” to the center of
the simplex. For the needle and bineedle fitness functions,
the fitness peak is at a vertex of the simplex. Thus, when
the GA infinite population model is initialized with a pop-
ulation corresponding to the center of the simplex, the GA
model will converge to the center of the simplex fixed point,
and when the model is initialized with a population corre-
sponding to the fitness peak, the model will converge to the
fitness peak fixed point. A finite population GA with the
same parameters and fitness function, when initialized with
a random population will likely be “trapped” for a long time
by the center of the simplex fixed point, and while when
initialized at the fitness peak, will likely be “trapped” for a
long time by the fitness peak fixed point. (“A long time”
is the best that we can say since the GA with mutation is
an ergodic Markov chain, and all populations will be visited
infinitely often.)

3. QUESTIONS
Remark. Should this be in a separate section (as is the

case now), or should it be in the introduction, or a subsection
of the Dynamical Systems Models section?

The dichotomy of many fixed points for crossover-selection
GAs and one fixed point for mutation-selection GAs and for
mutation rate 1/2 suggests some questions:

• What happens to the vertex fixed points when mu-
tation is increased slightly from zero? We answer this
question for hyperbolic fixed points in the next section.

• What happens to the vertex fixed points when the mu-
tation rate is increased from 0 to 1/2? Recall that
when the mutation rate is 1/2, there is a single stable
fixed point at the center of the simplex.

• What happens to the Perron-Frobenius fixed point as
the crossover rate is increased from zero? Presumably,
the fixed point must bifurcate when there are multiple
stable fixed points under crossover. What kinds of
bifurcations are possible?

• What happens to the fixed points if the crossover rate
were varied to zero at the same time the mutation rate
were varied to one? Remark by Alden: I am du-
bious about this question. I added the second
question above as a substitute. Tomas: I am
not sure this will have a nice answer either. I
prefer question 2

Note that varying the mutation rate to one here is done
only for abstract purposes for completeness, a mutation rate
of one has no practical use in optimization. Remark. This
sentence refers only to the last question.

4. THE MOVEMENT OF VERTEX FIXED
POINTS UNDER SMALL POSITIVE MU-
TATION

In this section we investigate the behavior of hyperbolic
vertex fixed points of G as the mutation rate increases from
zero. Let p denote the mutation rate, and let G : ∆ ×
(−1, 1) → ∆ denote the SGA map parametrized by the
mutation rate p. (While a negative mutation rate is not
meaningful in terms of a GA, the formulas for G apply for
a negative mutation rate, and this allows us to not consider
one-sided derivatives.) Let v = v0 be a hyperbolic vertex
fixed point for G(x, 0). We will use the notation Gp(x) for
G(x, p) when it is convenient.

While we are stating our results in term of the mutation
rate, in fact all we need is that G(x, p) is continuously (i. e.
C1) differentiable in both x and p, and Gp maps the simplex
into its interior for p > 0.

In this section, we will be differentiating with respect to
both x and p, so we will use a different notation for these
derivatives. Let ∂G

∂x
(y, q) denote the derivative of G with

respect to x ∈ Rn evaluated at (y, q) ∈ Rn× (−1, 1). (In the
notation of the previous section, this was d(Gp)(y, p).) Let
∂G
∂p

denote the derivative of G with respect to the mutation
rate p.

Let id : Rn → Rn denote the identity map. Of course, the
differential of id is the identity matrix.

Lemma 6. If g : Rn → Rn is differentiable at a point y
with no eigenvalues equal to 1, then g − id is differentiable
with a nonsingular differential at y.

Proof. There is a similarity transformation P such that
P−1 dg

dx
(y)P is in Jordan canonical form with the eigenvalues

on the diagonal. Then P−1( dg
dx

(y) − I)P is also in Jordan
canonical form with eigenvalues on the diagonal. Thus, the
eigenvalues of dg

dx
(y)− I are the eigenvalues of dg

dx
(y) minus



1, and by assumption these are nonzero. Thus, dg
dx

(y)− I is
nonsingular.

Define H : Rn× (−1, 1)→ Rn by H = G− id. Recall that
we have assumed that v is a hyperbolic vertex fixed point
of G which means that ∂G

∂x
(p, 0) has no eigenvalues on the

unit circle. Thus, H(v, 0) = 0 and ∂H
∂x

(v, 0) = ∂G
∂x

(v, 0) − I
is non-singular by Lemma 6.

Lemma 7. There is a neighborhood V of v, an ε > 0, and
a continuously differentiable function h : [0, ε) → V such
that H(h(p), p) = 0 and h(0) = v. If we define vp = h(p),
then G(vp, p) = vp, so vp is a fixed point of Gp. Furthermore,
the derivative of h is given by

∂h

∂p
(p) = −

„
∂H

∂x
(h(p), p)

«−1
∂H

∂p
(h(p), p). (5)

Proof. By the above argument our assumption of hyper-
bolicity of the vertex fixed point v implies that ∂H

∂x
(v, 0) is

nonsingular. There is a neighborhood U of v and a δ > 0
such that ∂H

∂x
(x, p) is nonsingular for x ∈ U and p ∈ (−δ, δ).

The implicit function theorem shows that there is a neigh-
borhood V ⊆ U of v, an ε > 0, and a function h with the
required properties.

We have now shown that as p increases from 0, there is
a path of fixed points vp of Gp. This path can intersect the
boundary of the simplex only at v = v0 since Gp maps the
boundary of the simplex into the interior of the simplex for
p > 0.

