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Abstract

We are concerned with the tiling flow T associated to a substitution φ

over a finite alphabet. Our focus is on substitutions that are unimodular
Pisot, i.e., their matrix is unimodular and has all eigenvalues strictly inside
the unit circle with the exception of the Perron eigenvalue λ > 1. The
motivation is provided by the (still open) conjecture asserting that T has
pure discrete spectrum for any such φ. We develop a number of necessary
and sufficient conditions for pure discrete spectrum, including: injectivity of
the canonical torus map (the geometric realization), Geometric Coincidence
Condition, (partial) commutation of T and the dual Rd−1-action, measure
and tiling properties of Rauzy fractals, and concrete algorithms. Some of
these are original and some have already appeared in the literature — as
sufficient conditions only — but they all emerge from a unified approach
based on the new device: the strand space Fφ of φ. The proof of the
necessity hinges on determination of the discrete spectrum of T as that of
the associated Kronecker toral flow.
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Key Notations

∼ and ∼tω — coincidence and coincidence along Es + tω (page 22)

A = {1, . . . , d} and A∗ — the alphabet and the set of finite words (page 8)

A — the matrix of the substitution (page 9)

crφ — the coincidence rank of φ (page 22)

CR — the R-cylinder about Eu (page 18)

cR — the R-patch of a configuration c ∈ F∗ (page 40)

c ↔ γ — duality between configuration c and strand γ (page 43)

Eu, Es — the unstable and stable spaces of A (page 9)

F — the space of all bi-infinite strands (page 10)

Fφ — the strand space of φ (page 18)

F∗φ — the dual tiling space of φ (page 40)

u

Fφ — the generic core of Fφ (page 22)

s

F∗φ — the generic core of F∗φ (page 40)

u

F∗φ,
s

Fφ,
su

F∗φ,
su

Fφ — the other generic cores, superscripts signify Eu and Es in-
variance, (pages 30 and 42)

φ+, φ−, φ± — the right-, left-, central- “differentials” of φ (page 11)

Φ — substitution on strands induced by φ (page 10)

Φγ — pointwise (Φ-induced) map γ → Φ(γ) (page 10)

Φ∗ — dual substitution on collections of edges induced by φ (page 40)

Gu
φ — the image in Td of

u

Fφ, the generic part of Fφ (Eu-invariant) (page 22)

Gs
φ — the image in Td of

s

F∗φ, the generic part of F∗φ (Es-invariant) (page 30)

[γ] — the word of the strand γ (page 9)

γ̂ — the state of strand γ (page 21)

γ|N−N — the central (partial) substrand of length 2N (page 23)
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h, hφ — the canonical torus mappings F → Td and Fφ → Td (page 18)

h∗φ — the dual canonical torus mapping F∗φ → Td (page 41)

Ii — the basic strand of the letter i ∈ A (page 9)

λ — the Perron eigenvalue of A (page 9)

mφ — the minimal degree of hφ, mφ = crφ, (page 21)

N = Nφ — the stabilizing iterate of φ (page 11)

pru — the projection onto Eu along Es (page 9)

prs — the projection onto Es along Eu (page 9)

Per−(Φ), Per+(Φ), Per±(Φ) — the forward-, backward-, bi-infinte Φ-periodic sim-
ple strands (page 12)

Per±weld(Φ), Per±nweld(Φ) — the welded and non-welded strands in Per±(Φ)
(page 13)

S, Sp — all states, all states over p ∈ Td, all such states in CR (page 21)

T — the space of all tilings (page 10)

Tφ — the tiling space of substitution φ (page 11)

T min
φ — the unique translation minimal subset of Tφ (page 15)

T t — time t map of the tiling flow (page 12)

T ∗x — the translation by x ∈ Es of the dual Rd−1-action (page 40)

Zu
γ ,Zγ — the homoclinic return times and the stabilizer of strand γ (page 31)

ω — the Perron eigenvector of A (page 9)
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1 Introduction

We present a theory of the tiling flow T t : Tφ → Tφ, t ∈ R, associated to a
substitution φ : A → A∗ over a finite alphabet A = {1, . . . , d} that is unimodular
Pisot, i.e., the matrix of φ, A = (aij)

d
i,j=1 where aij is the count of i in φ(j),

is unimodular and has all its eigenvalues strictly inside the unit circle with the
exception of the Perron eigenvalue λ > 1.1

This particular choice of the hypotheses is dictated by the key conjecture in
the theory of substitutions of non-constant length (cf. [26]).

Pure Discrete Spectrum Conjecture (PDSC) The tiling flow T of a unimod-
ular Pisot substitution φ has pure discrete spectrum.

While we are unable to prove or disprove PDSC, we attempt to provide a
launching pad for attacks on the problem. Our approach is somewhat unorthodox
from the outset and giving precise statements of the results in this introduction
would be impractical. Instead, let us start by presenting two highlights that give
some measure of the advance we have to offer.

To be more specific about T , we fix Perron eigenvectors ω and ω∗ of A and
its transpose: Aω = λω and AT ω∗ = λω∗ normalized so that |ω| = 1 and their
scalar product 〈ω|ω∗〉 = 1. The length of tiles corresponding to the letter i is ω∗i ,
i = 1, . . . , d; and T t translates the tilings making up Tφ by distance t (to the left).2

Theorem 1.1 (Theorem 9.3) The set of eigenvalues of T (discrete spectrum)
coincides with the subgroup of R generated by the components of ω, that is

σd(T ) =

{

d
∑

i=1

kiωi : ki ∈ Z

}

. (1.1)

The “⊃” inclusion above has been known for quite some time; “⊂” is new.

Theorem 1.2 (Corollary 9.4) T has pure discrete spectrum iff φ satisfies a cer-
tain combinatorial condition called the Geometric Coincidence Condition (GCC).

We have yet to explain what the Geometric Coincidence Condition is (in Section 7).
For now, it suffices to say that it is algorithmically decidable for any particular φ.
We mention that other characterisations of pure discrete spectrum involve homo-
clinic return times (Corollary 12.6), commutation of T with the dual Rd−1 action
(Propositions 16.1 and 16.3), Rauzy fractals obtained from iterated function systems
(Remarks 18.3 and 18.5), and concrete algorithms (Propositions 17.1 and 17.4).
Many of these conditions, in one form or another, already appear in the literature

1Thus λ belongs to the class of Pisot-Vijayaraghavan numbers.
2For those preferring the Z-action generated by the left shift σ : Xφ → Xφ on the substitutive

system Xφ associated to φ, the flow T is the special flow of σ under the function taking value ω∗
i

on the ith cylinder set.
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as sufficient for pure discrete spectrum — see the overview below. Beside show-
ing their necessity, we place them within a unified geometric framework based on
the concept of the strand space of a substitution, Fφ. On another level, a pivotal
role in making PDSC more tangible is played by two results. First, Theorem 7.3
links GCC with a.e. injectivity of the canonical torus hφ : Tφ → Td (also called
the geometric realization). Second, Theorem 1.1 (Theorem 9.3) above asserts that
the discrete spectrum of T coincides with that of the Kronecker (linear) toral flow
with frequency vector ω, which already implies that for T to have pure discrete
spectrum hφ must be an isomorphism.3

The literature on substitution dynamics is rather sizable and we shy away from
giving an overview as we could not possibly rival [11] (see also [30, 34]). However,
let us go over the main elements of our theory, comment on their role and attempt
to trace their origin. We note that the bulk of the publications is devoted to
the shift map σ : Xφ → Xφ on the substitutive system associated to φ, which is
(essentially) the canonical Poincaré section to the flow T . As a rule, the results
can be easily transported between the two contexts; in particular, pure discrete
spectrum for T is equivalent to pure discrete spectrum for σ (via [9], see also
Corollary 5.7). Whether one works with the map or the flow is to some extent a
matter of taste; although, the theory for the latter seems to be more “rounded”
and amenable to generalizations (say, to higher dimensions).

