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Problems

I will discuss some common mathematical themes of these
problems:
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Problems

I will discuss some common mathematical themes of these
problems:

Rate distortion theory (Shannon 1948)

Deterministic annealing (Rose 1990’s).

Information Bottleneck (Tishby et. al 1999.)

Information Distortion (Dimitrov, Miller 2001) .
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Rate distortion theory

Given:

�

a discrete random variable (source);

�

the size of reproduction variable

� �
,

distortion function

� � ����� � 	

Goal: Find assignment 
� 
 � �� � � 	


 ����� � ��� � ����� �� ��  ! � ��
� � 	"
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Clustering via Deterministic Annealing

Given:

�

-data set

�

-number of centers of clusters in

� �
distortion function

� � ����� � 	 , usually Euclidean distance

Goal: Find assignment 
� 
 � �� � � 	 and positions of centers
of clusters

��� to


� �� � �� � �� � ����� �� � �  � � � � � � 	 	"

Select

��� � � 
 � ���� � 	 � . Then


� �� � �� � � ��� ��
�� � ���� � � � ��  � � � � � � 	 	"
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Information Bottleneck

Given:

a pair of random variables

�

,

�

with � � ��� � 	 known

�

a number of elements of reproduction variable

� �

distortion function is � ! � � �� � 	
Goal: Find assignment 
� 
 � �� � � 	


 ���� ��� � � ���� 	 ��  ! � ��
� � 	"

Markov chain:
� 
 � 
 � �"
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Information Distortion

Given:

a pair of random variables

�

,

�

with � � ��� � 	 known

�

a number of elements of reproduction variable

� �

distortion function is � ! � � �� � 	
Goal: Find assignment 
� 
 � �� � � 	


 ���� ��� � � ��� 	 ��  � � � � � � � 	"

Markov chain:
� 
 � 
 � �"
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Summary

After Lagrange multipliers:

Information distortion


� � � � � � � � 	�� � ! � ��
� � 	

Information Bottleneck Method


� � � ! � ��
� � 	�� � ! � ��
� � 	

Rate Distortion Theory


� � � ! � ��
� � 	 � � � � ��
� � 	

Deterministic Annealing.

� � � � � � � � 	 � � � � ��

� � 	
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Information distortion function

Concentrate on IB and ID: same distortion function
! � � �� � 	

.

Information Bottleneck:
� �� � � � � � � ! � � �� � 	�� � ! � � �� � 	�
Information Distortion: 
� �� � � � � � � � � � � � 	�� � ! � � �� � 	"

p(x,y)
classes 

quantizationY X
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Optimization space

correspondence between IB and ID:

� ! � � �� � 	 � � � � � � � 	 � � � � � 	

In bot cases, maximum over space of conditional
probabilities

� � � 	 � � �
��� � � �
� �

where
� �

� is an�

-simplex,
1 1 1 1

2 2 2 23 3 3 3 3

1

2

NNNq(1|x )+q(2|x ) + q(3|x )=1221 2
q(1|x )+q(2|x ) + q(3|x )=111q(1|x )+q(2|x ) + q(3|x )=1
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Constrained optimization.

Goal: find solution 
 at some value of

�

Information Bottleneck:

�

is finite, represents tradeoff
between sparsity of representation and goodness of
reproduction.

Information Distortion:

� � �.
Bad news: 
� �� � � � ! � � �� � 	

is NP-complete for all

�� �

(

� � � problem).
Good news: 
� �� � � � � � � � � � 	

has unique solution 
� � � �

(

� � �

problem).
Solution: Annealing (maybe Deterministic Annealing?)!
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Annealing

Annealing/homotopy idea:


� � � � � � � � 	�� � ! � ��
� � 	


� � � ! � � �� � 	 	�� � ! � ��
� � 	

Start at

� 
� � 	 � � � � �� � 	

, continue this solution in

�

until� � target

Problem: Does this find global maximum at

� � � �

?.
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Annealing IB

Degeneracy: Initial problem


� �� � � � � � � ! � � �� � 	
has

� � �

dimensional space of solutions:

! � � �� � 	 �
���� �


 � ��� � � 	 � � � 	 �
� �


 � �� � � 	 � � � 	

� � ��� 	 � � � 	

Take 
 � �� � � 	 � � � �� 	 � � � �� 	 with �� � � �� 	 � �

.
Then

! � � �� � 	 � �

.

Solution: Start wit
� � �

and increase

�

at phase transi-

tions.
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Dealing with annealing

Let

� � 
� � 	 �� � � � � � � 	�� � ! � � �� � 	
or

� � 
� � 	 �� � ! � � �� � 	�� � ! � � �� � 	

Problem:


� �� � � � � � � � 
� � 	

Numerical methods.

Phase transitions: where and what direction.

What is being computed at phase transitions?
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Numerical methods

Basic method:

Increase

�

by

� �

Perturb 
 and find solution for new

�

.

Find can use different methods:

Blahut-Arimoto type iteration (Tishby et al.)

Fixed point iteration (Dimitrov et al.)

Both find only local maxima, no saddle points.

β β+∆β

q
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Basic method
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Agglomerative Bottleneck

Agglomerative Bottleneck (Slonim, Tishby 1999):

Start at

� � � and decrease

�

.
However, problem at

� � � is NP-complete.
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Dynamical system problem

Since the problem is constrained, we need to consider
Lagrangian

� � 
� �� � 	 � � � 
� � 	�� �� �
��


 � ��� � � 	 � � 	

Local maxima are equilibria of the flow

� 

� �

� �� � � � � 
� �� � 	

Bifurcation happens at
� 
 �� � �� � � 	

if the Hessian

� �

is singu-

lar.
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More sophisticated numerics

Not faster numerics!
Continuation algorithm for

� � 
� �� � 	

- using Newton iteration
- can find unstable solutions.

beta

q

beta0 beta1
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Numerics using continuation
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Phase transitions

Can we compute them "ahead of time"?