4.1 Asymptotically stable fixed vertex points

Lemma 8. Let v be a hyperbolic asymptotically stable ver-
tex fixed point of G. Then there is a neighborhood V of v in
∆ and a δ > 0 such that for all p < δ, Gp has a unique fixed
point in V , and this fixed point is asymptotically stable.

Proof. Taking standard matrix norm in the eigenvector
basis ‖ · ‖ we have ‖ ∂G

∂x
(v, 0)‖ = α < 1. By continuity of

the derivative, there exists a β > α, a small neighborhood
U ⊂ ∆ of v, and a δ > 0 such that for all (x, p) ∈ U × [0, δ)
we have ‚‚‚‚∂G

∂p

‚‚‚‚ ≤ β < 1.

By going to a smaller neighborhood V ⊆ U if necessary, we
have that for any p ∈ [0, δ) and any pair x, y ∈ V ,

‖Gp(x)− Gp(y)‖ =

‚‚‚‚∂G

∂p
(x)

‚‚‚‚ ‖x− y‖+ o(x− y)

≤ β‖x− y‖+
1− β

2
‖x− y‖

≤ 1 + β

2
‖x− y‖.

Thus, Gp is a contraction on V for all p ∈ [0, δ). By the
contraction mapping theorem (theorem 2.5 of [6]), there is
a unique fixed point vp ∈ V for all p ∈ [0, δ).

4.2 Unstable fixed vertex points

Theorem 9. Let v = v0 be a hyperbolic unstable vertex
fixed point of G. Then for sufficiently small p > 0, Gp has
no fixed point in ∆. ??

Proof. The domain of this proof is the (n−1)-dimensional
hyperplane H = {x ∈ Rn : 1T x = 1}. We can apply lemma
2 to represent ∂G

∂x
(v0, 0) in this hyperplane, and when we

refer to differentials in this proof, we are referring to their
representation in this hyperplane.

The implicit function theorem argument of lemma 7 shows
that there is a ε > 0 such that vp is a hyperbolic fixed point
of G(x, p) for p ∈ (−ε, ε).

By applying the Center Manifold theorem [6] to the map
H : H× (−ε, ε)→ defined by H(x, p) = (G(x, p), p), we con-
clude that the stable manifold W s(vp, G(x, p)) and the un-
stable manifold W u(vp, G(x, p)) depend C1 jointly on both
x and p. In other words, there exists a δ > 0 with δ < ε
such that for each such p the unstable manifold can be rep-
resented as a graph of a C1 function

σ : Eu
(v0,0) × (−δ, δ)→ Es

(v0,0)

where Eu
(v0,0) is a span of the eigenvectors that correspond

to eigenvalues of ∂G
∂x

(v0, 0) with modulus greater than 1 and
where Es

(v0,0) is a span of the eigenvectors that correspond

to eigenvalues of ∂G
∂x

(v0, 0) with modulus less than 1. The
graph consists of triples (x, p, σ(x, p)) where x ∈ Eu

(x0,0),
p ∈ (−δ, δ) and σ(x) ∈ Es

(x0,0).
Suppose that vp for p ∈ (0, δ) lies in the interior of ∆.

Since v0 hyperbolic and unstable, ∂G
∂x

(v0, 0) has at least one
eigenvalue with modulus greater than 1. Thus, the unsta-
ble manifold W u(v0, G(x, 0)) is nonempty. The graphs of
W u(v0, G(x, 0)) = σ(0) and W u(v0, G(x, p)) = σ(p) are C1

close to each other and have the same dimension.
Let Bu

r (v0) be a ball of radius r in Eu
(v0,0). For any ε > 0

(where ε will be chosen later), there exists an r > 0 and an
η with 0 < η < δ such that

‖σ(x, p)− σ(x, 0)‖C1 < ε for all x ∈ Bu
r (v0), p ∈ (0, η).

(6)
Since v0 is a vertex of ∆ and Eu

(v0,0) is a linear space, we
must have that

Bu
r (v0) ∩ ext(∆) 6= ∅, for all r

where ext(∆) is the exterior of ∆. Since W u
(v0,0) is tangent

to Eu
(v0,0) for sufficiently small r and y ∈ Bu

r (v0) \ {v0}, we
must have

graph(σ(y, 0)) ∩ ext(∆) 6= ∅.

Let y0 ∈ graph(σ(y, 0)) ∩ ext(∆). Then there is a positive
distance ε between the compact set graph(σ(y0, 0)) and ∆.
Therefore, by equation (6)

graph(σ(y0, p)) ∩ ext(∆) 6= ∅

for all p ∈ (0, η). Let yp be in this set.
The reverse iterates of yp under Gp must converge to vp.

Thus, there must be some reverse iterate of yp that is in ∆
but is mapped by Gp to ext(∆). But this contradicts that
fact that Gp must map ∆ to the interior of ∆. Thus, our
assumption that vp ∈ ∆ is not correct.

4.3 The direction of movement of fixed points
as mutation increases from zero

Recall that the function h defined in lemma 7 defined the
local path of fixed points as the mutation rate p increased
from zero. In this section we calculate dh

dp
and discuss the

implications of the result.
Throughout this section v will be a vertex fixed point of



G0. Without loss of generality, we can rearrange the order
of the coordinates of Rn so that v = e0 which is the first
unit vector in Rn.