The tiling space Tφ and the strand space Fφ (see Sections 3 and 5) are both
defined as global attractors of the “hyperbolic” inflation-substitution action Φ in-
duced by φ. They are homeomorphic. While Fφ has no precedence in the litera-
ture, the notion of a tiling space does (see [36, 27, 14, 15, 34]), and our Tφ deviates
from the convention by possibly including a finite number of extra orbits that are
wandering under T . (That may be annoying at first but many of our arguments
naturally play out in the ambient spaces F and T in which the attractors live.)

The geometric realization/canonical torus4 (Sections 5 and 6) whereby Tφ is
mapped onto a geometric model in the form of the d-dimensional torus Td, is our
main tool rooted in Rauzy’s treatment of the Tribonacci substitution in [25]. Other
examples (or narrow classes) were analysed by many authors but, for substitutive
systems, Arnoux-Ito [2] and Canterini-Siegel [7, 8] developed approaches applica-
ble to all Pisot substitutions. The basic idea is to invert the obvious construction
associating to a Markov partition for a hyperbolic system with 1-dimensional un-
stable foliation a substitution reflecting the way the Markov boxes map over each
other. That is how one can practically construct Markov partitions (see 7.6.2 in
[11], [16, 21] and the references therein).

Coincidence conditions (Section 7) also have a long history. Dekking [10] intro-

3Equivalently, the substitutive systems of φ has no non-trivial coboundaries.
4We prefer the term canonical torus because the rightful geometric realization might be a

manifold other than Td. See [4] for an example of a reducible Pisot substitution whose canonical
torus is a.e. 2-to-1 and factors into an a.e. 1-to-1 map onto a genus two surface (which might
properly be called geometric realization) and a branched covering of the torus.
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duced one for constant length substitutions and successfully used it to characterise
pure discrete spectrum in this case. Dekking’s condition was generalized to the
non-constant length case by Arnoux and Ito [2] and independently by Hollander
and Solomyak [12]. Our condition GCC is stronger and emerged from analyzing
the fiber of the canonical torus map. The combinatorial nature of GCC readily
yields algorithms (Section 17) for verifying pure discrete spectrum and we include
a short section to that effect for completeness. Other algorithms in the literature
seem to be always forged from some sort of coincidence and the reader should
consult [20, 34, 32, 30, 31] for more details (and broader scope going beyond the
one-dimensional unimodular Pisot case). One original insight we have to offer here
is that, in the balanced pair algorithm, it suffices to test a single elementary initial
balanced pair of the form (ij, ji) (Proposition 17.3).

For computation of the discrete spectrum of T , we employ homoclinic return
times (Section 11) where, by definition, t ∈ R is such a time for a tiling γ iff T t(γ)
and γ are in the same stable set of Φ. This concept is closely related to the return
time as used in [13, 34] — [34] served as our inspiration here — but is of utility in
the general context of T and Φ satisfying

Φ ◦ T t = T λt ◦ Φ. (1.2)

The basic premise is that of the Fourier duality between frequencies and periods:
the module of eigenvalues α is the dual (in Q(λ)) of the module generated by all
homoclinic return times t; and the latter we can compute (Section 12). The proof
is intimately connected with a refinement of the classical Pisot theory regarding
convergence λnx → 0 mod Z, see [17]. (Incidentally, GCC is equivalent with the
set of homoclinic return times being a subgroup of R for some γ, see Corollary 12.6.)

Rauzy fractals (Section 18), historically, arose as a device for constructing a
geometric realization onto a torus, for which they formed a fundamental domain
(under suitable hypotheses). Our development does not rely on this idea and
simplicity is well served by letting the fractals surface only at the very end as the
(stable faces of) canonical Markov boxes in a certain geometric model of Tφ, called
the cylinder model (Section 18). From that standpoint, the generalized domain
exchange transformation associated to φ and regularity properties of Rauzy fractals
are rather immediate (see Proposition 18.1). In fact, the hyperbolic map on the
cylinder model induced by φ is the natural extension of the (Graph) Iterated Function
System that is often used to establish the properties of Rauzy fractals. A recent
reference with some of the same results from the IFS point of view is [33] — see
also comments in 7.5.2 of [11] and [38].

As a byproduct of our approach, we also obtain tilings of Rd−1 that are dual to
the original tiling of R. Those tilings exist a priori (i.e., without the coincidence
hypotheses on φ) and give raise to the dual tiling space F∗φ of the substitution
φ (Section 14). Conceptually, F∗φ shares with Fφ an equiprivileged central place
in the theory, although we limited its analysis to the utilitarian minimum. Here
again efficiency is well served by dispensing with Rauzy fractals and defining F∗φ as
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appropriate collections of segments intersecting the stable space of A, Es ≃ Rd−1.
(Roughly, these are the equivalence classes of the coincidence relation along Es.)
As it turns out, F∗φ comes with a natural inflation-substitution dynamics closely
related to the generalized dual substitution Θ devised by Arnoux and Ito [2] (see
also [3] and 8.2 in [11]). One could say that F∗φ is the tiling space of Θ.

Finally, F∗φ has bearing on our understanding of Fφ, thanks to the duality iso-
morphism between Fφ and F∗φ (Section 15), which is a measurable (and a.e. contin-
uous) map conjugating the φ induced dynamics on both spaces. Its chief role is to
transport the R action on Fφ and the Rd−1 action on F∗φ to the same space, say Fφ.
GCC is equivalent to commutation of the two actions. In fact, just “partial” com-
mutation is already enough, which is a useful reduction of GCC from the point of
view of algorithm development (see Theorem 16.3 and Propositions 17.3 and 17.4).

***

Let us turn to the organization of the paper. Sections 2–4 introduce the funda-
mentals of the tiling spaces for primitive aperiodic substitutions. Sections 5–8 de-
velop the strand space, the canonical torus map and the coincidence. Sections 9–13
are devoted to computation of the eigenvalues and equivalence of GCC and PDSC.
Sections 14–16 are concerned with the dual tiling space and the dual Rd−1 action.
Sections 17 and 18 are meant to complete the picture by linking our theory with
algorithms for checking GCC and Rauzy fractals, respectively. Section 19 inte-
grates into the theory the result — shown earlier in [12, 32] via [5] — that GCC
holds for unimodular Pisot substitutions over a two letter alphabet.

