# Matematical structure of Information Distortion methods 

Tomáš Gedeon<br>with<br>Alex Dimitrov (Neuroscience)<br>Albert Parker, Collette Campion (Mathematics)<br>Brendan Mumey (Computer Science)<br>Montana State University

## Problems

## I will discuss some common mathematical themes of these problems:

## Problems

I will discuss some common mathematical themes of these problems:

Rate distortion theory (Shannon 1948)

## Problems

I will discuss some common mathematical themes of these problems:

Rate distortion theory (Shannon 1948)
Deterministic annealing (Rose 1990's).

## Problems

I will discuss some common mathematical themes of these problems:

Rate distortion theory (Shannon 1948)
Deterministic annealing (Rose 1990's).
Information Bottleneck (Tishby et. al 1999.)

## Problems

I will discuss some common mathematical themes of these problems:

Rate distortion theory (Shannon 1948)
Deterministic annealing (Rose 1990's).
Information Bottleneck (Tishby et. al 1999.)
Information Distortion (Dimitrov, Miller 2001) .

## Rate distortion theory

## Given:

- $X$ a discrete random variable (source);
- $N$ the size of reproduction variable $\hat{X}$,
- distortion function $d(\hat{x}, x)$

Goal: Find assignment $q=q(\hat{x} \mid x)$

$$
\min _{q: E_{p} d(x, \hat{x}) \leq D} I(X, \hat{X})
$$



## Clustering via Deterministic Annealing

## Given:

- $X$-data set
- $N$-number of centers of clusters in $\hat{X}$
- distortion function $d(\hat{x}, x)$, usually Euclidean distance

Goal: Find assignment $q=q(\hat{x} \mid x)$ and positions of centers of clusters $\hat{x}$ to

$$
\left.\max _{q, \hat{x}: E_{p} d(x, \hat{x})<D} H(\hat{X} \mid X)\right)
$$

Select $\hat{x}=\sum_{x} q(\hat{x}, x) x$. Then

$$
\left.\max _{q: E_{p} d\left(x, \sum_{x} q(\hat{x}, x) x\right) \leq D} H(\hat{X} \mid X)\right)
$$

## Information Bottleneck

## Given:

- a pair of random variables $X, Y$ with $p(x, y)$ known
- $N$ a number of elements of reproduction variable $\hat{X}$
- distortion function is $-I(\hat{X}, Y)$

Goal: Find assignment $q=q(\hat{x} \mid x)$

$$
\min _{q:-I(\hat{X}, Y) \leq D} I(X, \hat{X}) .
$$

Markov chain:

$$
Y \rightarrow X \rightarrow \hat{X} .
$$

## Information Distortion

## Given:

- a pair of random variables $X, Y$ with $p(x, y)$ known
- $N$ a number of elements of reproduction variable $\hat{X}$
- distortion function is $-I(\hat{X}, Y)$

Goal: Find assignment $q=q(\hat{x} \mid x)$

$$
\min _{q:-I(\hat{X}, Y) \leq D}-H(\hat{X} \mid X) .
$$

Markov chain:

$$
Y \rightarrow X \rightarrow \hat{X} .
$$

## Summary

After Lagrange multipliers:

- Information distortion

$$
\max H(\hat{X} \mid X)+\beta I(Y, \hat{X})
$$

- Information Bottleneck Method

$$
\max -I(X, \hat{X})+\beta I(Y, \hat{X})
$$

- Rate Distortion Theory

$$
\max -I(X, \hat{X})-\beta D(X, \hat{X})
$$

- Deterministic Annealing.

$$
\max H(\hat{X} \mid X)-\beta D(X, \hat{X})
$$

## Information distortion function

Concentrate on IB and ID: same distortion function $I(\hat{X}, Y)$.

- Information Bottleneck:

$$
\max _{q \in \Delta(N)}-I(\hat{X}, X)+\beta I(\hat{X}, Y),
$$

- Information Distortion: $\max _{q \in \Delta(N)} H(\hat{X} \mid X)+\beta I(\hat{X}, Y)$.



