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Abstract

The map-seeking circuit algorithm (MSC) was developed by Arathorn
to efficiently solve the combinatorial problem of correspondence max-
imization, which arises in applications like computer vision, motion
estimation, image matching, and automatic speech recognition [D. W.
Arathorn, Map-Seeking Circuits in Visual Cognition: A Computa-

tional Mechanism for Biological and Machine Vision, Stanford Uni-
versity Press, 2002]. Given an input image, a template image, and
a discrete set of transformations, the goal is to find a composition of
transformations which gives the best fit between the transformed in-
put and the template. We imbed the associated combinatorial search
problem within a continuous framework by using superposition, and
we analyze a resulting constrained optimization problem. We present
several numerical schemes to compute local solutions, and we com-
pare their performance on a pair of test problems: an image matching
problem and the challenging problem of automatically solving a Ru-
bik’s cube.

Keywords: correspondence maximization, constrained optimization, map
seeking circuit

AMS 65Y20, 90C27, 92-08.

1 Introduction

The map-seeking circuit (MSC) algorithm was recently developed by David
Arathorn to efficiently solve difficult problems in visual cognition [2, 3].
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Arathorn and his colleagues have applied MSC to a range of problems in-
cluding recognition of 3-dimensional objects from 2-dimensional projections
[7], automatic target recognition in cluttered fields [8], motion estimation
[16], and limb inverse kinematics (used in robotics to optimally position a
robot’s arm in a cluttered environment) [15]. We will demonstrate in this
paper that MSC can also be applied to the somewhat more whimsical, but
quite difficult problem of automatically solving a Rubik’s cube [11].

In this paper we present a rigorous analysis of certain variants of the
MSC algorithm. This analysis is based on the concept of correspondence
maximization. By this we mean the selection of a single transformation,
from a given class of transformations, which most closely matches an “in-
put image” to a “template image”. The notion of “image” is application
dependent. For example, it could be a conventional 2-dimensional image or
its 3-dimensional analogue, the position of a robot arm, or the orientation
of a Rubik’s cube.

We restrict our attention to transformations which can be decomposed
into a finite product, where each term in the product is a linear transfor-
mation on the space of images. For instance, in simple two-dimensional
image matching one might consider products of rotations, horizontal trans-
lations, and vertical translations. We also assume that the set of component
transformations is discrete. For example, we might consider integer pixel
translations and discrete rotations of 5 degrees, 10 degrees, 15 degrees, etc.
For inherently discrete applications like solving a Rubik’s cube, this imposes
no artificial restrictions. In other applications it may be necessary to em-
ploy a multilevel strategy, e.g., MSC may be applied to obtain a good image
match at pixel resolution. To obtain sub-pixel resolution one might again
apply MSC but with a refined set of transformations. Alternatively, one
might apply a more conventional optimization-based method with an initial
guess generated by MSC.

Given a finite composition of discrete linear transformations, the corre-
spondence maximization problem can be solved by a brute-force search of
the transformation space. Suppose the transformations can be parameter-
ized as

T = T
(L)
iL
◦ . . . ◦ T

(`)
i`
◦ . . . ◦ T

(2)
i2
◦ T

(1)
i1

, (1)

where 1 ≤ i` ≤ n` for ` = 1, . . . , L. Then a brute-force search would
require the evaluation of n1n2 . . . nL transformations. Such an approach
becomes intractable when this product is large. On the other hand, MSC is
an iterative algorithm whose dominant cost per iteration is proportional to
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evaluation of transformations whose number is the sum

ns
def
= n1 + n2 + . . . + nL. (2)

A key insight in Arathorn’s development of MSC was that the discrete
set of transformations could be imbedded in a continuous framework using
superposition, i.e., by taking linear combinations

T(x(1),...,x(L))
def
=

nL∑

iL=1

x
(L)
iL

T
(L)
iL

(

. . .

(
n2∑

i2=1

x
(2)
i2

T
(2)
i2

(
n1∑

i1=1

x
(1)
i1

T
(1)
i1

))

. . .

)

,

(3)

where the coefficients x
(`)
i`

are real-valued. Arathorn’s work was inspired by
the physiological structure of the visual cortex of the brain [1]. At the same
time the structure of the algorithm inspired him to propose a new theory
of the function of the visual cortex, that is based on essential use of the
bi-directional connections between the cortices.

In Arathorn’s view successive functional areas along the pathways of

the visual cortices implement the transformations T
(`)
i`

. The activity of the

reciprocal connections between layers corresponds to the coefficients x
(`)
i`

.
Neural computations are performed by selectively pruning the activity of
these connections using competition between different pathways. Pruning
of the activity of connections is represented in MSC by an iterative procedure

that competitively updates the coefficients x
(`)
i`

.
A first attempt at a rigorous mathematical analysis of the MSC algo-

rithm was presented in Gedeon and Arathorn [10]. These authors viewed
MSC as a fixed point iteration on the phase space of all admissible values of

the coefficients x
(`)
i`

. Their analysis relied on a Lyapunov function to estab-
lish generic convergence of the iterations. They showed that the coefficients

x
(`)
i`

converge either to the zero vector or to a scalar multiple of a canonical
basis vector ei∗ . (This has components [ei∗ ]j = 1 if j = i∗ and [ei∗ ]j = 0
otherwise.) Convergence to the zero vector can be interpreted as “no cor-
respondence was found that maps the input to the template”. Convergence
to a multiple of ei∗ indicates that the `th component transformation in the

decomposition (1) should be taken to be T
(`)
i∗ .