To keep the exposition self-contained, we have added an appendix (Section 20)
with our account of Mossé’s recognizability, i.e., the injectivity of the inflation-
substitution map Φ on the tiling space Tφ. (In fact, Theorem 20.1 shows the
injectivity on some neighborhood of Tφ.) The other appendix (Section 21) is meant
to serve as a bridge to the literature studying tiling spaces as inverse limits (in the
spirit of Williams and Anderson and Putnam).

List of Sections

1. Introduction

2. Preliminaries: words, substitutions, strands, and tilings

3. Tiling space and flow; and the φ-periodic words

4. Translation periodicity and aperiodicity

5. Canonical torus hφ for Pisot substitutions

6. Canonical torus hφ in the unimodular case

7
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8. Proof of Coincidence Theorem

9. Geometric Coincidence Conjecture and Pure Discrete Spectrum

10. Coincidence classes for generic Sp

11. Homoclinic returns and Stabilizers

12. Subharmonicity precluded

13. Discrete spectrum from stabilizers (proof of Spectrum Theorem)

14. Dual Tiling Space F∗φ
15. Duality Isomorphism between F∗φ and Fφ

16. Commutation of Eu and Es actions and GCC

17. Algorithms

18. Cylinder Model, Rauzy fractals, and IFS’s

19. GCC in the case d = 2

20. Appendix: Recognizability

21. Appendix: Tiling spaces as inverse limits

Acknowledgments: We are grateful to Anne Siegel and Valerie Berthé for
their support and help with literature references and to the referee for a thorough
review. The second author would like to acknowledge partial support of NSF grant
DMS-0201600.

2 Preliminaries: words, substitutions, strands,

and tilings

Let A be a finite set, say A = {1, . . . , d} for some d ∈ N. To avoid triviality we
assume that d ≥ 2. We shall think of A as an alphabet and of sequences in A as
pointed words. Here by a sequence we understand any mapping x : {k ∈ Z : M <
k < N} → A where M, N ∈ Z

⋃{−∞,∞}. The adjective “pointed” is supposed to
be a reminder that sequences with the same ordered sets of elements but different
domains are different; as for instance in the case of x and y given by x(−1) = 1,
x(0) = 2, x(1) = 1 and y(0) = 1, y(1) = 2, y(2) = 1. In practice, it is convenient to
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represent pointed words as juxtapositions of their letters with a period preceding
the first letter, as illustrated by x = 1.21 and y = .121. (The oddities like . 121
hardly ever cause a problem.) Disregarding the period leads to the concept of a
word; technically, a word is an equivalence class of pointed words where x and y are
equivalent iff x = y ◦ s for some order preserving bijection s. Thus 1.21 and .121
determine the same word 121. What is meant by finite, forward infinite, backward
infinite, and bi-infinite word or pointed word should be clear. Also, we shall use |a|
for the length of a word a and a for the reverse of a; e.g. |122| = 3 and 122 = 221.

Denote by A∗ the set of all nonempty finite words. A substitution on A is a
map φ : A → A∗. Such φ extends to all of A∗ by the formula φ(w1 . . . wb) :=
φ(w1) . . . φ(wb). Much of what follows can be ultimately viewed as an attempt to
understand the behavior of the iterates φn := φ◦ . . .◦φ as n tends to ∞; although,
a well rounded theory requires more definitions.

The matrix of φ is A = (aij)
d
i,j=1 where aij is the number of occurrences of i in

φ(j). φ is called primitive iff A is a primitive matrix (i.e. Ak has all positive entries
for some k > 0). Since nearly all interesting substitutions can be understood via
primitive ones, let us assume from now on that φ is primitive.

The matrix A has a simple Perron eigenvalue λ > 1 with a strictly positive (right
column) eigenvector ω ∈ Rd; Aω = λω. Set Eu = lin(ω) and let Es be the the d−1
dimensional invariant space complementary to Eu so that Rd = Eu ⊕Es. We have
the projection pru : Rd → Eu with ker(pru) = Es; concretely, pru(p) := 〈p, ω∗〉ω
where ω∗ is the Perron eigenvector of the adjoint, AT ω∗ = λω∗, normalized so that
〈ω, ω∗〉 = 1.5 Let also prs : Rd → Es be the complementary projection along Eu.

Let (ei)i=1,...,d be the standard basis of Rd. A finite pointed strand is a piecewise
isometric γ̃ : [a, b] → Rd where a, b ∈ Z and for any integer k ∈ [a, b) there is i ∈ A
such that γ̃(k +1)− γ̃(k) = ei. A finite strand is a subset of Rd of the from γ̃([a, b])
for some pointed strand γ̃. The points of γ̃(Z ∩ [a, b]) are the vertices of γ, and
γ̃([k, k + 1]), k ∈ Z ∩ [a, b) are its edges. Upon replacing [a, b] above by [a,∞),
(−∞, b], or (∞,∞) we get the analogous concepts of forward-infinite, backward-
infinite, or bi-infinite strands. Any (finite or infinite) pointed strand γ̃ determines
a pointed word [γ̃] = (wk) given by γ̃(k) − γ̃(k − 1) = ewk

. Likewise, a strand γ
determines a word denoted by [γ].

Finite or forward-infinite strands beginning at 0, backward-infinite strands end-
ing at 0 or bi-infinite strands containing 0 as a vertex shall be referred to as simple
strands. Note that for x ∈ A∗ there is a unique simple strand γx beginning at 0
with x = [γx]; and we have a unique preferred parametrization γ̃ of γ such that
γ̃(0) = 0. Thus one may think of A∗ as embedded in the space of strands or pointed
strands; for instance, i ∈ A corresponds to the single edge Ii := {sei : s ∈ [0, 1]}.
This allows for an easy but critical step of extending the substitution φ to a map
Φ on strands and a map Φ̃ on pointed strands so that, for x ∈ Rd, γ̃ a pointed

5The one parameter freedom in choosing ω, ω∗ > 0 satisfying this normalization corresponds
to scaling the time of the tiling flow and is not important. Taking ω of unit Euclidean length
conveniently assures that the ω∗

i are the tile lengths on Eu.
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strand, and γ a strand, we have

Φ̃(γ̃ + x) = Φ̃(γ̃) + Ax, Φ(γ + x) = Φ(γ) + Ax. (2.1)

Moreover, if γ = Φ(η) there is a natural map Φη : η → γ characterized by

pru ◦ Φη = λ · pru. (2.2)

We forgo explicit formulas for Φ, Φ̃, and Φη in favor of Figure 2.

Es

Eu

Φ(η)

x

v

Av

Φη(x)

λpru(x)

pru(x)

η

Figure 2.1: The maps Φ and Φη for the Fibonacci substitution φ : 1 7→ 12, 2 7→ 1.