Lemma 10. Let v be a vertex fixed point and assume that
mutation is bitwise mutation with mutation rate p. Then

∂G

∂p
(v, 0) =

8><>:
−` if i = 0

1 if 1T i = 1

0 otherwise

(7)

Furthermore, the vector ∂G
∂p

(v, 0) − v is in the direction of
the simplex.

Proof. The GA map g can be written as a composition
of a selection map, a crossover map, and a mutation map.
Thus,

G(p, x) = M(C(F(x, p))).

Since the crossover map C and the selection map F don’t
depend on the mutation rate p, and since v is a fixed point
of C and F, we have that ∂G

∂p
(v, 0) = dM

∂p
(v, 0).

The definition of the mutation map is

M(x, p) = Ax.

where A is the n× n matrix defined by

Ai,j = p1T (i⊕j)(1− p)`−1T (i⊕j).

Thus,

M(p, x)i =
X

j

p1T (i⊕j)(1− p)`−1T (i⊕j)xj .

Since v is the first unit vector in Rn,

M(p, v)i = p1T i(1− p)`−1T i.

Clearly, for 1T i /∈ {0, 1}, ∂M
∂p

(v, 0)i = 0, and it is easy to

check that for 1T i = 1, ∂M
∂p

(v, 0)i = 1 and ∂M
∂p

(v, 0)0 = −`.

Thus, we have shown that equation (7) holds.
Define the change-of-basis matrix P to have columns e0, e1−

e0, e2 − e0, . . . , en−1 − e0. Note that the columns of P , ex-
cept for the first, are the directions from v = e0 to the other
vertices of the simplex. Multiplying by P transforms the
standard basis into a basis whose elements are the columns
of P . A vector from v points into the simplex if it lies in the
plane of the simplex (i. e., the sum of the coordinates are
zero) and if its coordinates after the first in this basis are
nonnegative. Clearly, ∂g

∂p
(v, 0) satisfies these conditions.

Following [11] and [? ], we define the twist A∗ of an n×n
matrix A to have i, jth entry Ai⊕j,i. A matrix A is called
separative if Ai,j 6= 0 implies that iT j = 0.

Mixing (crossover and mutation) is defined through a mix-
ing matrix M(p) which we parametrize by the mutation rate
p. See [11] or [? ] for more details.

Example. For string length 2, the mixing matrix for
one-point crossover with rate χ and no mutation is:

M(0) =

0BBBBB@
1 1/2 1/2 1/2− 1/2 χ

1/2 0 1/2 χ 0

1/2 1/2 χ 0 0

1/2− 1/2 χ 0 0 0

1CCCCCA .

The twist of this matrix is:

M(0)∗ =

0BBBBB@
1 1/2 1/2 1/2− 1/2 χ

0 1/2 0 1/2 χ

0 0 1/2 1/2 χ

0 0 0 1/2− 1/2 χ

1CCCCCA .

Lemma 11. The mixing matrix M(0) (for zero mutation)
is separative.

Proof. Theorems 6.5 and 6.6 of [11] show that M(0) is
separative.

If matrix A is separative, then its twist A∗ satisfies the
condition

A∗i,j 6= 0 =⇒ i = i⊗ j.

We will call a matrix satisfying this condition twist sepa-
rative. Clearly, M(0)∗ in the example above is twist separ-
ative.

For example, suppose that i = 6 = 110 and j = 3 = 011.
Then i ⊗ j = 010 6= 110 = i, so if A is twist separative,
A6,3 = 0. So whenever there is a locus of j which is zero
while the corresponding locus of i is one, the pair i, j does
not satisfy i = i⊗ j, and thus Ai,j = 0.

Lemma 12. A twist separative matrix is upper triangular.

Proof. i = i⊗ j ⇒ i ≤ j.

Lemma 13. The inverse of a twist separative matrix is
twist separative.

Proof. The following is a “back-substitution” algorithm
to compute the inverse of an upper triangular matrix:

InverseUpperTriangular(A)
1 B ← a square zero matrix of the same dimensions as A
2 for r ← 0 to n− 1 do
3 B[r, r]← 1/A[r, r]
4 for r ← 1 to n− 1 do
5 for i← 0 to n− r − 1 do
6 j ← i + r

7 B[i, j]← − 1
A[i,i]

Pj
k=i+1 A[i, k]B[k, j]

8 return B

Let i, j be such that i 6= i ⊗ j. We need to show that
B[i, j] = 0. As above, there must be a locus at which j has
a zero bit while i has a one bit. Consider the possibilities
for that locus of the summation index k in line 7 of the
algorithm. If that locus of k is a one bit, then k 6= k ⊗ j
which implies that B[k, j] = 0. If that locus of k is a zero
bit, then i 6= i⊗k which implies that A[i, k] = 0. Thus, each
term of the summation of line 7 is zero, which implies that
B[i, j] = 0.

Lemma 14. If A is an n× n twist separative matrix and

B = A−1, then for j such that 1T j = 1, B0,j =
A0,j

A0,0Aj,j
.

Proof. Line 7 of the above algorithm applied to B[0, i]
is

B[0, j]← − 1

A[0, 0]

jX
k=1

A[0, k]B[k, j].



Since B is twist separative, B[k, j] = 0 for k = 1, 2, . . . , j−1.
Thus, the only nonzero term in the summation is A[0, j]B[j, j] =
A[0, j]/A[j, j].

Lemma 15. The product of twist separative matrices is
twist separative.