The fixed point analysis in [10] failed to provide a concise characteriza-
tion of the limit of the MSC fixed point iteration. In order to obtain such
a characterization, we take a constrained optimization viewpoint in this pa-
per. To this end we define a cost functional with which to quantify the
notion of correspondence. Suppose we have a fixed input image I and a
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fixed template M , which lie in Hilbert spaces H and H′, respectively. Given
a transformation T : H → H′, we define the correspondence between I and
M associated with the transformation T to be

c(T )
def
= 〈T (I),M〉, (4)

where 〈·, ·〉 denotes the inner product on H′. From the discrete representa-
tion (1) we obtain the correspondence array

c(i1, i2, . . . , iL) = 〈T
(L)
iL
◦ . . . . . . ◦ T

(2)
i2
◦ T

(1)
i1

(I),M〉 (5)

From the multi-index which maximizes the correspondence array,

(i∗1, i
∗
2, . . . , i

∗
L) = arg max

i1,i2,...,iL
c(ii, i2, . . . , iL), (6)

we obtain the optimal transformation

T ∗ = T
(L)
i∗
L

◦ . . . . . . ◦ T
(2)
i∗2
◦ T

(1)
i∗1

(7)

which maximizes c(T ) in eqn. (4) over the class of transformations having
representation (1).

Brute-force computation of the maximizing multi-index (6) requires as-
sembly of the L-dimensional correspondence array c in (5), which again
requires evaluation of all n1 . . . nL possible combinations of transformations.
To avoid this we employ Arathorn’s superposition idea and define the con-
tinuous MSC correspondence functional,

cMSC(x1, . . . ,xL) = 〈T(x1 ,...,xL)(I),M〉, (8)

where T(x1,...,xL) is given in (3). We then seek to maximize this functional
subject to the following constraints: For each ` = 1, . . . , L,

n`∑

i=1

x
(`)
i = 1, (9)

and
x

(`)
i ≥ 0 for i = 1, . . . , n`. (10)

One of the goals of this paper is to analyze the structure of the continuous
constrained optimization problem of maximizing cMSC in (8) subject to (9)-
(10) and relate it the discrete problem (6). We will prove in Section 3 that we
obtain a global solution to the constrained optimization problem by taking

(x
(1)
∗ , . . . ,x

(L)
∗ ) = (ei∗1

, . . . , ei∗
L
), (11)
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where each ei∗
`

is a canonical basis vector,

[ei∗
`
]j = δi∗

`
,j, j = 1, . . . , n`,

and the i∗` are the maximizing indices in (6). We will also prove that local
constrained maximizers must lie at vertices of the polytope defined by the
constraint set.

A second goal is to present numerical methods to efficiently solve the
constrained optimization problem. This goal is addressed in section 4. In
subsection 4.1 we employ adjoint techniques to show that the gradient of
the MSC correspondence functional (8) can be computed at the cost of only
twice ns transformations, where ns is defined in (2). This facilitates the
use of gradient-based constrained optimization techniques like the projected
gradient method and various quasi-Newton methods [14].

A third goal is to examine Arathorn’s MSC algorithm in the context
of our constrained optimization framework. In subsection 4.3 we discuss a
particular implementation of MSC which makes use of the gradient of the
MSC cost functional (8). However, MSC apparently cannot be viewed sim-
ply as a variant of the projected gradient method. MSC does maintain the
inequality constraints (10), but it does not maintain the equality constraints
(9). We will show that even if one rescales the MSC iterates so the equality
constraints are satisfied, the rescaled iterates need not monotonically in-
crease the MSC cost functional. This is in marked contrast to the projected
gradient iterates, which maintain both sets of constraints and monotonically
increase the cost functional.

It should be noted that Arathorn previously derived order ns techniques
to evaluate basic building blocks of the MSC algorithm, which he refers to
as q-vectors in his book [3]. These q-vectors are identical to the gradient
vectors for the MSC correspondence functional cMSC. In Arathorn’s papers
[4, 7] and [8], cMSC is denoted by Q. In the first two of these papers he
makes explicit reference to the gradient of Q as well as to the correspondence
array (see equation (5)), which he denotes by c(j). Throughout Arathorn’s
publications the “gain vectors”, which he denotes by boldface g, coincide
with our coefficient vectors x(`).

In order to motivate the analysis, we present a pair of illustrative exam-
ples in section 2. The first is a 2-dimensional image matching test problem,
and the second involves the automatic solution of a Rubik’s cube. These
provide test problems for the various algorithms in the numerical study pre-
sented in section 5. They also illustrate the power of the MSC approach
to handle problems in cognition, or “higher-level vision”. In particular, the
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image matching problem involves the selection of one object among sev-
eral objects in a cluttered, noisy input image, as well as the selection of a
transformation which maps that object onto the template.

We close with a summary and some conclusions in section 6.

2 Illustrative Examples

2.1 Discrete Image Matching

We present a simple image matching problem to illustrate the discrete layer-
wise decomposition of transformations (1) and the correspondence functional
(4). In Fig. 1 we show a 100 pixel × 110 pixel binary input image I and
a 23 pixel × 23 pixel binary template image M . A visual comparison of
subfigures (a) and (b) reveals that the input I contains a rotated version of
the template M centered near pixel location i = 50, j = 55. This comparison
process can be broken down into a pair of steps: First extract a 23×23 pixel
subimage (a rotated version of the template M) from the input I, and then
rotate the subimage (by about 60 degrees clockwise) so that it matches
M . We can decompose the subimage extraction into two steps: (i) we first
extract a long, skinny 23 × 110 subimage from I; and (ii) we then extract
a 23 × 23 sub-subimage from the subimage in step (i). Step (iii) is then to
perform rotations on the 23× 23 subimage.