Any arc K ⊂ η can be measured either by its arc-length |K| or the arc length
|K|u of pru(K), called the u-length of K (where “u” stands for the “unstable”, of
course). The latter has the advantage of |Φη(K)|u = λ|K|u. There is of course
C > 1 (depending only on A) such that

C−1|K| ≤ |K|u ≤ C|K|. (2.3)

Nearing the end of this long string of definitions, we consider F̃ , the space of
bi-infinite pointed strands γ̃ : R → Rd. We take F̃ equipped with the compact-open
topology on maps R → Rd. It is easy to see that F̃ is locally compact. The space
F := {γ̃(R) : γ̃ ∈ F̃} of bi-infinite strands can be topologized by viewing it as
the quotient of F̃ by the discrete action of Z on F̃ via Z ∋ k : γ̃(·) → γ̃(· + k).
By taking only the bi-infinite strands containing 0 or, equivalently and preferably,
bi-infinite strands up to translation along Es, we obtain

T := {γ ∈ F : 0 ∈ γ} ≡ F/Es T̃ := {γ̃ ∈ F̃ : 0 ∈ γ̃(R)} ≡ F̃/Es,

called the space of all tilings and the space of all pointed tilings, respectively. We
leave it for the reader to see that T is compact and that Φ naturally induces a
self-map of T , which at minimal risk of harm can be denoted by Φ : T → T .
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***

Before we go, let us justify the “tiling” terminology. Consider γ ∈ T and let
E be the set of pairs (S, i) where S is the projection to Eu of an edge of γ and i
is the letter of that edge. Clearly, the segments S are mutually disjoint save for
the endpoints, and Eu =

⋃

(S,i)∈E S. It is easy to see that E fully determines γ.
If one chooses to encode letters with colors, then E is perceived as a tiling of Eu

into colored segments (each congruent to one of {pru(Ii) : i ∈ A}). Note that the
segments of E are ordered on Eu but there is no natural way to distinguish one
tile as “the first” because E is just a set. For γ̃ ∈ T̃ , the analogous construction
leads to a sequence Ẽ = ((Sk := γ̃([k, k + 1]), ik))k∈Z, which may be perceived as a
colored tiling with a distinguished point (say min S0).

3 Tiling space and flow; and the φ-periodic

words

Given a primitive substitution φ as in the previous section, the tiling space of φ is
the global attractor of Φ : T → T :

Tφ :=
⋂

n∈N

Φn(T ). (3.1)

Our terminology is somewhat unorthodox: typically the name tiling space of φ
is attached to a smaller set that we call the minimal tiling space of φ (see (3.5)
below).

Observe that Tφ is non-empty and compact. As we shall see, Tφ is typically
fairly complex (contains an indecomposable continuum) but much of its structure
is encoded in its simplest elements that are the simple strands corresponding to
the bi-infinite pointed words that are periodic under φ. We describe those first.
For i ∈ A, let φ+(i) be the first letter of φ(i) and φ−(i) be the last letter of φ(i).
Also, set φ±(ij) := φ−(i)φ+(j). Being maps of finite sets

φ−, φ+ : A → A φ± : A2 → A2 (3.2)

they have non-empty sets of periodic points, Per(φ−), Per(φ+), and Per(φ±), re-
spectively. Moreover, there is N ∈ N such that

φN
± ◦ φN

± = φN
± . (3.3)

We call the minimal such N for which also AN has all positive entries the stabilizing
iterate of φ, denoted Nφ.

Observe a simple fact underpinning many of the arguments to follow.

Fact 3.1 If φm
+ (i) = i, then Φkm(Ii) ⊂ Φ(k+1)m(Ii) and γ :=

⋃

k∈N
Φkm(Ii) is a

forward-infinite simple strand with Φm(γ) = γ.
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The fact has variants for φ− and φ± and is not hard to elaborate into the following.
Denote by Per+(Φ), Per−(Φ), and Per±(Φ) the sets of Φ-periodic simple forward
infinite strands, simple backward infinite strands, and simple bi-infinite strands,
respectively.

Proposition 3.2 (i) Given i ∈ Per(φ+) of period m, there is a unique γ+ ∈
Per+(Φ) beginning with Ii; its period is m.

(ii) Given j ∈ Per(φ−) of period n, there is a unique γ− ∈ Per−(Φ) ending with
−Ij; its period is n.

(iii) The strand γ := γ−γ+ is a unique strand in Per±(Φ) containing Ii ∪ (−Ij);
its period is nm/(n, m) — the smallest common multiple of m and n.

(iv) Any Φ-periodic simple strand γ arises as above.

(v) Given any simple strand η, limn→∞ΦnNφ(η) = γ for some Φ-periodic simple
strand γ (either forward, backward, or bi-infinite)

Proof: We shall only prove (iv) and leave the rest as an exercise. Let γ be
a Φ-periodic simple strand with minimal period m, Φm(γ) = γ. For n ∈ N, set
γn := Φn(γ) and let J−n and J+

n be the edges of γn abutting at 0, J−n ending at 0
and J+

n starting at 0. Denoting by in the type of J−n and by jn the type of J+
n , we

see that φm
−(i0) = i0 and φm

+ (j0) = j0. In particular, γ =
⋃

k∈N
Φkm(J−0 ∪ J+

0 ) as in
Fact 3.1. It is left to see that m equals the least common multiple of the periods
of i+0 and i−0 , for which we write M . That M divides m is clear. By construction,
φM
± ((i−0 , i+0 )) = (i−0 , i+0 ), and so J−0 ∪ J+

0 ⊂ ΦM (J−0 ∪ J+
0 ). By applying Φkm, we get

Φkm(J−0 ∪ J+
0 ) ⊂ ΦM+km(J−0 ∪ J+

0 ), which yields γ = ΦM(γ) by taking unions over
k ∈ N. Hence, m divides M making the two equal. 2

The translation action of Rd on strands induces a natural translation action of
R ≡ Eu ≡ Rd/Es on T ≡ F/Es. Concretely, for t ∈ R, we define T t : F → F
by T t(γ) := γ + tω. We shall abuse notation and use T t : T → T for the
corresponding action on strands modulo Es. Observe that

Φ ◦ T t = T λt ◦ Φ. (3.4)

As a consequence, Tφ is T t-invariant: T t(Tφ) = Tφ for t ∈ R. In particular, beside
the basic Φ-periodic strands supplied by Proposition 3.2, Tφ contains the closures
of their translation orbits. That this is all of Tφ is shown by (iii) of the following
proposition. Below, a word a being a subword of word b is denoted a⊂b.

Proposition 3.3 Given η ∈ T , the following are equivalent

(i) η ∈ Tφ

12



(ii) for any finite substrand ξ ⊂ η, there is n0 ∈ N such that if n ≥ n0 then there
are i, j ∈ A with [ξ]⊂φn(ij).

