3.1.2 (a) \(\lim_{x \to \infty} f(x) = 2 \).

Proof. Let \(\epsilon > 0 \). Then for \(x \in D \) with \(x > 3 + 6/\epsilon \) we have \(x - 3 > 6/\epsilon > 0 \) and thus

\[
|f(x) - 2| = \left| \frac{2x}{x-3} - 2 \right| = \left| \frac{6}{x-3} \right| = \frac{6}{x-3} < \frac{6}{6/\epsilon} = \epsilon.
\]

\(\square \)

3.1.2 (b) \(\lim_{x \to \infty} \frac{1-x^2}{x-2} = -\infty \).

Proof. Let \(K > 0 \). For \(x > 2 \) we have \(x^2 - 1 > \frac{x^2}{x} \) and \(x - 2 > x > 0 \), so \(\frac{x^2-1}{x-2} > \frac{x^2/2}{x} = x/2 \). So for \(x > \max(2, 2K) \) we get

\[
\frac{1-x^2}{x-2} < -\frac{x}{2} < -K.
\]

\(\square \)

3.1.2 (c) \(\lim_{x \to -\infty} f(x) = -\infty \).

Proof. Let \(K > 0 \). For \(x < -2 \) we have \(x^2 + 1 > x^2 > 0 \) and \(0 < 2-x < -2x \), so \(\frac{x^2+1}{2-x} > \frac{x^2}{2x} = -x/2 \). So for \(x \in \mathbb{Q} \) with \(x < -\max(2, 2K) \) we get

\[
\frac{x^2 + 1}{x - 2} < \frac{x}{2} < -K.
\]

\(\square \)

3.1.2 (d) \(\lim_{x \to -\infty} \frac{-1}{x+1} = 0 \).

Proof. Let \(\epsilon > 0 \). Then for \(x < -1 - 1/\epsilon \) we have \(x + 1 < -1/\epsilon < 0 \) and thus \(|x+1| > 1/\epsilon > 0 \). This implies \(|f(x) - 0| = \left| \frac{-1}{x+1} \right| = \frac{1}{|x+1|} < \epsilon \). \(\square \)

3.1.5 (c) \(\lim_{n \to \infty} \frac{-2n}{3\sqrt{n^2-1}} = -2/3 \).

Proof. \(\frac{-2n}{3\sqrt{n^2-1}} = \frac{-2}{3\sqrt{1-1/n^2}} \) and we know \(\lim_{n \to \infty} 1/n^2 = 0 \). Applying limit theorems yields the result. \(\square \)
3.1.5 (g) \(\lim_{x \to -\infty} \sqrt{x} = \infty \).

Proof. Let \(K > 0 \). Then for \(x > K^2 \) we have \(\sqrt{x} > K \). \(\square \)

3.1.5 (i) \(\lim_{x \to -\infty} \frac{x - 3}{|x - 3|} = -1 \).

Proof. For \(x < 3 \) we have \(|x - 3| = -(x - 3) \), so \(\frac{x - 3}{|x - 3|} = -1 \). In particular, \(\left| \frac{x - 3}{|x - 3|} - (-1) \right| = 0 < \epsilon \) for any \(\epsilon > 0 \). \(\square \)

3.1.6 (a) E.g., the function

\[
 f(x) = \begin{cases}
 \frac{1}{x} & \text{for } x \neq 0, \\
 0 & \text{for } x = 0,
\end{cases}
\]

is unbounded on \(\mathbb{R} \), yet \(\lim_{x \to -\infty} f(x) = 0 \) is finite.

3.1.6 (b) If \(\lim_{x \to \infty} f(x) = L \in \mathbb{R} \), then for every \(\epsilon > 0 \) there exists \(M > 0 \) such that \(|f(x) - L| < \epsilon \) whenever \(x \in D \) with \(x \geq M \). Now if \(t \) is a number with \(-t \in D \) and \(t \leq -M \), then \(-t \geq M \), and thus \(|f(-t) - L| < \epsilon \). This shows that \(\lim_{t \to -\infty} f(-t) = L \).

The other direction works exactly the same way, and the cases where \(L = \pm \infty \) are simple modifications.