Proof. The following is the algorithm to compute the
product of upper triangular matrices:

ProductUpperTriangular(A, B)
1 C → a square matrix of the same dimensions as A and B
2 for i← 0 to n− 1 do
3 for j ← i to n− 1 do

4 C[i, j]←
Pj

k=i A[i, k]B[k, j]
5 return C

The argument of the proof of Lemma 13 applies to line 4
of this algorithm to show that i 6= i⊗ j ⇒ C[i, j] = 0.

Lemma 16. The differential of G at simplex vertex v = e0

is given by

∂G

∂x
(v, p) =

∂G

∂x
(e0, p) = 2M(p)∗

dF

dx
(e0).

where F denotes the selection map. For proportional se-
lection, dF

dx
(e0) is twist separative. The matrices ∂H

∂x
(v, 0)

and
`

∂H
∂x

(v, 0)
´−1

are also twist separative (where H(x, p) =
G(x, p)− x).

Remark. This lemma depends on our rearrangement of
coordinates so that v = e0. Without this assumption, the
rows and columns of the differential need to be permuted to
be twist separative. See [14] or [11] for details on how this
can be done.

Remark. Examples suggest that this lemma is also true
for ranking and tournament selection. The full version of
the paper will extend the lemma to these forms of selection.

Proof. The proof of theorem 11.8 of [11] gives the for-
mula for the differential. (Since we are taking the differential
at e0, the σ permutation matrices in formula of [11] are the
identity.)

M(0)∗ is twist separative by lemma 11. Let the fitness
vector be 〈f0, f1, . . . , fn−1〉T . The proof of theorem 11.8
also shows that„

dF

dx
(e0)

«
i,j

=
δi,jfi − δi,0fj

f0

when F is defined by proportional selection. Thus dF
dx

(e0) is
nonzero only on the diagonal and the first row which implies
that it is twist separative. ∂H

∂x
(e0, 0) = ∂G

∂x
(e0, 0)−I is clearly

twist separative, and lemma 13 shows that
`

∂H
∂x

(e0, 0)
´−1

is
twist separative.

Lemma 17. For proportional, ranking, and tournament
selection, ∂G

∂x
(v, 0) = ∂G

∂x
(e0, 0) is upper triangular and its

diagonal entries are its eigenvalues λ0, λ1, . . . , λn−1. For
proportional selection, λ0 = 0 and for j such that 1T j = 1,
∂G
∂x

(v, 0)0,j = −λj.

Proof. Vose shows that dF
dx

(e0) is upper triangular for all
three kinds of selection in the proof of theorem 11.8 of [11].
For proportional selection, lemma 1 shows that 1T dF

dx
(e0) =

0. Since dF
dx

(e0) is twist separative, the only nonzero entries

in column j where 1T j = 1 are the row 0 entry and the
diagonal entry. Thus, the row 0 entry must be the negative
of the diagonal entry λj .

Since ∂G
∂x

(v, 0) is upper triangular, its diagonal entries are
its eigenvalues λ0 = 0, λ1, . . . , λn−1.

Theorem 18. Assume proportional selection. Let v be a
hyperbolic fixed point of G0. Then

dh

dp
(0)i =

8>>>><>>>>:
−

X
j:1T j=1

1

1− λj
if i = 0

1

1− λi
if 1T i = 1

0 otherwise

.

where λi is the ith diagonal entry and eigenvalue of ∂G
∂x

(v, 0).

Proof. Lemma 7 shows that

dh

dp
(0) = −

„
∂H

∂x
(v, 0)

«−1
∂H

∂p
(v, 0)).

Since the identity map does not depend on p, ∂H
∂p

(v, 0)) =
∂G
∂p

(v, 0)) which is given by equation (7). This shows that
dh
dp

(0)i = 0 for i such that i 6= 0 and 1T i 6= 1.

Let E denote the matrix
`

∂H
∂x

(v, 0)
´−1

. Note that the ith

diagonal entry of the upper triangular matrix ∂H
∂x

(v, 0) is

λi − 1. and therefore the ith diagonal entry of E is 1
1−λi

.

Lemma 16 shows that E is twist separative. Then

dh

dp
(0)i =

X
j

Ei,j
∂H

∂p
(v, 0))j . (8)

First, we consider i > 0 and the jth entry in this sum. By
equation (7) ∂H

∂p
(v, 0))j is nonzero only when j = 0 or 1T j =

1, and in this latter case ∂H
∂p

(v, 0))j = 1. Since E is twist
separative, Ei,j is nonzero only when i = i ⊗ j. Thus, the
only j for which the jth term in the summation of equation
(8) is nonzero is when i = j. Thus, when i > 0, dh

dp
(0)i =

Ei,i = 1
1−λi

.

Now we consider the jth entry in the sum of equation (8)
when i = 0.

Since ∂H
∂p

(v, 0))j = 0 except when 1T j = 1 and j = 0, we

only need to consider entries E0,j where 1T j = 1 and j = 0.
Lemma 17 shows that ∂G

∂x
(v, 0)0,0 = 0. Thus, 17 shows

that ∂H
∂x

(v, 0)0,0 = E0,0 = −1.

From lemma 14 and lemma 17 it follows that if 1T j = 1,

E0,j =
λj

−(λj−1)
=

λj

1−λj
. Thus,„

dh

dp

«
0

= ` +
X

j:1T j=1

λj

1− λj
=

X
j:1T j=1

1

1− λj
.

Let Bε(v) = {x ∈ Rn : ‖x − v‖ < ε be the ball of radius
ε around v. The next theorem shows that as mutation in-
creases, a hyperbolic asymptotically stable fixed point moves
into the interior of the simplex.