In order to apply the optimization framework outlined in section 1, we
place the image I in the Hilbert space H = R100×110 with Frobenius inner
product

〈I, J〉100×110 =

100∑

i=1

110∑

j=1

I(i, j) J(i, j). (12)

Similarly the template M can be placed in H′ = R23×23 with analogous
inner product. Admissible transformations can be parameterized as

Ti,j,k = T
(3)
k ◦ T

(2)
j ◦ T

(1)
i . (13)

Here T
(1)
i extracts a 23× 110 pixel subimage from I,

T
(1)
i (I) = {I(i + i′, j) | 0 ≤ i′ ≤ 23, 1 ≤ j ≤ 110}.

for i = 1, . . . , 78. Similarly, T
(2)
j extracts a 23 × 23 pixel subimage from

T
(1)
i (I), and j ranges from 1 to 88.
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We apply discrete rotations of θk radians, with θk = (k − 1)π/40, for
k = 1, . . . , 40. Given a discrete 23× 23 image J , we take

T
(3)
k J(xi, yj) = interp J(R(θk)(xi, yj)).

Here R(θk) represents rotation by θk radians,

R(θk)(x, y) =

[
cos(θk) sin(θk)
− sin(θk) cos(θk)

] [
x
y

]

,

and interp J means that we interpolate values of J from rotated grid points
to regular grid points (xi, yj) using bilinear interpolation.

The correspondence array c, defined in eqn (5), associated with the de-
composition (13) has size 78 × 88 × 40. In Fig. 1 we display 78 × 88 slices
of this array for fixed indices k = 1 and k = 21. Our goal will be to find
the largest entry of this array. The indices of this entry characterize the
transformation which best matches the input to the template.

Gradient computations will require adjoints of the transformations T
(`)
i`

,

which we denote by U
(`)
i`

. One can easily verify that U
(2)
j imbeds a 23 × 23

image M in a 23× 110 array by zero filling,

[U
(2)
j (M)](i, j ′) =

{
M(i, j′), j ≤ j′ ≤ j + 87,

0, otherwise.

The adjoint U
(1)
i of T

(1)
i has an analogous representation; it imbeds a 23×110

array in a 100 × 110 array by zero filling. The adjoint U
(3)
k of the rotation

operator T
(3)
k involves rotation by −θk radians and interpolation.

2.2 Rubik’s Cube

The Rubik’s cube [11] is a permutation puzzle involving 27 small cubes, or
“cubies”, arranged in a 3x3x3 pattern. There are 6 distinct colored stickers
affixed to the faces of each cubie; in the solved position each side of the
Rubik’s cube is a solid color. The cube is constructed in such a way that the
9 cubies that compose each side can be rotated by 90, 180, and 270 degrees
and these rotations, or “moves”, can be composed. After application of even
a short sequence of such moves the color pattern of the cube can be quite
complex.

The hidden central cubie and the six middle cubies on the sides of the
Rubik’s cube never change position relative to each other, so we consider
them fixed in space. This reduces the puzzle to considering the remaining 20
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cubies: 12 edge cubies, each with two exposed colors, and 8 corner cubies,
each with 3 exposed colors.

Each corner cubie can occur in any one of eight different corner locations
on the larger cube, and for each corner location there are three possible ori-
entations of such a cubie. Thus there are 8 × 3 = 24 states that a given
corner cubie may be in. Similarly, each edge cubie can occur in one of
twelve locations, and for each location there are two possible orientations.
Therefore there are also 24 possible states for each of the edge cubies. For
the purposes of the computation, we represent the state of each cubie, both
corner and edge, as a canonical basis vector in R24. For the corner cubie we
can think of 24 coordinates divided into 8 groups of 3; as an example, if a
particular cubie is represented by the canonical basis vector e7 that means
that the cubie is in the position 3 in the orientation 1. Obviously, the as-
signment of numbers to positions and orientations is arbitrary, but fixed.
Similarly for edge cubies the 24 coordinates are divided into 12 “position”
groups of 2 “orientation” coordinates. Since there are 20 cubies whose po-
sition is not fixed in space, the entire Rubik’s cube can be represented as a
vector of zeroes and ones in R480, with exactly 20 ones. When applying our
computational framework, we set M to be such a representation of the fully
solved cube and I to be a representation of the cube that we want to solve.

Now we describe the linear maps in each layer. There are six basic moves
which represents clockwise 90 degree rotations of each of the six sides of the
Rubik’s cube. We denote them by u, d, f, b, l, r for turning clockwise the
”up,” ”down,” ”front,” ”back,” ”left,” and ”right” sides. All more complex
moves can be generated by composition of these six moves. In addition, we
will consider a 7th “z”, or “zero” move, which simply leaves all the cubies
in place.

We index the moves from the set {u, d, f, b, l, r, z} to obtain the trans-

formations T
(`)
i , i = 1, . . . , 7 = n`. Unlike in the previous pattern matching

example, the transformations T
(`)
i remain the same for every layer. The

number of layers L corresponds to the number of compositions of the basic
moves used to rearrange the cube. With one exception, the adjoint trans-

formations U
(`)
i correspond to counter-clockwise 90 degree rotations of the

six sides of the cube. The identity transformation, which corresponds to
the z move, is its own adjoint. Since we represent the state of the Rubik’s

cube by a vector in R480, we must represent each transformation T
(`)
i by a

480 × 480 matrix. The structure of these matrices is very simple. Since for
each cubie we have to specify its new position and orientation, the matrix
will be block diagonal with 24× 24 blocks along the diagonal. Each of these

8



blocks will be a permutation matrix, which sends the number 1 in position
i in the 24-dimensional vector specifying the current state, to 1 in position
j, specifying the new state.