## Optimization space

- correspondence between IB and ID: $-I(\hat{X}, X)=H(\hat{X} \mid X)-H(\hat{X})$
- In bot cases, maximum over space of conditional probabilities $\Delta(N)=\Pi_{i=1}^{k} \Delta_{i}^{N} N$ where $\Delta_{i}^{N}$ is an $N$-simplex,

$\mathrm{q}(1 \mid \mathrm{x})+\mathrm{q}(2 \mid \mathrm{x})+\mathrm{q}(3 \mid \mathrm{x})=1$
$\mathrm{q}\left(1 \mid \mathrm{x}_{2}+\mathrm{q}(2 \mid \mathrm{x})_{2}+\mathrm{q}(3 \mid \mathrm{x})_{\bar{z}} 1\right.$
$\mathrm{q}\left(1 \mid \mathrm{x}_{\mathrm{N}}\right)+\mathrm{q}\left(2 \mid \mathrm{x}_{\mathrm{N}} \mathrm{N}_{\mathrm{N}}+\mathrm{q}(3 \mid \mathrm{x})_{\overline{\mathrm{N}}} 1\right.$


## Constrained optimization.

Goal: find solution $q$ at some value of $\beta$

- Information Bottleneck: $\beta$ is finite, represents tradeoff between sparsity of representation and goodness of reproduction.
- Information Distortion: $\beta=\infty$.

Bad news: $\max _{q \in \Delta^{N}} I(\hat{X}, Y)$ is NP-complete for all $N \geq 2$ ( $\beta=\infty$ problem).
Good news: $\max _{q \in \Delta^{N}} H(\hat{X} \mid X)$ has unique solution $q=1 / N$ ( $\beta=0$ problem).
Solution: Annealing (maybe Deterministic Annealing?)!

## Annealing

Annealing/homotopy idea:

$$
\begin{array}{ll}
\max & H(\hat{X} \mid X)+\beta I(X, \hat{X}) \\
\max & -I(\hat{X}, X))+\beta I(X, \hat{X})
\end{array}
$$

- Start at $(q, \beta)=(1 / N, 0)$, continue this solution in $\beta$ until $\beta=$ target


Problem: Does this find global maximum at $\beta=\beta^{*}$ ?.

## Annealing IB

Degeneracy: Initial problem

$$
\max _{q \in \Delta(N)}-I(\hat{X}, X)
$$

has $N-1$ dimensional space of solutions:

$$
I(\hat{X}, X)=\sum_{\hat{x}, x} q(\hat{x} \mid x) p(x) \log \frac{q(\hat{x} \mid x) p(x)}{p(\hat{x}) p(x)}
$$

Take $q(\hat{x} \mid x)=p(\hat{x})=a(\hat{x})$ with $\sum_{\hat{x}} a(\hat{x})=1$.
Then $I(\hat{X}, X)=0$.

Solution: Start wit $N=2$ and increase $N$ at phase transitions.

## Dealing with annealing

Let

$$
\begin{aligned}
G(q, \beta) & :=H(\hat{X} \mid X)+\beta I(\hat{X}, Y) \text { or } \\
G(q, \beta) & :=-I(\hat{X}, X)+\beta I(\hat{X}, Y)
\end{aligned}
$$

Problem:

$$
\max _{q \in \Delta(N)} G(q, \beta)
$$

- Numerical methods.
- Phase transitions: where and what direction.
- What is being computed at phase transitions?


## Numerical methods

Basic method:

- Increase $\beta$ by $\Delta \beta$
- Perturb $q$ and find solution for new $\beta$.

Find can use different methods:

- Blahut-Arimoto type iteration (Tishby et al.)
- Fixed point iteration (Dimitrov et al.)
- Both find only local maxima, no saddle points.



## Basic method



Matematical structure oflnformation Distortion methods - p.15/34

## Agglomerative Bottleneck

Agglomerative Bottleneck (Slonim, Tishby 1999):
Start at $\beta=\infty$ and decrease $\beta$. However, problem at $\beta=\infty$ is NP-complete.