Theorem 19. Assume that v is a hyperbolic asymptoti-
cally stable fixed point of G, and h is the map defined in
lemma 7. There is an ε > 0 and a γ > 0 such that for
p ∈ [0, γ), h(p) is the unique fixed point of Gp in Bε(v).



Remark: I moved this theorem here so that I can use
lemma 10 to show that ∂G

∂p
(v, 0) 6= 0.

Proof. Lemma 10 shows that ∂G
∂p

(v, 0) = ∂H
∂p

(v, 0) 6= 0.

Thus, dh
dp

(0) 6= 0. By the continuity of the derivative, there

is a η > 0 such that for 0 ≤ q ≤ η, dh
dp

(q)T dh
dp

(0) > 0.
We can also assume that η < δ for the δ of lemma 8. Let
γ = ‖v − h(q)‖. Then for such q, ‖h(q) − v‖ is strictly
monotonically increasing as q increases. Let ε > 0 be such
that ε ≤ ‖h(η)− v‖ and Bε(v) gives the unique fixed point
of lemma 8. Now choose γ > 0 to be sufficiently small that
if 0 < p < γ < δ, then h(p) ∈ Bε. Then h(p) must be the
unique fixed point of lemma 8.

Remark, Alden 6/22/10: I will add some comments
about the meaning of these results. For example, if there
is an i with 1T i = 1 and λi > 1, then we have shown that
the fixed point moves outside of the simplex. The closer the
eigenvalues are to 1, the faster that the fixed point moves
away from the vertex. I will also give at least one empirical
example. Not to be included in submitted version.

4.4 Discussion
Let v be a hyperbolic vertex fixed point corresponding to a

uniform population of k individuals, i. e., v = ek. Theorem
4 shows that each eigenvalue of ∂G

∂x
(v, 0) (other than 0) is

determined by the fitness and the properties of some other
point i ⊕ k of the search space. Theorem 18 shows that
these fitnesses for the Hamming distance 1 neighbors of k
determine the direction of dh

dp
(0). If all Hamming distance

1 neighbors have fitness less than the fitness of k, then the
vector from v to dh

dp
(0) points in the direction of the interior

of the face of ∆ determined by v and its Hamming distance 1
neighbors. If some Hamming distance 1 neighbor has greater
fitness, then the vector from v to dh

dp
(0) points outside of the

simplex (providing an alternate proof of theorem ?? in this
special case).

If v = ek is unstable under no mutation, this means that
at least one eigenvalue of ∂G

∂x
(v, 0) is greater than 1. Lemma

4 shows that each eigenvalue corresponds to some point in
the search space other than k which has higher fitness than
k. The instability of v means that when the SGA IPM is
initialized a population which is both near to v, interior
to the simplex, and not on the stable manifold of v, it will
diverge away from v due to the influence of the higher fitness
points just mentioned..

Any population vector interior to the simplex must con-
tain a nonzero representation of every point in the search
space, including those higher fitness points that caused v to
be unstable. But in a finite GA population in a situation
where the string length is realistically long, this won’t hap-
pen since the size of the search space grows exponentially
with the string length. If the search space points that make
v unstable have a large Hamming distance from v, they are
unlikely to be included in a finite population near v. And if
there is mutation with a mutation rate that is Θ(1/n), such
points are unlikely to be discovered in a realistic time pe-
riod. Thus, from the point of view of finite populations, v is
stable in that when a with-mutation GA is at a population
near v, it is likely to remain there for a long time (namely,
until the higher-fitness points that make v unstable are dis-
covered by mutation). In the case of no-mutation, we would
conjecture that the GA would be likely to be absorbed into
the population corresponding to v.

We can also conjecture that when the search space points
that make v unstable at at least Hamming distance j from
v, then as the mutation rate p increases from 0, the fixed
point corresponding to v is order O(pj) close to the face of
the simplex determined by v and its Hamming distance 1
neighbors. In other words, it would be very close to the
simplex. When a saddle-point fixed point is very close to
but not in the simplex, the IPM will move very slowly when
close to this fixed point [11], [10].

4.4.1 Examples
We give two examples of the situation just described.

Both examples use 1-point crossover with crossover rate 7/8
and the following fitness function:

f(i) =

8><>:
20 if 1T i = 0

165 if 1T i = `

1 otherwise

.

For any string length and 1-point crossover with rate 7/8,
the uniform population consisting of the all zeros string is
an unstable vertex fixed point because the eigenvalue corre-
sponding to the all ones string is 33

32
by theorem 4.

In the first example the SGA IPM is started at the all
zeros string (which has fitness 20). The string length is 7
and the mutation rate is 1

100
. The all ones string (which has

fitness 165) has a frequency of 10−14 after one time step.
This frequency gradually increases. After one time step the
fitness is 18.71, and this decreases to 18.641164 after 6 time
steps. For the next 145 time steps, the fitness is very grad-
ually decreasing, but to 8 significant digits, it remains at
18.641164. After 369 time steps, the fitness reaches a mini-
mum of 18.272 and then it increases rapidly reaching 153.71
at time step 376. The IPM converges to within a tolerance
of 10−12 after 382 time steps with a fitness of 153.79.