(iii) η is in the closure cl{T tγ : γ ∈ Per±(Φ), t ∈ R}.
Proof: Set N = Nφ.

(i) ⇒ (ii): For every n ∈ N, let η−n ∈ F be such that Φn(η−n) = η. Set δ :=
min{|Ii|u = |pru(Ii)| : i ∈ A}. By taking an edge of η−n intersecting Es together
with one of the two adjacent edges, one obtains a length two substrand µ−n of
η−n such that (−δ/2, δ/2)ω ⊂ pru(µ−n). Since λn(−δ/2, δ/2)ω ⊂ pru(Φn(µ−n)),
we have that ξ ⊂ Φn(µ−n) for sufficiently large n (cf. Fact 3.1). Thus [ξ]⊂φn(ij)
where ij = [µ−n].

(ii) ⇒ (iii): First observe that, for i, j ∈ A and n > N , φn(ij) = φn−N(φN(ij))
contains φn−N(i′j′) where i′ := φN

− (i) ∈ Per(φ−) and j′ := φN
+ (j) ∈ Per(φ+).

Moreover, φn−N(i′j′) constitutes a definite (central) part of φn(ij) in the sense that
|φn−N(i′j′)|/|φn(ij)| ≥ c where c > 0 is independent of n, i, j. As a consequence,
if (ii) holds, it does so with an additional requirement that i ∈ Per(φ−) and j ∈
Per(φ+).

To prove (iii) we may well adjust η by translation so that it has a vertex at 0. Fix
an arbitrary m ∈ N and take the central substrand ξm ⊂ η with |ξm| = 2m, i.e., ξm

is a substrand of η with m edges on both sides of 0 ∈ η. By our initial observation,
there are im ∈ Per(φ−), jm ∈ Per(φ+) and km ∈ N such that [ξm]⊂φkmN(imjm),
and we can pick a substrand ξ′m ⊂ ΦkmN(−Iim ∪ Ijm

) with [ξ′m] = [ξm]. We have
γm :=

⋃

s∈N
ΦsN+kmN (−Iim ∪ Ijm

) that is fixed by ΦN and thus in Per±(φ). Taking
tm ∈ R so that ξ′m + tmω = ξm mod Es, we see that T tm(γm) and η coincide on the
central substrand of length 2m. By passing to a subsequence we may assure that
γm is constant and equal to some γ so that limm→∞ T tm(γ) = η.

(iii) ⇒ (i): Clearly, Per±(φ) ⊂ Tφ. Thus (i) follows by translation invariance of
Tφ. 2

Our next task is to inspect the recurrence properties of the translation flow T on
Tφ. We shall see that primitivity of φ — which was not invoked in Proposition 3.3
— implies that T is minimal after discarding from Tφ orbits of certain pathological
γ ∈ Per±(Φ). To this end, let us brand γ ∈ Per±(Φ) as a welded simple Φ-periodic
strand if the word ij of the central length two substrand of γ is not a subword of
any of the words φ2N(l) where l ∈ A and N = Nφ ∈ N is the stabilizing iterate. (It
will only be clear from the proof below why 2N and not N .) The set of all welded
γ’s will be denoted Per±weld(Φ), and we set Per±nweld(Φ) = Per±(Φ) \Per±weld(Φ). We
remark that if Per±weld(Φ) = ∅, then (ii) of Proposition 3.3 is true with ij replaced
by a single letter i.

Example (of a welded strand): Under φ : 1 7→ 121, 2 7→ 2212, 11 is easily
seen not to be a subword of any word obtained by inflating a single letter. Thus
the simple strand γ corresponding to the fixed bi-infinite word of φ of the form
. . . 1.1 . . . is welded. (The substitution φ : 1 7→ 12221, 2 7→ 21212212 has the same
property and is unimodular Pisot.)
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Below we denote the set of forward and backward limit points of a set B under
the flow T by ω+(B) and ω−(B), respectively. Also, ω(B) := ω+(B) ∪ ω−(B).

Proposition 3.4 Let γ ∈ Per±(Φ). The following are equivalent:

(i) η ∈ Tφ \ {T tγ : γ ∈ Per±weld(Φ), t ∈ R};

(ii) for any finite substrand ξ ⊂ η there is n0 ∈ N so that if n ≥ n0 then [ξ]⊂φn(i)
for some i ∈ A.

(iii) η ∈ ω−(γ);

(iv) η ∈ ω+(γ).

Proof: Again take N := Nφ.
(i) ⇒ (ii): In the context of the argument for (i) ⇒ (ii) of the previous proposition,
let p−n be the middle vertex of µ−nN . Note that qn := AnN (p−n) is a vertex of η.
We have two possibilities:

(B) |pru(qn)| is bounded as n → ∞;

(U) |pru(qn)| is unbounded as n → ∞.

Suppose (B) holds. Along some subsequence nk → ∞, we have qnk
= q and

[µ−nkN ] = ij for some q ∈ γ, i, j ∈ A. Since µ−nkN − p−nk
is a length two strand

with the middle vertex at 0, (iii) of Proposition 3.2 yields γ :=
⋃

k→∞ΦnkN (µ−nkN−
p−nk

) ∈ Per±(Φ). At the same time,
⋃

k→∞ΦnkN(µ−nkN − p−nk
) = ΦnkN(µ−nkN)−

q = η − q so that, if t ∈ R is such that tω = pru(−q), then T t(γ) = η, which
contradicts (i) and excludes (B).
Suppose now (U) holds and |pru(qn)| → ∞ along some subsequence nk → ∞.
Depending on whether 〈pru(qnk

)|ω〉 converges to +∞ or −∞ let Ik be the first or
the second edge of µ−nkN , respectively. Then for any substrand ξ ⊂ η we have
ξ ⊂ ΦnkN(I) for large enough k.

(ii) ⇒ (iii): First observe that, by primitivity of φ, “for some i ∈ A” can be
replaced by “for any i ∈ A” in the formulation of (ii). The rest of the argument is
similar to that for (ii) ⇒ (iii) of Proposition 3.3. First adjust η by translation so
that it has a vertex at 0. Fix an arbitrary m ∈ N and take the central substrand
ξm ⊂ η with |ξm| = 2m. Let imjm be the word of the central length two substrand
of γ. Pick km ∈ N so that [ξm] is a subword of φkmN(jm) ⊂ [γ] and pick a substrand
ξ′m ⊂ ΦkmN(Ijm

) with [ξ′m] = [ξm]. There is tm > 0 — actually tm ≥ C−12m/2
where C is as in (2.3) — such that ξ′m − tmω = ξm mod Es. Since T−tm(γ) and η
coincide mod Es on the central substrand of length 2m, we have limm→∞ T−tm(γ) =
η, i.e. η ∈ ω−(γ).