To summarize, we start with a solved Rubik’s cube, apply randomly L
moves and represent the resulting cube in R480. This is our “input image”
I. The “template image” M is a representation of the solved cube. We seek
to find a composition of L transformations that will transform the vector I
to the vector M . Each layer contains the same seven transformations, which
represent all legal moves on the cube.

3 Analysis of the Constrained Optimization Prob-

lem

In this section we analyze the structure of the problem of maximizing the
MSC cost functional (8) subject to the constraints (9)-(10). Let Ω denote
the set of vectors in Rn1 × · · · ×RnL which satisfy these constraints. Ω can
be viewed geometrically as a polytope, i.e., the convex hull of a finite set of
points which are the vertices of the polytope. The vertices of Ω consist of all
vectors of the form (ei1 , . . . , eiL), where ei` denotes the i`th canonical basis
vector for Rn` , with entries [ei` ]j = 1 if i` = j and 0 otherwise. We define
(i1, . . . , iL) to be the associated multi-index for the vertex (ei1 , . . . , eiL).

The following lemma shows that the MSC cost functional is multilinear,
i.e., it is linear in each of the layer coefficient vectors x(`). This follows
immediately from the linearity of each of the component transformations

T
(`)
i in (8) and the bilinearity of the inner product.

Lemma 1

cMSC(x(1), . . . ,x(L)) =

n1∑

i1=1

. . .

nL∑

iL=1

c(i1, . . . , iL)x
(1)
i1

. . . x
(L)
iL

(14)

Our next result shows that there is a vertex of Ω which is a global
solution to the constrained maximization problem. The associated multi-
index is then a maximizing multi-index in the sense of (6). As an immediate
corollary, if the correspondence array c in (5) has a unique maximal entry,
then the vertex with the associated multi-index of the maximal entry of
the correspondence array is the unique global solution to the constrained
maximization problem.
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Theorem 2 There exist canonical basis vectors ei∗
`
, ` = 1, . . . , L, for which

cMSC(ei∗1
, . . . , ei∗

L
) ≥ cMSC(x(1), . . . ,x(L)) (15)

for all (x(1), . . . ,x(L)) ∈ Ω.

Proof. Assume by way of contradiction that there is no vertex satisfying
(15). Then there exists a layer ` whose associated maximizing layer vector

x
(`)
∗ is not a canonical basis vector. Assume without loss of generality that

` = 1, and denote the remaining maximizing layer vectors by x
(2)
∗ , . . . ,x

(L)
∗ .

To simplify notation, let x
(1)
∗ have components x1, . . . , xn1 . By Lemma 1,

cMSC(x
(1)
∗ ,x

(2)
∗ , . . . ,x

(L)
∗ ) =

n1∑

i=1





n2∑

i2=1

· · ·

nL∑

iL=1

c(i1, i2, . . . , iL)x
(2)
i2
· · · x

(L)
iL





︸ ︷︷ ︸

ci

xi

≤

n1∑

i=1

ci [ei∗1
]i, (16)

where i∗1 = arg maxi ci. Thus

cMSC(x
(1)
∗ ,x

(2)
∗ , . . . ,x

(L)
∗ ) ≤ cMSC(ei∗1

,x
(2)
∗ , . . . ,x

(L)
∗ ).

Now repeat the same argument for each of the remaining L−1 layers whose

associated maximizing component vector x
(`)
∗ is not a canonical basis vector.

In this way we construct a vertex (ei∗1
, ei∗2

, . . . , ei∗
L
) that satisfies (15). This

contradiction completes the proof.

Corollary 3 If the correspondence array c has a unique maximizing multi-
index (i∗1, . . . , i

∗
L), then the vertex (ei∗1

, . . . , ei∗
L
) is the unique constrained

maximizer for cMSC.

In order to better understand local constrained maxima, we next examine
the equality constrained problem

max cMSC(x(1),x(2), . . . ,x(L)) subject to

n`∑

i`=1

x
(`)
i`

= 1, ` = 1, . . . , L.

(17)
We show that nondegenerate stationary points for (17) are “saddle-like” in
the sense that the reduced Hessian at such points has eigenvalues with mixed
signs.
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Components of vectors in the feasible set for (17) can be represented as

x(`) = x(`) + Z(`)s(`), ` = 1, . . . , L, (18)

where x(`) ∈ Rn` is fixed and satisfies
∑

i x
(`)
i = 1, s(`) ∈ Rn`−1, and the

n` − 1 columns z
(`)
i of Z(`) form a basis for {x ∈ Rn` |

∑

i xi = 0}. Now
consider the reduced cost functional

creduced(s(1), . . . , s(L)) = cMSC(x(1) + Z(1)s(1), . . . ,x(L) + Z(L)s(L)). (19)

Lemma 4 The Hessian of creduced has an L×L block representation, where
the block diagonal components are (n` − 1)× (n` − 1) zero matrices.

Proof. By Lemma 1, cMSC is linear in each of the layer vectors x(`).
Thus the Hessian of creduced has an L×L block representation whose diagonal
blocks are n` × n` zero matrices. By the chain rule,

∂2creduced

∂s
(`)
i ∂s

(`)
j

=
(

z
(`)
i

)T

[Hess cMSC]`` z
(`)
j = 0,

where [Hess cMSC]`` denotes the `th diagonal block of Hess cMSC and z
(`)
i is

the ith column of Z (`).

We say that a critical point s for creduced is nondegenerate if Hess creduced(s)
is not the zero matrix. We call a nondegenerate critical point saddle-like if
Hess creduced(s) has eigenvalues of mixed signs. As a consequence of the
above lemma, we obtain the following results.

Theorem 5 Any nondegenerate critical point for creduced is saddle-like.