## Dynamical system problem

Since the problem is constrained, we need to consider Lagrangian

$$
L(q, \lambda, \beta)=G(q, \beta)+\lambda_{x}\left(\sum_{\hat{x}} q(\hat{x} \mid x)-1\right)
$$

Local maxima are equilibria of the flow

$$
\binom{\dot{q}}{\dot{\lambda}}=\nabla_{q, \lambda} L(q, \lambda, \beta)
$$

Bifurcation happens at $\left(q^{*}, \lambda^{*}, \beta^{*}\right)$ if the Hessian $\Delta L$ is singular.

## More sophisticated numerics

Not faster numerics!
Continuation algorithm for $L(q, \lambda, \beta)$ - using Newton iteration

- can find unstable solutions.




## Phase transitions

## Can we compute them "ahead of time"?

Then we can jump to phase transition directly and resolve phase transition.
Yes, we can, for $q=1 / N$.
This is analogous to Deterministic Annealing for Euclidean distortion (Rose 1998)


## Deterministic annealing

Phase transitions - zero eigenvalues of $\Delta L$, eigenvector direction of the split.

$$
\Delta L=\left(\begin{array}{cc}
\Delta G & J^{T} \\
J & 0
\end{array}\right)
$$

where $J$ consists of $N$ identity matrices. At $q=1 / N$ :

$$
\Delta G=\left(\begin{array}{cccc}
B & 0 & \ldots & 0 \\
0 & B & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & B
\end{array}\right)
$$

Symmetry: relabeling of the elements $\hat{x}$.

## Deterministic annealing

Phase transition values $\beta$ at $q=1 / N$ corresponds to existence of a null eigenvector $v$ of block $B$

$$
B v=(\Delta H+\beta \Delta I) v=0
$$

Rewritten, this is

$$
(\Delta H)^{-1} \Delta I v=\frac{1}{\beta} v
$$

- First phase transition value $\beta \leftrightarrow$ largest positive eigenvalue of $(\Delta H)^{-1} \Delta I$


## Computing phase transitions

- Matrix

$$
M:=(\Delta H)^{-1} \Delta I
$$

has the form

$$
M=Q-A
$$

- $Q^{T}$ is stochastic
- M has eigenvalue $1 / \beta=0$ with eigenvector $(1,1,1, \ldots, 1)$
- not interesting !
- All other eigenvalues of $M$ are eigenvalues of $Q$
- $Q^{T}$ is stochastic implies largest eigenvalue of $Q$ is $\leq 1$
- $1 / N$ looses stability at $\beta \geq 1$


## Phase transitions for IB

Degeneracy problem again:

- for IB $\Delta G$ has for all $\beta$ and all $q N-1$ dimensional null space.
- Phase transition - dimension of null space $\geq N$.


## Phase transitions for IB

Instead of

$$
(Q-A) v=1 / \beta v
$$

we get

$$
(Q-A) v=(I-A) 1 / \beta v
$$

Same result:

- has solution $1 / \beta=0$ with eigenvector $(1,1,1, \ldots, 1)$ - not interesting !
- All other solutions are eigenvalues of $Q$

Bottom line: Bifurcations for IB and ID at $q=1 / N$ happen at the same values of $\beta$ and in the same direction.

## Phase transitions

Phase transitions at $q=1 / N \Leftrightarrow$ eigenvalues of stochastic matrix $Q^{T}$
The matrix $Q^{T}$ is a transition matrix for a graph $G$ :

- Vertices are patterns $y_{i}$
- edge $y_{j} \rightarrow y_{k}$ has weight $\sum_{i} p\left(y_{k} \mid x_{i}\right) p\left(x_{i} \mid y_{j}\right)$



## Digression-Normal cut

Given a graph $G$ with weights $w(a, b)$ divide into 2 groups $A$ and $B$ so that

$$
\frac{\operatorname{cut}(A, B)}{\operatorname{assoc}(A, G)}+\frac{\operatorname{cut}(A, B)}{\operatorname{assoc}(B, G)}
$$

is minimized

- $\operatorname{cut}(A, B)=\sum_{a \in A, b \in B} w(a, b)$
- $\operatorname{assoc}(A, G)=\sum_{a \in A, e \in G} w(a, e)$
- Finding N -cut is NP-complete problem.


