1. Find \(\iiint_E y^2 z^2 \, dV \), where \(E \) is bounded by the paraboloid \(x = 1 - y^2 - z^2 \) and the plane \(x = 0 \).

2. Sketch the region of integration, reverse the order of integration and evaluate \(\int_0^4 \int_{\sqrt{y}}^2 \frac{y e^{x^2}}{x^3} \, dx \, dy \).

3. Consider a lamina that occupies the region \(D \) between the circles \(x^2 + y^2 = 1 \) and \(x^2 + y^2 = 4 \) in the first quadrant with mass density equal to the distance to \((0, 0)\). Find the mass and center of mass of the lamina.

4. Calculate \(\int_C y \, ds \), where \(C \) is the part of the graph \(y = 2x^3 \) from \((0, 0)\) to \((1, 2)\).

5. Find the work done by the force field \(\mathbf{F}(x, y) = \langle y, -x \rangle \) on a particle that moves along the graph of \(y = x^3 - x \) from \((-1, 0)\) to \((1, 0)\).

6. Which of the following vector fields are conservative? Find a potential for one of them and use it to calculate \(\int_C \mathbf{F} \cdot d\mathbf{r} \) where \(C \) is the arc of the unit circle from \((1, 0)\) to \((0, 1)\) in counterclockwise direction.

\[
\begin{align*}
\mathbf{F}_1(x, y) &= \langle x^2, x^2 \rangle \\
\mathbf{F}_2(x, y) &= \langle 2xy, x^2 \rangle \\
\mathbf{F}_3(x, y) &= \langle e^y, e^x \rangle \\
\mathbf{F}_4(x, y) &= \langle e^x, e^y \rangle
\end{align*}
\]

7. Use Green’s Theorem to evaluate \(\oint_C \sin(1 + x^2) \, dx + x(1 + y) \, dy \), where \(C \) is the unit circle.