Proof. From Lemma 4, the trace (i.e., the sum of the diagonal entries)
of Hess creduced(s) is zero. But the trace of a matrix is equal to sum of its
eigenvalues. Hess creduced(s) is symmetric, so it has real eigenvalues. At
least one of these is nonzero if s is a nondegenerate critical point.

Corollary 6 If x is a local constrained maximizer for cMSC and the reduced
Hessian associated with the equality constraints does not vanish, then x must
lie on the boundary of the constraint set Ω.
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Example. In the 2-layer case the MSC cost functional (8) has a bilinear
representation

cMSC(x,y) =

n1∑

i=1

n2∑

j=1

cijxiyj

= xT Cy (20)

=
1

2

[
xT yT

]
[

0 C
CT 0

] [
x

y

]

(21)

where the n1 × n2 matrix C has correspondence array entries cij given in
(5). We consider three specific cases generated by 2× 2 matrices

C1 =

[
1 −2
0 −1

]

, C2 =

[
2 −2
−2 1

]

, C3 =

[
1 −2
0 0

]

.

Here L = 2, n1 = n2 = 2, and the constraints (9)-(10) reduce to x1 + x2 =
y1 + y2 = 1 and xi ≥ 0, yi ≥ 0 for i = 1, 2. We will show that in these
three cases the correspondence functional has, respectively, (a) a single (local
and global) constrained maximizer; (b) a pair of distinct local constrained
maximizers; and (c) an entire line segment consisting of local constrained
maximizers.

Proceeding as in (18) we take x(`) = e1 = [1, 0]T and Z(`) = z = [−1, 1]T

for ` = 1, 2, and we set s = s(1) and t = s(2). We can then represent the
reduced cost functional associated with matrices Ck for k = 1, 2, 3 as

fk(s, t) = (e1 + sz)T Ck (e1 + tz)

= zT Ckz st + zT Cke1 s + eT
1 Ckz t + const.

As (s, t) vary across the unit square, x = e1 + sz and y = e1 + tz range over
the constraint set Ω.

Fig. 2 shows contour plots and gradient fields of fk for each case. The
critical points (where the gradient vanishes) for fk, k = 1, 2, 3, are s1 =
(3/2, 1/2), s2 = (4/7, 4/7), s3 = (1, 1/3), respectively. For each k, the
global maximizer of fk constrained to the unit square is (s, t) = (0, 0).
This reflects the fact that in each case, the vertex x = y = e1 solves the
constrained maximization problem and the (1, 1) entry of the matrix Ck (and
the correspondence array) is maximal. For the case k = 1, (s, t) = (0, 0)
is the only (local and global) constrained maximizer. For the case k = 2,
fk has a second local constrained maximizer at (s, t) = (1, 1). For k = 3,
each point along the line segment s = 1, 1/3 < t ≤ 1, is a local constrained
maximizer of fk.
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The critical points sk of fk for cases k = 2 and k = 3 are indicated by
asterisks (*) in subplots (b) and (c) of Fig. 2. The dashed lines in subplots
(b) and (c) are the stable and unstable manifolds of the critical points and
are determined by the eigenvectors of the Hessian of fk evaluated at sk. The
unstable manifold, which is determined by the eigenvector corresponding to
the positive eigenvalue, divides the plane into basins of attraction of local
constrained maximizers. Hence, it is known as a separatrix.

To “flow along the projected gradient field”, means to move along a
trajectory of the ordinary differential equation (ODE)

dx

dt
= PΩ gk(x(t)). (22)

The right hand side of this ODE is the gradient of fk projected onto the
constraint set Ω and is precisely defined in Section 4.2. Starting from any
point not on the separatrix, such a flow will lead to a local constrained
maximizer of fk. For instance, the separatrix in Fig. 2 (b) is the dashed
line from (s, t) = (1/7, 1) to (1, 1/7). Starting points to the left and below
this line all flow into the local constrained maximizer (s, t) = (1, 1) (in the
lower right corner) for the reduced objective function f2, which is associated
with the vertex x(1) = x(2) = (0, 1) for f2. Starting points to the right and
above the separatrix flow to the global constrained maximizer (s, t) = (0, 0)
for f2, which is associated with vertex x(1) = x(2) = (1, 0) for f2. In Fig.
2 (c), starting points to the right and above the separatrix flow to (s, t) =
(0, 0). Starting points to below and to the right of separatrix flow to the line
segment s = 1, 1/3 < t ≤ 1. On the other hand, in Fig. 2 (a), the entire
unit square lies in the same basin of attraction for f1. Any starting point
will flow to the global constrained maximizer (s, t) = (0, 0).

4 Numerical Methods

One of the keys to the efficient implementation of numerical optimization
methods is the fast computation of gradients.

4.1 Adjoint Gradient Computations

We assume the transformations T
(`)
i map the Hilbert space H` into Hilbert

space H`+1. Let U
(`)
i : H`+1 → H` denote the adjoint operator, character-

ized by

〈T
(`)
i (I), J〉H`+1

= 〈I, U
(`)
i (J)〉H`

, I ∈ H`, J ∈ H`+1.

13



We define the layer-wise superposition

T
(`)

x
(`) =

n`∑

i=1

x
(`)
i T

(`)
i

and its adjoint,

U
(`)

x
(`) =

n`∑

i=1

x
(`)
i U

(`)
i .