## Approximate Normal Cut

Approximate Normalized cut (Shi and Malik (2000)) Find second smallest eigenvalue of

$$
(D-W) y=\lambda D y .
$$

After $y$ is computed, Approximate Normalized Cut is if $y_{i}>0, i \in A$, if $y_{i} \leq 0$, then $i \in B$


## Correspondence

- Bifurcation direction $v$ at first bifurcation at $q=1 / 2$ computes Approximate Normal cut for the graph $G$ :
- Vertices $V$ correspond to the set of patterns $Y$;
- Weight $w\left(y_{i}, y_{j}\right)=\sum_{i} p\left(y_{i} \mid x_{i}\right) p\left(x_{i} \mid y_{j}\right)$



## Correspondence

Take $|\hat{X}|=2$ (two classes) After bifurcation, the probability of $x$ to belong to

- class $A: 1 / 2+\epsilon v_{i}$;
- class $B: 1 / 2-\epsilon v_{i}$,
$v$ is bifurcating direction ("soft push")


## Correspondence

Take $|\hat{X}|=2$ (two classes) After bifurcation, the probability of $x$ to belong to

- class $A: 1 / 2+\epsilon v_{i}$;
- class $B: 1 / 2-\epsilon v_{i}$,
$v$ is bifurcating direction ("soft push")




## Correspondence

It would be nice if, as $\beta \rightarrow \infty$ probabilities converge to 0 or 1 $=$ "hard clusters" of the N -cut.

## Correspondence

It would be nice if, as $\beta \rightarrow \infty$ probabilities converge to 0 or 1 ="hard clusters" of the N -cut.


## Correspondence

TRUE, for slightly different cost function: replace $H(q)+\beta I(q)$ by $H(q)+\beta U(q)$

$$
\begin{aligned}
I\left(X, Y_{N}\right) & =\sum_{x, \mu} p(x, \mu) \log \left(\frac{p(x, \mu)}{p(x) p(\mu)}\right) \\
U\left(X, Y_{N}\right) & =\sum_{x, \mu} p(x, \mu)\left(\frac{p(x, \mu)}{p(x) p(\mu)}-1\right) .
\end{aligned}
$$

- Bifurcation direction $v$ at first bifurcation at $q=1 / 2$ computes Approximate Normal cut for the graph $G^{\prime}$ :
- Weight $w\left(y_{i}, y_{j}\right)=\sum_{i} p\left(y_{i} \mid x_{i}\right) p\left(x_{i}, y_{j}\right)$
- As $\beta \rightarrow \infty$ solution converges to Normal Cut of $G^{\prime}$.


## Summary

- There are similarities and differences between Information Bottleneck, Information Distortion, Rate distortion theory and Deterministic Annealing.
- We reviewed numerical methods used to solve IF and ID: Basic algorithm, agglomerative bottleneck and continuation.
- $\operatorname{maxI}(\hat{X}, Y)$ is NP-complete
- Phase transitions can be explicitely computed for $q=1 / N$.
- First phase transition computes an Approximate Normal Cut of a certain graph.


## Questions

## Mathematics

- Global stability of branches
- Extensions to $X, Y$ continuous random variables, multivariate bottleneck.

Computer Science

- Given a graph $G=(Y, E)$, is there a random variable $X$ and a probability distribution $p(X, Y)$ such that annealing $H+\beta \hat{X}$ will compute both Approximate N -cut and N -cut of $G$ ?


## Neuroscience:

- Use Information distortion as a tool to compare different models of sensory systems (cricket sensory system).