(ii) ⇒ (iv): Use an analogous argument to the above where [ξm] is found as a
subword of φkmN(im) ⊂ [γ].
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(iii) or (iv) ⇒ (i): It suffices to show that η ∈ ω+(γ) ∪ ω−(γ) implies that
η 6∈ Per±weld(Φ). We deal with the ω+ case. Suppose then that η ∈ Per±(Φ)∩ω+(γ).
Let ij is the word of the central length two substrand of η. We have to show that
η is not welded. For some m ≥ 0, we shall construct length two substrands
ξ0, . . . , ξ−m of γ such that the corresponding words i0j0, . . . , i−mj−m satisfy ij =
i0j0, φN

± (i−r−1j−r−1) = i−rj−r for r = 0, . . . , m − 1, and i−mj−m⊂φN(l) for some
letter l in A. Since, by definition of Nφ, ij = φmN

± (i−mj−m) = φN
± (i−mj−m), this

would guarantee that ij⊂φ2N (l), which would show that η is not welded, as desired.
From η ∈ cl{T tγ : t > 0}, ij is a word of some length two substrand ξ0 of γ.

Because we take closure over t > 0, ξ0 may be chosen so that it does not intersect
Es; in particular, its middle vertex q0 6= 0.

If ξ0 is a substrand of some ΦN (Il) where l is a letter in γ, we stop after setting
m = 0. Otherwise, there is a length two substrand ξ−1 of γ such that ΦN(ξ−1)
contains ξ0 as a substrand and ANq−1 = q0 where q−1 is the middle vertex of ξ−1.
This means that ij = φN

± (i−1j−1) where i−1j−1 is the word of ξ−1. If ξ−1 is a
substrand of some ΦN (Il−1

) where l−1 is a letter in γ, we stop after setting m = 1
and l = l−1. Otherwise, we repeat the step leading from ξ0 to ξ−1 to obtain ξ−2

from ξ−1; etc. To see that the process must stop, assume that this is not the case.
The middle vertex q−n of ξ−n is given by A−nN(q0) and thus converges to Es. Since
q−n is a vertex of γ, this is only possible if q−n = 0 for large enough n. But then
q0 = AnNq−n = AnN0 = 0 contradicting the construction of ξ0. 2

Proposition 3.4 guarantees that the following is an unambiguous definition: The
minimal tiling space of φ is

T min
φ := ω+(γ) = ω−(γ) = Tφ \ {T tγ : γ ∈ Per±weld(Φ), t ∈ R} (3.5)

where γ ∈ Per±(Φ).

Proposition 3.5 T min
φ is the unique minimal subset of Tφ.

Proof: First let γ ∈ Per±nweld(Φ).
Claim: If ξ is any finite substrand of γ then there is L > 0 such that any substrand
µ ⊂ γ of length |µ|u ≥ L contains a substrand ξ′ ⊂ µ with [ξ′] = [ξ].

Indeed, by (iii) of Proposition 3.3, there is l ∈ A and k ∈ N such that φk(l)
contains [ξ]. By primitivity, l appears in every φm(j), j ∈ A, for m ≥ N . In
particular, we may assume that k is a multiple of N . More importantly, in view of
ΦN (γ) = γ, the word of every substrand of γ of u-length exceeding 2 max{|φN(j)|u :
j ∈ A} contains l. This and γ = Φk(γ) further imply that every µ ⊂ γ of u-length
exceeding L := 2 max{|φN+k(j)|u : j ∈ A} = 2λN+k max{|j|u : j ∈ A} contains
φk(l) and thus also [ξ] — which shows the claim.

To demonstrate minimality of ω−(γ) = ω+(γ), it suffices to show that γ ∈ ω+(η)
for any η ∈ ω+(γ). For convenience, let us adjust η by translation so that it has
a vertex at 0. Fix an arbitrary central substrand ξ ⊂ γ. There is t > 0 such that
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T tγ and η coincide on a finite strand µ beginning at 0 of length exceeding L given
by the claim. Thus µ must contain a substrand ξ′ with [ξ′] = [ξ]. By taking s > 0
such that ξ′− sω is centered we see that T sη and γ coincide on a central strand of
length |[ξ]|. We are done by arbitrariness of ξ. 2

4 Translation periodicity and aperiodicity

As it turns out, there is a very sharp dichotomy in the complexity of Tφ depending
on whether any of the φ-periodic pointed bi-infinite words are also periodic under
translation. Details follow.

We call an infinite strand γ translation periodic (or T -periodic) if it is a concate-
nation of strands with the same word. This is equivalent to existence of x ∈ Rd\{0}
such that γ = γ+x in the case of bi-infinite γ and γ ⊂ γ+x in the case of forward-
infinite γ.

Proposition 4.1 For any primitive substitution φ, the following are equivalent

(i) some forward-infinite simple Φ-periodic strand is translation periodic;

(ii) some simple Φ-periodic non-welded strand is translation periodic;

Moreover, in (i) and (ii) the word “some” can be replaced by “all”.

The proof of the proposition is left as an exercise. We shall call φ translation
periodic iff the conditions of the above proposition are met and translation aperiodic
otherwise.

Proposition 4.2 For any primitive substitution φ, if φ is translation periodic then
Φ : T min

φ → T min
φ is conjugate to a covering map of a circle and the flow T t on

T min
φ is conjugate to the rigid circle rotation flow.

Proof: Exercise. 2

To convey the complexity of T min
φ for translation aperiodic φ, we introduce

the winding map fφ of φ. Let Tφ be the quotient by Zd of {(x1, . . . , xd) :
xi 6∈ Z for at most one i}, the integer grid in Rd. Tφ is naturally a wedge of d cir-
cles T1, . . . Td obtained by identifying the endpoints of I1, . . . , Id. For each i ∈ A,
φ induces a map Ii → γi where γi is the simple strand associated to φ(i); let
fi : Ti → Tφ be the quotient map. We define fφ : Tφ → Tφ as the wedge of
f1, . . . , fd.

Recall that the inverse limit of fφ is the space of the bi-infinite orbits of fφ,

Xfφ
:= {(ti)i∈Z : fφ(ti) = ti+1, i ∈ Z}, together with the shift map

←

f φ : Xfφ
→

Xfφ
, (ti) 7→ (ti+1). In conventional notation,

←

f φ := lim← fφ. Because of primitivity
of φ, under sufficiently large iterates of fφ, each circle Ti maps onto all of Tφ. This
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implies that Xfφ
has a complicated structure: it is an indecomposable continuum

(as exemplified by the solenoid, the inverse limit of the circle map t (mod 1) 7→
2t (mod 1)).

Proposition 4.3 For any primitive substitution φ, if φ is translation aperiodic

then Φ : T min
φ → T min

φ is semi-conjugate to
←

f φ, the shift map on the inverse limit
of fφ.

Note that, unlike in the periodic case, we make no assertion about the flow; even
measure theoretical classification of those is a major open problem. In contrast,
the action of Φ is well understood. In particular, “semi-conjugacy” can be easily
improved to “conjugacy” at the expense of replacing fφ with a bit more elaborate
map on a bouquet of a larger number of circles or a finite graph that retracts to
Tφ — as is elaborated in Appendix 21. At any rate, it is the invertibility of Φ on
Tφ that is the pivotal feature of the aperiodic case and the key ingredient of the
proof of Proposition 4.3:

Theorem 4.4 (Mossé) If φ is a primitive translation aperiodic substitution then
Φ : Tφ → Tφ is a homeomorphism.

