1. Let \(f \) be an analytic map with a fixed point at \(\infty \). Show that the multiplier of \(f \) at \(\infty \) is equal to \(\lambda = \lim_{z \to \infty} \frac{1}{f'(z)} = \lim_{z \to \infty} \frac{z}{f(z)} \).

2. Let \(f \) be a non-constant rational map and let \(K \subseteq \hat{\mathbb{C}} \) be a set.
 (a) Show that \(f^{-1}(K) = K \) implies \(f(K) = K \).
 (b) Give an example to show that \(f(K) = K \) does not imply \(f^{-1}(K) = K \).
 (In other words, for complete invariance it is enough to check \(f^{-1}(K) = K \), but not enough to check \(f(K) = K \).)

3. Let \(f \) be a rational map of degree \(\geq 2 \). Show that the Julia set \(J(f) \) is the smallest completely invariant compact set containing at least three points. I.e., if \(K \) is a compact set containing at least three points with \(f(K) = K = f^{-1}(K) \), then \(J(f) \subseteq K \).

4. Let \(f(z) = z^2 - 2 \). Show that \(J(f) = [-2, 2] \).