Then we can jump to phase transition directly and resolve
phase transition.
Yes, we can, for 
� � � �

.

This is analogous to Deterministic Annealing for Euclidean
distortion (Rose 1998)

β

q
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Deterministic annealing

Phase transitions - zero eigenvalues of

� �

, eigenvector -
direction of the split.

� � �

� � � �

� �
where

�

consists of

�

identity matrices. At 
� � � �

:

� ��
��
��
��
�

� � " " " �

� � " " " �

...
...

...
...� � " " " �

��
��
��
�

Symmetry: relabeling of the elements

� � .
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Deterministic annealing

Phase transition values

�

at 
� � � �

corresponds to
existence of a null eigenvector � of block

�

� � � � � �� � � ! 	 � � �
Rewritten, this is

� � � 	 � � � ! � �
�

� �

First phase transition value
� � largest positive

eigenvalue of

� � � 	 � � � !
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Computing phase transitions

Matrix

�� � � � 	 � � � !

has the form

� � � �

� �

is stochastic

M has eigenvalue

� � � � �

with eigenvector

� �� �� �� " " " � � 	

- not interesting !

All other eigenvalues of are eigenvalues of

�

� �

is stochastic implies largest eigenvalue of

�

is

� �

� � �

looses stability at

� � �
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Phase transitions for IB

Degeneracy problem again:

for IB

� �

has for all

�

and all 
 � � �

dimensional null
space.

Phase transition - dimension of null space

� �

.
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Phase transitions for IB

Instead of � � � � 	 � � � � � �

we get � � � � 	 � � � ! � � 	 � � � �

Same result:

has solution

� � � � �

with eigenvector

� �� �� �� " " " � � 	

- not
interesting !

All other solutions are eigenvalues of

�

Bottom line: Bifurcations for IB and ID at 
� � � �

happen at
the same values of

�
and in the same direction.
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Phase transitions

Phase transitions at 
� � � � � eigenvalues of stochastic
matrix

� �

The matrix

� �

is a transition matrix for a graph
�

:

Vertices are patterns � �

edge �� 
 � � has weight � � � � � � � � 	 � � � � � �� 	

YX

y

yi

j
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Digression-Normal cut

Given a graph

�

with weights � � � � � 	

divide into 2 groups

�

and

�

so that

�� � � �� � 	

� � �� � � �� � 	 �

� � � � �� � 	

� � �� � � �� � 	

is minimized

�� � � �� � 	 � � � �� 	 � 
 � � � � � 	

� � �� � � �� � 	 � � � �� � � � � � � � 
 	

Finding N-cut is NP-complete problem.
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Approximate Normal Cut

Approximate Normalized cut (Shi and Malik (2000))
Find second smallest eigenvalue of

� � � 	 �� � � �"
After � is computed, Approximate Normalized Cut is If

� � � �

,

� � �

, if � � � �

, then

� � �

A A ABB
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Correspondence

Bifurcation direction � at first bifurcation at 
� � � �
computes Approximate Normal cut for the graph

�

:

Vertices

�

correspond to the set of patterns

�

;

Weight � � � �� �� 	 � � � � � � � � � 	 � � � � � �� 	

PSfrag replacements

� �

�




�

�

� ��

��
� �
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Correspondence

Take

� � � � � �

(two classes) After bifurcation, the probability
of � to belong to

class

�

:

� � �� � � �;

class

�

:

� � � � � � �,

� is bifurcating direction ("soft push")
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Correspondence

Take

� � � � � �

(two classes) After bifurcation, the probability
of � to belong to

class

�

:

� � �� � � �;

class

�

:

� � � � � � �,

� is bifurcating direction ("soft push")

A B A B
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Correspondence

It would be nice if, as

� 
 � probabilities converge to

�
or

�

="hard clusters" of the N-cut.

Matematical structure ofInformation Distortion methods – p.31/34



Correspondence

It would be nice if, as

� 
 � probabilities converge to

�
or

�

="hard clusters" of the N-cut.

BA

PSfrag replacements
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Correspondence

TRUE, for slightly different cost function: replace

� � 
 	� � ! � 
 	 by

� � 
 	� � � � 
 	

! � �� �
�

	 �
��� �

� � ��� � 	 �
� �

� � � ��� � 	

� � � 	 � � � 	
	

� � �� �
�

	 �
��� �

� � ��� � 	 � � � ��� � 	

� � � 	 � � � 	 � � 	"

Bifurcation direction � at first bifurcation at 
� � � �

computes Approximate Normal cut for the graph

� �

:

Weight � � � �� �� 	 � � � � � � � � � 	 � � � �� �� 	

As

� 
 � solution converges to Normal Cut of

� �

.
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Summary

There are similarities and differences between
Information Bottleneck, Information Distortion, Rate
distortion theory and Deterministic Annealing.

We reviewed numerical methods used to solve IF and
ID: Basic algorithm, agglomerative bottleneck and
continuation.


� � ! � � �� � 	

is NP-complete

Phase transitions can be explicitely computed for
� � � �

.

First phase transition computes an Approximate Normal
Cut of a certain graph.
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Questions

Mathematics

Global stability of branches

Extensions to

�� �

continuous random variables,
multivariate bottleneck.

Computer Science

Given a graph

�� � �� � 	

, is there a random variable

�

and a probability distribution � � �� � 	

such that
annealing

�� � � �

will compute both Approximate N-cut
and N-cut of

�

?

Neuroscience:

Use Information distortion as a tool to compare different
models of sensory systems (cricket sensory system).
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