Since Tφ is compact and Φ : Tφ → Tφ is manifestly onto, the theorem is equiva-
lent to injectivity of Φ, which — in the parlance of substitution systems — amounts
to a property called recognizability. Recognizability was established by Mossé in
[23] (and later generalized to higher dimensions in [35]). For completeness, we give
a proof of the theorem in the appendix.

Sketch of proof of Proposition 4.3: It suffices to construct a map r : Tφ → Tφ

factoring Φ to fφ. Indeed, then lim←Φ factors to lim← fφ via lim← r; and lim←Φ =
Φ since Φ is a homeomorphism.

The construction of the factor map r : Tφ → Tφ is straightforward. Given an
element of Tφ represented by a strand γ passing through 0, let I be an edge of γ
containing 0. Also, let x ∈ Rd be such that I + x = Ii for some i ∈ {1, . . . , d}.
Note that x ∈ Ii and thus it determines a point p ∈ Tφ; set r(γ) := p. We leave it
to the reader to check that r is well defined and satisfies r ◦ Φ = fφ ◦ r. 2

5 Canonical torus hφ for Pisot substitutions

A matrix is called Pisot iff it has a unique (counting with multiplicity) eigenvalue
of modulus greater than one and all other eigenvalues are of modulus less than
one. A primitive substitution is called Pisot iff its matrix A is Pisot, that is the
spectrum of A|Es is contained in the disk {|z| < µ} for some µ ∈ (0, 1).

Throughout this section, we assume that φ is Pisot. It is convenient to fix a
stable adapted semi-norm | · |s on Rd so that, for x ∈ Rd,

|Ax|s ≤ µ|x|s

17



and |x|s = 0 iff x ∈ Eu. (Thus | · |s + | · |u is the adapted norm on Rd where
|x|u := |pru(x)| = |〈ω∗|x〉|.) Denote CR := {p ∈ Rd : |p|s ≤ R} and FR := {γ ∈
F : γ ⊂ CR}. From its definition, Φ is a bounded perturbation of A: there is a
uniform bound on |ΦJ(y)−Ay| for all edges J and y ∈ J . We record the following
consequence:

Lemma 5.1 There is α > 0 such that for any strand γ ⊂ CR, we have Φ(γ) ⊂ CR′

where R′ = µR + α.

Fix R0 > α/(1−µ). The lemma assures that Φn(FR0) ⊃ Φn+1(FR0) for n ≥ 0;
and for any R > 0 there is n ∈ N such that Φn(FR) ⊂ FR0 .

Definition 5.2 The strand space of φ is

Fφ :=
⋂

n∈N

Φn(FR0), R0 > α/(1 − µ). (5.1)

Observe that Fφ does not depend on the choice of R0 and is compact (because
FR0 already is). Also, Φ(Fφ) = Fφ and T t(Fφ) = Fφ for t ∈ R. 6 Remarkably, Fφ

is just another presentation of Tφ:

Theorem 5.3 The restriction πφ := π|Fφ
of the natural projection π : F → T

maps Fφ homeomorphically onto Tφ.

Proof: We have to show that πφ is onto and 1 − 1. Since Φ ◦ π = π ◦ Φ, it is
clear that π(Fφ) ⊂ Tφ right from the definitions of Tφ and Fφ. To see Tφ ⊂ π(Fφ),
it suffices to show that given a strand γ ∈ Per±(Φ) we have γ ∈ Fφ; indeed, then
T tγ (mod Es) ⊂ π(Fφ) for t ∈ R and we are done by (iii) of Proposition 3.3. For
a proof, recall that γ = limn→∞ΦnN(−Ii ∪ Ij) for some i, j ∈ A with φN

± (ij) = ij
(see Proposition 3.2). Clearly, −Ij ∪ Ii ⊂ CR for some R > R0 so that Lemma 5.1
implies γ ⊂ CR0 . Coupled with ΦN(γ) = γ, this yields γ ∈ Fφ.

Now suppose that, for γ, γ̃ ∈ Fφ, we have π(γ) = π(γ̃), that is γ ≡ γ̃ (mod
Es). For n ∈ N, we can pick γ−n, γ̃−n ∈ FR0

φ with Φn(γ−n) = γ and Φn(γ̃−n) =
γ̃. Because Φ : Tφ → Tφ is a homeomorphism, we must have γ−n(mod Es) =
γ̃−n(mod Es) = Φ−n(γ(mod Es)). Thus γ−n = γ̃−n + yn for some yn ∈ Es; and
|yn|s ≤ 2R0 since γ−n, γ̃−n ⊂ CR0 . Now, γ = Φn(γ−n) = Φn(γ̃−n + yn) = Φn(γ̃−n) +
Anyn = γ̃+Anyn where limn→∞ |Anyn| = 0 by the contracting action of A|Es. Thus
γ = γ̃, which establishes that πφ is 1 − 1. 2

The advantage of F over T is that there is a natural map h : F → Td given by
γ 7→ v (mod Zd) where v ∈ γ is a vertex. By the canonical torus of φ we understand
either of the maps

hφ := h|Fφ
: Fφ → Td,

6Fφ a global attractor of Φ : F → F since (5.2) is unaffected by redefining CR as CR := {p ∈
Rd : |p|u < R−1 =⇒ |p|s < R}, which makes FR an open neighborhood of Fφ.
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hφ ◦ π−1
φ : Tφ → Td,

depending on whether we present the substitution as Fφ or Tφ.
From the construction, we have the following commuting diagrams

Fφ
Φ−−−→ Fφ

hφ





y

hφ





y

Td A−−−→ Td

and

Fφ
T t

−−−→ Fφ

hφ





y

hφ





y

Td T t
ω−−−→ Td

(5.2)

where A : Td → Td is the endomorphism induced by the matrix A and T t
ω : Td → Td

is the translation along ω, x (mod Zd) 7→ x + tω (mod Zd) .
The following standard fact readily implies that if A is non-singular then the

Kronecker flow Tω is minimal and thus hφ is surjective

Fact 5.4 If A is Pisot and non-singular, then

(i) Es contains no rational points, Es ∩ Qd = {0};

(ii) Eu is non-resonant, i.e., for ξ ∈ Qd and v ∈ Eu \ {0}, 〈ξ|v〉 = 0 implies
ξ = 0.

In particular, the components ω1, . . . , ωd of ω are linearly independent over Q.

Proof: (i): Consider v ∈ Zd ∩ Es. By the Pisot hypothesis, limn→∞Anv = 0
and so v = 0 because Anv ∈ Zd. It follows that Es ∩ Qd = {0}.