3.1.6 (c) \(\lim_{x \to -\infty} 2^x e^{-x} = \lim_{x \to \infty} 2^{-x} e^x = \lim_{x \to -\infty} (\epsilon/2)^x = \infty \) since \(\epsilon/2 > 1 \).

3.2.1 (a) \(\lim_{x \to -0} (x + 1)^3 = 1 \).

Proof. Let \(\epsilon > 0 \). Then for \(|x| < \delta := \min(1, \epsilon/7) \) we get \(|x^2 + 3x + 3| \leq |x|^2 + 3|x| + 3 < 1 + 3 + 3 = 7 \), because \(|x| < 1 \). This implies \(|(x + 1)^3 - 1| = |x^3 + 3x^2 + 3x| = |x||x^2 + 3x + 3| \leq 7|x| < \epsilon \), since \(|x| < \epsilon/7 \). \(\square \)

3.2.1 (d) \(\lim_{x \to 0} \frac{x^2}{|x|} = 0 \).

Proof. Let \(\epsilon > 0 \). Then for \(0 < |x| < \delta := \epsilon \) we get \(\left| \frac{x^2}{|x|} - 0 \right| = |x| < \delta = \epsilon \). \(\square \)
3.2.1 (f) \(\lim_{x \to 1} \frac{1-x}{1-\sqrt{x}} = 2. \)

Proof. Let \(\epsilon > 0 \), and choose \(\delta = \epsilon \). Let \(x \geq 0 \) with \(|x-1| < \delta \). We have
\[
\frac{1-x}{1-\sqrt{x}} - 2 = \frac{1 - x - 2 + 2\sqrt{x}}{1 - \sqrt{x}} = \frac{1 + 2\sqrt{x} - x}{1 - \sqrt{x}} = \frac{-(1-\sqrt{x})^2}{1 - \sqrt{x}} = |1 + \sqrt{x}| = \frac{\sqrt{x} - 1}{\sqrt{x} + 1} \leq |x-1| < \epsilon.
\]
\[\square\]

3.2.8 (a) \(\lim_{x \to 3/8} f(x) = 1. \)

Proof. Let \(\epsilon > 0 \), and choose \(\delta = 1/24 \). If \(x \in \mathbb{R} \) with \(|x - 3/8| < 1/24 \), then \(1/3 = 3/8 - 1/24 < x < 3/8 + 1/24 < 1/2 \), so \(2 < 1/x < 3 \). In particular, \(x \) can not be the reciprocal of an integer, and thus \(f(x) = 1 \), and \(|f(x) - 1| = 0 < \epsilon \).
\[\square\]

3.2.8 (b) \(\lim_{x \to -1/3} f(x) = 1. \)

Proof. Let \(\epsilon > 0 \), and choose \(\delta = 1/12 \). If \(x \in \mathbb{R} \) with \(0 < |x - (-1/3)| < 1/12 \), then \(-1/2 < -1/3 - 1/12 < x < -1/3 + 1/12 = -1/4 \), so \(-4 < 1/x < -2 \). In particular, the only way that \(x \) can be the reciprocal of an integer is \(x = -1/3 \). However, this contradicts \(0 < |x - (-1/3)| \), and thus \(f(x) = 1 \), and \(|f(x) - 1| = 0 < \epsilon \).
\[\square\]

3.2.8 (c) \(\lim_{x \to 0} f(x) \) does not exist.

Proof. Let \(x_n = 1/n \). Then \(\lim_{n \to \infty} x_n = 0 \) and \(\lim_{n \to \infty} f(x_n) = 0 \). Let \(y_n = \sqrt{n} \). Then \(y_n \) is irrational for all \(n \), and hence not the reciprocal of an integer. This implies \(f(y_n) = 1 \), and thus \(\lim_{n \to \infty} y_n = 0 \) and \(\lim_{n \to \infty} f(y_n) = 1 \).
Since the limits of \(\{f(x_n)\} \) and \(\{f(y_n)\} \) are different, the limit of \(f(x) \) as \(x \) tends to 0 does not exist.
\[\square\]

Squeeze Theorem If \(f, g, h : D \to \mathbb{R} \) are functions with \(\lim_{x \to \infty} f(x) = A = \lim_{x \to \infty} h(x) \), and \(f(x) \leq g(x) \leq h(x) \) eventually, then \(\lim_{x \to \infty} g(x) = A \).