In the second example, the SGA is run with the same
fitness, string length 9, mutation rate 1

10
, and population

size 1000. Initialization is with multiple copies of the all
zeros string. The SGA was run until it found the optimum.
With 100 runs, the average number of generations to find the
optimum was 37,645 with a standard deviation of 34, 767.
The number of fitness evaluations was approximately 1000
times the number of generations. Clearly, while the all zeros
uniform population is unstable as a fixed point, the GA takes
a very long time to leave a neighborhood of this fixed point.

5. EXAMPLES OF VERTEX FIXED POINT
MOVEMENT

For the Simple GA a system let n be the string length
and N = 2n be the search space size. Let n = 2 and N = 4
and define the BINEEDLE function be defined below with
a = 1. For now assume that the mutation-rate µ is zero.

BINEEDLE f(x) =

8<:1 + a all ones string
1 otherwise

1 + a all zeros string

9=; (9)

This system produces this set of possible strings and fit-
ness values. The index of this state is given as well, where
this is defined as the decimal value of the binary string.



bitstring fitness index
00 2 1
01 1 2
10 1 3
11 2 4

(10)

As before, the GA-map is described below and operates
within a N − 1 dimensional simplex Λ.

G(x) = M(C(F(x))) (11)

A population exists on the vertex of that simplex when
it contains only copies of one bitstring. For example when
the population consists only of copies of 00, it exists at the
< 1, 0, 0, 0 > vertex of the simplex.

Vose and Wright [14] detailed the analysis of vertex fixed
points. The key finding of their work that the stability of
the vertex fixed points can be calculated using a relatively
simple formula. Let the population v1 =< 1, 0, 0, 0 > mean
that it contains only copies of 00. This relationship holds
for v1 and all vertex fixed points:

v1 = G(v1) (12)

Each of the other vertexes are fixed points as well as the
center of the simplex point < 1/4, 1/4, 1/4, 1/4 >. This is
easily verifiable by simply iterating the GA map on these
points as the starting population distribution.

6. STABILITY ANALYSIS OF FIXED POINTS
The next crucial question is determining the stability of

these fixed points. There are two states of concern, stable
and unstable. In the language of fixed points (see for exam-
ple Strogatz [8]) a fixed point x∗ is (asymptotically) stable
and attracting if trajectories that start near x∗ both stay
nearby for all time as well as approach x as t→∞. A fixed
point x∗ is unstable trajectories starting near x∗ do not stay
nearby for all time and trajectories are not approaching x∗

as t→∞.
An unstable saddle fixed point x∗ is more complicated,

they contain stable and unstable manifolds. In the unstable
manifold iterations move away from the fixed point. Saddle
points also contain a (typically lower dimensional) stable
manifold. This is defined to be the subset of initial condi-
tions x0 for which xt → x∗ as t → ∞ when the system is
iterated. It is not always possible to represent these stable
manifolds within a digital computer.

Saddle points can contain trajectories within the unstable
manifold that are eventually repelling. In loose language,
there exist initial conditions for which iterations move to-
wards the fixed-point for a time, only to then eventually
begin to move away from the fixed-point. See van Nimwe-
gen [10] for instances of this behavior in GAs, he calls them
”meta-stable regions”. See any dynamical systems book for
generic examples of these effects.

How can the stability of the fixed points be directly calcu-
lated? Assuming the system is differentiable (the G-map is
differentiable) the basic procedure is to compute the deriva-
tive about the fixed point in question and then compute the
eigenvalues of the derivative. For discrete dynamical sys-
tems if all eigenvalues are less than one, then the fixed point

Table 1: BINEEDLE vertex fixed points, one-point
crossover χ = 1.0 and µ = 0.

population eigenvalues type
< 1, 0, 0, 0 > [1/2, 1/2, 0, 0] Stable
< 0, 1, 0, 0 > [2, 2, 0, 0] Saddle
< 0, 0, 1, 0 > [2, 2, 0, 0] Saddle
< 0, 0, 0, 1 > [1/2, 1/2, 0, 0] Stable
< 1/4, 1/4, 1/4, 1/4 > [4/3, 2/3, 0, 0] Saddle

Table 2: BINEEDLE vertex fixed points, uniform
crossover χ = 1.0 and µ = 0.

population eigenvalues type
< 1, 0, 0, 0 > [1/2, 1/2, 1/2, 0] Stable
< 0, 1, 0, 0 > [2, 2, 1/2, 0] Saddle
< 0, 0, 1, 0 > [2, 2, 1/2, 0] Saddle
< 0, 0, 0, 1 > [1/2, 1/2, 1/2, 0] Stable
< 1/4, 1/4, 1/4, 1/4 > [4/3, 2/3, 4/9, 0] Saddle

is stable. If all are greater than 1, then it’s an unstable fixed
point. If there is a mix of values above and below 1, then the
fixed point is a saddle point. The differential of G is given
in Eq 1.

Getting back to the BINEEDLE example above, one can
calculate the the stability of the five fixed points in question.
For the G-map for one-point crossover (rate χ = 1.0) and
mutation µ = 0:

Note the switching of the < 0, 1, 0, 0 > and < 0, 0, 1, 0 >
vertices from unstable to saddle points with swapping of
crossover methods. If the process is repeated for one-point
crossover χ = 0.5, then the results are the same as that of
uniform crossover. It is conjectured that the stable mani-
folds for the saddle vertex fixed points of uniform crossover
exist outside the simplex. These outcomes can be confirmed
by simply iterating the G.