Then

cMSC(x(1), . . . ,x(1))
def
= 〈T

(L)

x
(L) ◦ · · · ◦ T

(`)

x
(`) ◦ · · · ◦ T

(1)

x
(1)(I),M〉HL+1

(23)

= 〈T
(`)

x
(`) ◦ · · · ◦ T

(1)

x
(1)(I), U

(`+1)

x
(`+1) ◦ · · · ◦ U

(L)

x
(L)(M)〉H`+1

=

n`∑

i=1

x
(`)
i 〈T

(`)
i ◦ · · · T

(1)

x
(1)(I), U

(`+1)

x
(`+1) ◦ · · · ◦ U

(L)

x
(L)(M)〉H`+1

(24)

Consequently,
∂cMSC

∂x
(`)
i

= 〈I
(`)
i ,M (`)〉H`+1

, (25)

where for i = 1, . . . , n`,

I
(`)
i

def
= T

(`)
i ◦ T

(`−1)

x
(`−1) ◦ · · · ◦ T

(1)

x
(1)(I) (26)

and
M (`) def

= U
(`+1)

x
(`+1) ◦ · · · ◦ U

(L)

x
(L)(M). (27)

In the discussion to follow, we indicate the computation of the gradient
of cMSC at x = (x(L), . . . ,x(1)) by

g← GRADIENT(x).

Using formulas (25)-(27), this operation can be carried out by evaluating
only 2(n1 + . . . + nL) transformations. Additional costs are incurred in
computing linear combinations and inner products. If only the MSC cost
function is desired, the number of transformations can be cut in half and
only one inner product is needed; see eqn. (23).
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4.2 Projected Gradient Method

The (orthogonal) projection of x = (x(1), . . . ,x(L)) onto the constraint set
Ω is given by

PΩ(x) = arg min
z∈Ω
||z− x||.

We denote the approximate solution at iteration k by x(k). Idealized pro-
jected gradient iteration takes the following form:

for k = 1, 2, . . .
g← GRADIENT(x(k))
τ∗ ← arg maxτ>0 cMSC(PΩ(x(k) + τg))
x(k + 1)← PΩ(x(k) + τ ∗g)

end

From Calamai and Moré [9], this idealized iteration is guaranteed to
converge to a stationary point for our constrained maximization problem.
Moreover, the active set will be identified in finitely many iterations. From
results in section 3, in the generic case the iteration must then converge to
a vertex which is a local constrained maximizer in finitely many steps.

Due to the multilinear nature of the cost function and the simplicity of
the constraints (9)-(10), we can efficiently compute the parameter τ ∗ using
the “bent line search” scheme in Section 4 of Moré and Toraldo [13]. Since
the constrained maximizer lies on the boundary of the polytope Ω, as the
parameter τ increases, the projection onto Ω of the path x(k) + τg consists
of a sequence of projections onto faces of the boundary of the polytope. This
projected path is continuous and consists of a sequence of line segments; we
explicitly compute the points at which the path bends.

4.3 A Map Seeking Circuit Algorithm

The iteration which we describe here is one of a broad class of schemes pro-
posed by Arathorn [3]. In [10] Arathorn and Gedeon used dynamical systems
techniques to analyze the convergence of this iteration. They assumed that
the correspondence array c in (5) has nonnegative entries. This can be
assured by adding an appropriate positive constant to each component of c.

When applied to correspondence maximization, the algorithm in [10]
takes the following form.

15



x(0)← 1

for k = 1, 2, . . .
g← GRADIENT(x(k)) % gradient of cMSC at x(k)
for ` = 1, . . . , n`

x(`)(k + 1)← max{0, x`(k) − κ(1 − g(`)/||g(`)||∞)}
end

end

Here 1 and 0 denote vectors whose components are all 1 and 0, respectively;
κ is a positive “competition” parameter; ||g||∞ = maxi |gi|; and max{·, ·}
indicates component-wise maximum.

Note that the MSC iteration maintains the nonnegativity constraints
(10), but it does not maintain the equality constraints (9). The compo-
nents of g are always nonnegative because the components of c and of x(k)
are nonnegative; see Lemma 1. Since the components of 1 − g/||g||∞ are
nonnegative, the function ||x||1 =

∑

i xi decreases monotonically with each
MSC iteration. This is the basis for the proof [10] that in the generic case

the MSC iterations converge to some (x
(1)
∗ , . . . ,x

(L)
∗ ) where each x

(`)
∗ is ei-

ther to a scalar multiple of a vertex, with scalar between 0 and 1, or a zero
vector.

4.4 Comparison of Projected Gradient and MSC

Suppose x = (x(1), . . . ,x(L)) lies in the interior of the constraint set Ω.
Then for sufficiently small, positive τ , the projected gradient path can be
represented as follows: For ` = 1, . . . , L,

x(`)(τ) = x(`) + τ(g(`) −mean(g(`))1). (28)

Note that mean(g) = 1T g/1T 1 is the projection of g onto span{1}. Simi-
larly, if the MSC competition parameter κ is sufficiently small and positive,
then the MSC path can be represented as

x(`)(λ) = x(`) + λ(`)(g(`) − ||g(`)||∞ 1), (29)

where λ(`) = κ/||g(`)||∞.
In general, the “MSC correction” ||g||∞ is larger than “projected gra-

dient correction” mean(g), but one might expect that a rescaled version of
the MSC path should behave like the projected gradient path. The analysis
that we next present shows that this is not the case.
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Consider the single-layer case (L = 1), where the cost functional can be
expressed as

cMSC(x) = gT x,

where x ∈ Rn and n = n1. Take the rescaled MSC update to be

y(λ) =
x(λ)

||x(λ)||1
=

x + λ(g − ||g||∞ 1)

||x||1 + λ(||g||1 − n||g||∞)
. (30)

Note that y(λ) satisfies the equality constraint (9). Since y = x/||x||1 lies
in the interior of Ω for sufficiently small λ, the second equality in (30) holds
and y(λ) also satisfies the nonnegativity constraint (10).

