Math 333 Makeup of Exam 1 (take home)

Name:

If you use a theorem indicate what it is. Show all work (unless instructed otherwise). Good Luck!

0 . Circle True or False without explanation:
(\mathbf{T} or \mathbf{F}) Every vector space with real scalars V contains infinitely many vectors.
(\mathbf{T} or \mathbf{F}) Any set of nine vectors spanning $M_{3 \times 3}$ is independent.
(\mathbf{T} or \mathbf{F}) If $T \circ S$ is onto then S is onto.
(\mathbf{T} or \mathbf{F}) For finite dimensional vector spaces, $\operatorname{dim}(U \times W)=\operatorname{dim}(U) \cdot \operatorname{dim}(W)$.

1. Show that $W:=\left\{\left[\begin{array}{ll}a & 0 \\ b & a\end{array}\right]: a, b \in \mathbf{R}\right.$ with $\left.a \geq 0\right\}$ is not a subspace of $M_{3 \times 3}$.
2. Given a basis of $S_{2 \times 2}, \mathcal{B}=\left\{\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\right\}$, write out explicitly the $A \in S_{2 \times 2}$ for which the coordinate vector is $[A]_{\mathcal{B}}=[1,2,3]$. (Show your method.)
$A=$
3. Show that $T: \mathbf{R} \rightarrow \mathbf{R}$ given by $T(x)=x+1$ is not a linear transformation.
4. Prove (from the axioms) that, in any vector space V, if $v \in V$ then $0 \cdot v=\mathbf{0}$.
5. a) Find a basis for $\operatorname{span}\left(1-2 x, 2 x-x^{2}, 1-x^{2}, 1+x^{2}\right)$ in \mathcal{P}_{2}.
b) Is the span equal to \mathcal{P}_{2} ? Justify.
6. Consider $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ given by $(T f)(x):=f(2 x-1)$.
a) Find the matrix of T with respect to the standard basis.
b) Find the formula for the inverse T^{-1}, that is complete $\left(T^{-1} g\right)(y)=\ldots$. (Do not use part a) for this.)
7. Let $T: V \rightarrow W$ be a linear transformation.
a) Carefully show that range (T) is a subspace of W.
b) Outline the argument showing the famous formula

$$
\operatorname{dim}(\operatorname{ker}(T))+\operatorname{dim}(\operatorname{range}(T))=\operatorname{dim}(V)
$$