For the center of the simplex population < 1/4, 1/4, 1/4, 1/4 >
the iterates return the same population. However if it is
perturbed slightly to < 0.2499, 0.25003̄, 0.25003̄, 0.25003̄ >
, then the iterates converge to the < 0, 0, 0, 1 > stable fixed
point. For < 0.25003̄, 0.25003̄, 0.25003̄, 0.2499 > it con-
verges to the < 1, 0, 0, 0 >. These are likely portions of
the unstable manifolds, though the exact boundaries are not
defined here.

The stable manifold contains the point < 0, 1/2, 1/2, 0 >
which converges to < 1/4, 1/4, 1/4, 1/4 > in one step. Note
that this is the Hardy-Weinberg effect kicking in and taking
the population to linkage equilibrium in one step,

This process was repeated completed for string length n =
4, N = 24 = 16 for BINEEDLE with a = 1. For both one-
point and uniform crossover the only stable fixed points are
at the all-ones and all-zeros string vertices. All other vertex
fixed points are saddle points. The uniform population fixed
point in the center of the simplex is also a saddle point.

If this analysis is done for the NEEDLE function, with
fitness 1 for all string values except the all-ones string with
fitness 2, then all vertex fixed points are unstable except
the uniform population of the all-ones string. The center of
the simplex has complex eigenvalues and is not a fixed point



here.
Other examples can be constructed with fitness functions

with equal (and maximal) fitness in two or more search space
elements where these elements are Hamming neighbors. If a
population were to be initialized with equal/uniform mem-
bership in only these elements, this situation with the no-
mutation GA should devolve into a random walk on that
Hamming surface of the simplex. Once a point hit a vertex
it would stay there. This is an example of drift as studied
in population genetics.

Example fitness function for n = 4, N = 24 = 16:

CONCATNEEDLE :< 2, 2, 1, . . . , 1 > (13)

For an initial population of < 1/2, 1/2, 0, . . . , 0 >, or any
population < X, Y, 0, . . . , 0 > such that X + Y = 1, the
eigenvalues of the system here have a single entry of 1 and
all other entries are less than 1. This means that the surface
itself is stable while specific points are not. In this case the
surface is a line-segment between the vertexes. Each point
of the segment is stable, yet not asymptotically stable.

7. INTRODUCING EPSILON MUTATION
For the BINEEDLE the a computational study was done

to attempt to attempt determine where the vertex fixed
points moved to under epsilon mutation. Note solving the
full G-map for fixed points is infeasible, see Chapter 7 of
Vose [11] for a discussion. He suggests iterating the map to
find them.

Here map-iteration experiments were done with initial
populations set at either of the two stable vertex fixed points
or the simplex-center uniform populations. A range of muta-
tion rates were chosen and one-point crossover is used with
χ = 1.0. The results are represented in the table below.
Note that the experiment was explicitly done for both stable
vertex-populations at all-ones and all-zeros. The symmetry
of the fitness function means that results for either hold for
both, it’s merely an exchange of ones and zeros in the state
space.

Let the symbol φ represent a number very close to zero,
here |φ| < 10−6. As these fixed-points are vectors of length
16, compact abbreviations of the vectors are used as appro-
priate. For each chosen mutation and initial condition the
G-map was iterated until observed convergence or at least
300 iterations. The stability of each observed fixed-point
was calculated. For fixed-points marked as saddle points,
they converged to the listed point after 500 generations.

Figure 1 displays an interpolated version of the bifurcation
diagram. Three initial populations were used, one at the all-
zeros needle, one at a uniform population, and one with 1/2
the population at the all-zeros and all-ones population.

This bifurcation is an instance of the pitchfork bifurcation,
where a stable fixed point bifurcates into two stable fixed
points with an unstable fixed point between them. The up-
per curve of Figure 1 is displaying both stable fixed points
as the y-axis represents fitness and these points have the
same fitness by symmetry. The lower curve displays the un-
stable saddle point’s average fitness. The critical point of
bifurcation is 7.65

This is an interesting result in that the unstable saddle
point has a stable manifold that is converged to. By the sym-
metry of the BINEEDLE and the initial conditions, these
iterations are on the stable manifold and iterations will re-

Figure 1: Epsilon mutation bifurcation of stable
fixed points

Figure 2: Typical pitchfork bifurcation

main there. This type of direct iterative observation of the
lower-dimensional stable manifold is not always possible.

A typical pitchfork bifurcation is given in Figure 2 in pic-
torial form with alpha as the varied parameter.

The above results are by definition incomplete, they do
not contain all fixed points. Many more initial popula-
tions would need to be tried, and unstable (non-saddle) fixed
points are not observable via iteration. With small mutation
rates, the overall dynamics have not changed much. There
still exist three observable fixed points, two stable and one
saddle point. Yet it’s clearly observable that at approxi-
mately mutation rate 1/7.65 something interesting happens,
a single stable fixed point splits into three fixed points for
mutation rate 1/8.

However, for this G-map one can not be certain of the
locations and movement of unobserved fixed points. There
could be other stable fixed points in the simplex, though this
seems unlikely given the intuitive understanding of a GA
with crossover and mutation operating on the BINEEDLE
fitness function.

Conjecture 20. For the GA with crossover and non-
zero epsilon mutation, the stable vertex fixed-points of zero
mutation GA move inside the simplex and the unstable ver-
tex fixed-points of zero mutation GA move outside the sim-
plex.

8. INTRODUCING EPSILON CROSSOVER
A similar experiment was done with examining the effects

of adding epsilon one-point crossover to a fixed mutation



Figure 3: Epsilon crossover bifurcation of stable
fixed points

rate G-map. The mutation rate is set to µ = 1/N = 1/16,
and the crossover rate is varied over a range. Again note
that with zero crossover there exists only a single stable
fixed point in the interior of the simplex. Figure 3 displays
an interpolated version of the bifurcation diagram.