The projected gradient path is guaranteed to not decrease the cost func-
tional, so

0 ≤
d

dτ
cMSC(x(τ))|τ=0 = gT d

dτ
x(τ)|τ=0,

where x(τ) is given in (28). The analogous result for the rescaled MSC path
need not hold. To see this, from (30), the chain rule, and the quotient rule,

d

dλ
cMSC(y(λ))|λ=0 =

1

||x||1







||g||22 − ||g||∞||g||1
︸ ︷︷ ︸

t1

+
gT x

||x||1
︸ ︷︷ ︸

t2

(n||g||∞ − ||g||1)
︸ ︷︷ ︸

t3








(31)
By Hölder’s inequality,

||g||22 =

n∑

i=1

g2
i ≤ ||g||1||g||∞, (32)

with equality only if all the gis are equal. If this is not the case, the term t1
in (31) is negative. Similarly,

||g1||1 =

n∑

i=1

gi 1 ≤ ||g||∞

n∑

i=1

1 = n ||g||∞. (33)

Thus t3 in (31) is nonnegative. Hence the size of the term t2 = gT x/||x||1
determines the sign of d

dλ
cMSC(y(λ))|λ=0, and hence, whether or not the

scaled MSC iterates (30) increase the cost functional for λ sufficiently small.
To make t2 small we select xi to be relatively large when gi is relatively

small and we select xi to be relatively small when gi is relatively large. One
can easily generate examples for which t2 is sufficiently small that t1+t2t3 <
0, and hence, the scaled MSC iterates actually decrease the cost functional
while maintaining the constraints (9)-(10).
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5 Numerical Results

5.1 Image Matching Test Problem

This problem is described in subsection 2.1. Results are presented for an
implementation of the sequential quadratic programming (SQP) algorithm
in the MATLAB Optimization Toolbox [12] as well as MATLAB implemen-
tations of projected gradient (PG) iteration described in subsection 4.2 and
the MSC iteration described in subsection 4.3. All 3 methods were applied
to minimize the MSC cost functional (8) subject to constraints (9)-(10).
Computations were performed on a SunBlade 1000 workstation.

In addition, we implemented a “pruning by threshold” variant of MSC

iteration, in which we set to zero any coefficient x
(`)
i which failed to exceed a

prescribed threshold τ . We also did not apply any transformation T
(`)
i and

adjoint transformation U
(`)
i for which x

(`)
i was set to zero.

For SQP and PG iterations, the initial guess was taken to be

x
(`)
i = 1/n`, i = 1, . . . , n`, ` = 1, . . . , L. (34)

For MSC, we took x
(`)
i = 1 initially. The number of layers is L = 3 for this

problem, and the number of unknown coefficients x
(`)
i is ns = 78+88+40 =

206. We selected the MSC competition parameter value κ = .7 in order to
balance robustness against computational speed. Smaller values of κ yield
smaller step sizes for MSC; in general this gives more robustness but higher
iteration counts, and hence, longer computation times. We used MATLAB
default parameters for SQP and specified the “medium scale” problem size
option. Our implementation of PG (with exact solutions to the bent line
search subproblems) is parameter free. By conducting a brute-force search,
we found the maximal entry of the 78 × 88 × 40 correspondence array. By
Theorem 2 this provided us with the global constrained maximizer for the
MSC cost functional.

Table 1 summarizes the numerical results. We found that all three meth-
ods correctly identified the global constrained maximizer. The computation
time required for PG to converge was more than four times that of MSC,
while SQP required more than twice as much time as PG to converge for
this test problem. The “pruning by threshold” variant of MSC converged
more rapidly and took about one third less computational time than the
standard MSC iteration.

The purpose of Figs. 3 and 4 is to visualize the performance of PG for
this test problem. Fig. 3 shows the evolution with PG iteration count of
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MSC MSC-thresh PG SQP

cost function maximized? Yes Yes Yes Yes

constraints satisfied? NA NA Yes Yes

gradient evaluations 28 18 15 60

cost function evaluations NA NA 223 119

computation time in seconds 8.85 5.80 38.56 85.49

Table 1: Results for image matching problem. Note that MSC maintains
inequality constraints but not equality constraints. Also, MSC requires only
gradients of the MSC cost functional. MSC-thresh denotes the “pruning by
threshold” variant of MSC with threshold parameter τ = 0.5.

the pixel-wise product of the input image I and the transformed template,

U(M), where U = U
(1)

x
(1) ◦ U

(2)

x
(2) ◦ U

(3)

x
(3) is the adjoint of the superposition of

transformations in equation (3). Fig. 4 shows the evolution of coefficient
layer vectors x(`), ` = 1, 2, 3 with iteration count. We also plot PG iteration
count vs MSC correspondence functional, which by virtue of equations (23)
and (24), can be computed as the Frobenius inner product of I and U(M).
It should be noted that, with some exceptions, analogous plots for MSC
would qualitatively resemble the plots for PG shown in these figures. The
exceptions are due to the fact that the MSC layer coefficient vectors do not
satisfy the equality constraints (9) and these vectors are component-wise
monotonically decreasing; see the discussion at the end of section 4.3.

5.2 Rubik’s Cube Results

We present numerical results obtained by applying MSC, PG, and SQP to
the Rubik’s cube puzzle described in section 2.2. The difficulty of the prob-
lem varies with the number of moves with which to mix the cube. The
number of moves equals the number of layers L in the correspondence max-
imization problem. For each L between 2 and 12, we generated 100 real-
izations of the Rubik’s cube with L random moves applied, and for each
realization we solve the associated correspondence maximization problems
using the three methods. The initial guesses for each method are the same
as in the previous test case; we took the value of the MSC competition
parameter to be κ = .2.

Results are summarized in Fig. 5. By “success ratio”, we mean the ratio
of the number of realizations for which the global maximizer was successfully
computed to the total number of realizations. From subplot (a) we see that
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for each method the success ratio decreases monotonically as the number
of layers (i.e., the number of moves applied to the cubes) increases. The
success ratios for MSC and PG are quite similar, but the success ratio for
SQP is significantly smaller than that of the other two methods.

Subplot (b) of Fig. 5 shows, for each L, the average amount of computa-
tion time required for each method to compute a constrained maximizer. For
each method, this amount of time increases monotonically as L increases.
For L greater than 4, PG and SQP require about the same amount of time,
while MSC requires significantly less time.

6 Summary and Conclusions

Our original motivation for this work was to gain a thorough understand-
ing of David Arathorn’s MSC algorithm, which has produced impressive
results for difficult problems in visual cognition, but has lacked theoretical
underpinnings. With this goal in mind we were able to precisely define a
class problems—multilinear constrained maximization problems associated
with correspondence maximization—to which MSC had been successfully
applied. We then characterized both global and local solutions to this class
of problems. Finally, we applied a pair of standard numerical optimization
algorithms—projected gradient (PG) and sequential quadratic programming
(SQP)—to solve these problems, and we compared their performance to a
particular MSC implementation.

What follows are the main conclusions of this work.

1. The structure of the constrained maximization problems is such that
global and local constrained maxima lie on the boundary of the con-
straint set Ω. In the generic case, these maxima are vertices of the
polytope that comprises Ω, and any interior critical point must be a
saddle point.

2. For the two test problems considered in this paper, our particular
MSC implementations were far superior to PG and SQP in terms of
computational efficiency.

3. While MSC makes use of gradient information and superficially resem-
bles a gradient ascent method like PG, there are significant differences
between MSC and PG. In particular, PG monotonically increases the
cost functional while maintaining the constraints. This guarantees
that in the generic case, PG iterates will converge to a local con-
strained maximizer. However, even if the MSC iterates are rescaled
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to maintain the equality constraints (nonnegativity constraints are au-
tomatically satisfied by MSC), the cost functional may still decrease
with MSC.

Conclusion 3 indicates that we have so far failed to rigorously prove
that MSC iterates converge in the generic case to a (scalar multiple of a)
vertex which is a local constrained minimizer. Numerical evidence presented
in this paper and practical experience of Arathorn and his collaborators
strongly suggests that this is the case. Arathorn views MSC as a scheme
in which most of the coefficients in the superposition of transformations
are iteratively “pruned”, or reduced to zero. The manner in which this
is carried out makes use of gradient information, but it does so in a way
that resembles no numerical optimization technique that we are aware of.
On the more positive side, conclusion 3 indicates that there does exist a
method (PG) which, for almost every initial guess, can be proved to yield a
local constrained maximizer.

There are a number of open questions that have not been addressed in
this paper. Perhaps the most important are the following: How can one
characterize the class of correspondence problems (or equivalently, the class
or correspondence arrays c; see eqn. (5)) for which there is a unique local
(and hence global) constrained maximizer for cMSC? Given that algorithms
like PG will find a local constrained maximizer in the generic case, this
question is tantamount to asking for conditions on c under which PG will
converge to the global maximizer. If such conditions can be found, is MSC
also then guaranteed to find the global maximizer?
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[9] P. H. Calamai and J. J. Moré, Projected gradients methods for
linearly constrained problems, Mathematical Programming, 39 (1987),
pp. 93-116.

[10] T. Gedeon and D. W. Arathorn, Convergence in map finding cir-
cuits, Journal of Mathematical Imaging and Vision, submitted.

22



[11] D. Joyner, Adventures in Group Theory Rubik’s Cube, Merlin’s Ma-
chine, and Other Mathematical Toys, Johns Hopkins University Press,
Baltimore, 2002.

[12] MATLAB is a registered trademark of The MathWorks, Inc.
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Figure 1: Illustration of the discrete image matching problem. Subfigure
(a) show the 100 pixel × 110 pixel input image I; Subfigure (b) shows the
23 pixel × 23 pixel template image M ; Subfigures (c) and (d) show slices
of the correspondence array c(i, j, k) corresponding to k = 1 and k = 21,
respectively.
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Figure 2: Reduced cost functions fk(s, t) for the example in Section 3. Sub-
plot (a) shows contours and the gradient field for f1; subplots (b) and (c)
show contours and gradients for f2 and f3, respectively. The dashed lines
passing through the critical point in subplots (b) and (c) are its stable and
unstable manifolds, and the critical points at the intersection of these man-
ifolds are denoted by asterisks (*).
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Figure 3: Image matches at various PG iterations. Subfigures (a)-(d) show
the pixel-wise product of I and U(M) for PG iteration 0 (initialization),
iteration 1, iteration 3, and iteration 6 (final PG iteration).
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Figure 4: PG performance vs iteration count for the image matching prob-
lem. The plots in subfigures (a)-(c) show how the layer coefficient vectors
x(`), ` = 1, 2, 3 change with iteration count. Subfigure (d) shows the MSC
correspondence functional vs cumulative function evaluations. The circles
in subfigure (d) indicate PG iterations, while the solid line between circles
indicates line search iterations. Convergence was attained at PG iteration
6.
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Figure 5: Performance of methods for solving Rubik’s cubes. The plots
in subfigure (a) show success ratio as a function of the number of moves
(equivalently, number of layers) L. Plots in subfigure (b) show average CPU
time as a function of L.
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