These results are very interesting in that they indicate a
critical (observable) bifurcation of a single stable fixed into
a stable fixed point and a saddle point. This happens at
approximately crossover rate 1/128. Over 8, 000 iterations
of the G-map were starting from the population uniformly
at the all-zeros point. At this point that run was stopped,
with the result being row 3 in the above table.

The leading eigenvalue of the derivative at this stopping
point was 0.99960, meaning that the trajectory of iteration
is very likely close to the stable manifold of the saddle point.
The leading eigenvalue of the derivative at the fixed-point in
row 4 was exactly 1. Note that these numbers are approx-
imate and at these types of critical points the numerics of
computation in binary computers can result in some inaccu-
racies.

Once the crossover rate grew to 1/64 and above a clear
separation of iterative convergence was established between
the different starting populations. At crossover rate 63/64
the interior saddle point’s population distribution is such
that it is approaching uniform frequency of 8% or 1/16. This
indicates that the crossover operator is being quite disrup-
tive and has destroyed the GA’s ability to maintain high
membership in the fittest individuals.

9. REVISITING BISTABILITY
The study next revisited the sloping plateau function from

Chapter ??. The sloping plateau functions are redefined
below. Figure 4 duplicates Figure ?? with a plateau function
with ` = 20, k = 5, a = 5, b = 5. Remember that ` and n
are interchangeable here to represent string length.

Pa,b,k(x) =

(
a + b + 1 if |x| < k

b + (`− |x|)/` if |x| ≥ k

The previous chapter looked at the effects of bistability
and did some varying of the mutation rate to establish the
critical ranges of mutation for which bistability happens.
This study chose instead to hold the mutation rate steady
and vary the a in a range in an effort to discover a bifurcation

Figure 4: Sloping Plateau Fitness, ` = 20, k = 5,
a = 5, b = 5

Figure 5: Sloping Needle Fitness, ` = 40, k = 1, a =
20, b = 20

point. The parameters of the fitness function were changed
as well to ` = 40, k = 1, b = 20 and a ∈ [1, 40]. This forms
a sloping needle and is shown in Figure 5.

A key point of this fitness function is that the floor area
of the function slopes directly to the needle. To a simple
hillclimber (1+1)EA this function is indistinguishable from
a function like ZEROMAX (the inverse of ONEMAX). In
addition it is easily solvable by an non-crossover EA/GA
with an arbitrary population size. Just as with the slop-
ing plateau, the function is designed to deceive proportional
selection. In general, any EA with a large population will
be slower to optimize this function than one with a small
population where the effects of ’weak selection’ are muted.

The experiments were conducted as follows. At each value
of a ∈ [1, 40] the G-map was iterated to convergence starting
from two initial populations. The first is a uniform popu-
lation while the second consists entirely of members on the
needle at the all-zeros string. A mutation rate of 1/3` was
used along with uniform crossover with rate = 1.0.

For values of a < 21 both initial population converged to
the same center of the simplex point. At a = 21 a bifur-
cation point is reached. The stable fixed point splits into
three stable fixed points. Recall that the system has sym-
metric fixed points near the all-ones and all-zeros strings.
For increasing values of a, the average population fitness
of these two fixed points climbs until the reaches approxi-
mately avg-fitness 41 and levels off. The fixed point for the
initial uniform population remains at avg-fitness = 20.5 for
all values of a tested.

The resulting bifurcation diagram is pictured below in Fig-
ure 6. The y-axis represents the average fitness of a fixed
point and not the fixed point itself. Recall that visualiz-



Figure 6: Sloping Needle fixed point bifurcation

ing the population distribution movement results in a 2-D
surface graph like those seen in prior chapters.

No conclusions can be drawn on the movement of un-
observed fixed points, yet presumably other likely unstable
fixed points emerged from the bifurcation event as generally
in dynamical systems a stable fixed point can not bifurcate
into two without an unstable fixed point lying between them
in space. See Strogatz [8], Brin and Stuck [2] or Seydel [7]
for more information on bifurcations in dynamical systems.

10. CONCLUSIONS
TODO
place holder conclusions
The results here show multiple computational studies of

the infinite population model G-map in MapleTM. The first
two were extensions of work on vertex fixed points by Vose
and Wright [14]. Key questions were answered on where
fixed points moved as mutation or crossover rate changed
for the given fitness function. Stability analysis was also
conducted. Not all fixed points are traceable in this way
and these results say nothing about unobserved fixed points.
The BINEEDLE was chosen due to its intuitive ease and op-
timization success with EAs, yet GAs with strong crossover
fail in experiments.

The third study extended the results of Wright and Richter
[18] to look at the sensitivity of the needle height in a slop-
ing needle fitness function. This function is also deceptive
to a GA with strong crossover due to the effects of weak
selection and the disruptive effects of crossover’s bit mixing.
Interestingly, the height of the needle induces bistability in
proportionate selection. Again, no conclusions can be drawn
about the unobserved fixed points. A future direction would
be to move to gene-pool crossover and reduce the G-map to
a system of equations and unknowns. This would allow the
computation of all fixed-points and better exploration of the
dynamics of high n gene-pool crossover GAs.

This is believed to be one of the few times an analysis has
been done on the movement of fixed points of the G-map
with crossover.
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