(ii): Let Es
T and Eu

T be the stable and unstable spaces of the transpose AT . By
the above argument, also Es

T ∩Qd = {0}. One is done by observing that the space
perpendicular to Eu coincides with Es

T (since it is invariant under AT and does not
contain Eu

T ). 2

Corollary 5.5 If the matrix of a substitution φ is Pisot and non-singular, then φ
is primitive and translation aperiodic.

Proof: Regarding aperiodicity, note that Tω has no closed orbits so neither does
T . As for primitivity, note that (ii) of the fact forces the Perron eigenvector ω ≥ 0
to actually satisfy ω > 0. Thus as soon as the direction of ANei, i = 1, . . . , d,
approximates Eu = lin(ω) for some large N , then AN > 0. 2

We close this section with a digression explaining the relative irrelevance of
any specific selection of the lengths of the basic tiles in the tiling space. In our
case, these lengths are given by pru(ei) = ω∗i , i = 1, . . . , d (assuming ω is of unit
length), but choosing diffrent lengths yields a tiling flow conjugate to a simple time
rescaling of our flow T t on Tφ. This follows by combining Th. 1.3 and Th. 3.1. in
[9] and can also be seen by using Fφ as follows. Fix an arbitrary positive vector
l := (l1, . . . , ld) and let Σ := l⊥ be the hyperspace perpendicular to l. Upon scaling
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l, we may require that 〈l|ω〉 = 1 so that prl : x 7→ 〈x|l〉ω is the projection onto Eu

along Σ. Let us denote by T l
φ the space of strands of Fφ taken modulo translation

along Σ. Projecting via prl presents T l
φ as the tiling space of the substitution φ

with the li now serving as the tile lengths.7 The associated translation flow is
T t

l : γ (mod Σ) → γ + tω (mod Σ).

Proposition 5.6 The flow Tl on T l
φ is conjugated to the flow T on Tφ.

Proof: First let us see that the natural projection πl : Fφ → T l
φ is injective

and thus a homeomorphism. Indeed, suppose that γ, γ + x ∈ Fφ for some x ∈
Σ. Upon decomposing x = xs + xu where xs ∈ Es and xu ∈ Eu, we see that
γ + xu, γ + xu + xs ∈ Fφ and thus γ + xu = γ + xu + xs by Theorem 5.3. Hence,
xs = 0 and so x = 0 since x = xu ∈ Σ ∩ Eu = {0}.

Taking π as in Theorem 5.3, we have then a homeomorphism h := πl ◦ π−1 :
Tφ → T l

φ . That h conjugates the corresponding tiling flows is clear. 2

Corollary 5.7 For an appropriate choice of a constant roof function, the suspen-
sion flow over the shift map σ on the substitutive system Xφ is conjugated to the
tiling flow T t on T min

φ .

Proof: The substitutive system Xφ arises as the translation closure of the bi-
infinite words that are periodic under φ and thus coinsists of the words of the
strands in T min

φ (see Proposition 3.4). Taking l proportional to e1 + · · · + ed, the

flow Tl restricted to the minimal set of T l
φ is then a realization of a suspension

flow of σ (were the roof function equals 〈e1 + · · ·+ ed|ω〉−1 = (ω1 + · · ·+ ωd)
−1, as

dictated by the normalization 〈l|ω〉 = 1). By the proposition, Tl is conjugated to
T on T min

φ . 2

6 Canonical torus hφ in the unimodular case

If φ is Pisot and A is unimodular we say that φ is unimodular Pisot. The canonical
torus hφ for unimodular Pisot substitutions coincides with what is typically called
the geometric realization of φ. In the non-unimodular Pisot case the geometric real-
ization is the map induced by hφ onto the inverse limit of the toral automorphism
A (cf. [8]). Also, one can view hφ as an implementation of the idea of global
shadowing and thus extend the theory to an arbitrary hyperbolic substitution φ.
(However, hφ will not be “onto” unless φ is Pisot, which is connected with the
absence of discrete spectrum in the non-Pisot case, cf. [34].)

For the sake of simplicity, we elucidate the unimodular case only. Keep in
mind that any unimodular Pisot φ is automatically primitive and aperiodic (via
Corollary 5.5).

7As usual, if some li coincide, the tiles of the tiling are distiguished by labeling.
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Theorem 6.1 Suppose that φ is a unimodular Pisot substitution. There is M ∈ N

such that hφ is at most M–to–1.

In preparation for the proof of the theorem, for p ∈ Td, we shall write

FR0

p := {γ ∈ FR0 : p = q (mod Zd) for some vertex q of γ} = h−1(p) ∩ FR0.

Clearly, if p−n := A−np, Φn(FR0

p−n
) ⊃ Φn+1(FR0

p−n−1
); and we claim that

h−1
φ (p) = h−1(p) ∩ Fφ =

⋂

n≥0

Φn(FR0

p−n
). (6.1)

Indeed, having fixed γ0 ∈ h−1(p) ∩ Fφ, Φ : Fφ → Fφ being a homeomorphism

yields γ−n :=
(

Φ|Fφ

)−n
(γ) ∈ Fφ for n ∈ N; and γ ∈ Φn(Fp−n

) from h ◦ Φ = A ◦ h,
which shows “⊂” inclusion. For “⊃”, it suffices to combine FR0

p0
⊂ h−1(p0) with

⋂

n≥0 Φn(FR0

p−n
) ⊂ ⋂n≥0 Φn(FR0) = Fφ.

Proof of Theorem 6.1: Fix p ∈ Td. It suffices to find M ∈ N (independent of p)
such that #h−1(p)∩Fφ ≤ M. Consider an arbitrary finite subset U ⊂ h−1(p)∩Fφ.
One can pick in each γ0 ∈ U a finite substrand η0 so that the collection W of η0’s
satisfies #W = #U and no two strands in W are substrands of the same strand
in F .

Now, let Sp−n
be the collection of all length three substrands of strands in FR0

p−n

whose middle edge intersects Es. It is easy to see that there is M ∈ N independent
of p−n such that #Sp−n

≤ M . For sufficiently large n ∈ N, every strand of W is
a substrand of Φn(ξ) where ξ ∈ Sp−n

. Therefore #U = #W ≤ #Sp−n
≤ M . By

arbitrariness of U , we conclude #h−1(p0) ≤ M . 2

7 Coincidence and hφ (Coincidence Theorem)

We continue to consider a unimodular Pisot substitution φ. From the previous
section, the minimal degree of hφ,

mφ := min{#h−1
φ (p) : p ∈ Td}, (7.1)

is finite. Our goal is to show that hφ is a.e. mφ-to-1 and to give a combinatorial
characterization of mφ. To formulate the results we need several definitions.

By a state we understand any strand I of length one (an edge) that intersects
Es at a point that is not the terminal vertex max I of I (where “max” refers to
the obvious linear order, the one pulled back from Eu via pru). We shall denote
by S the collection of all states and set, for p ∈ Td and R > 0,

Sp := {I ∈ S : p = max I (mod Zd)},

SR := {I ∈ S : I ⊂ CR},
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SR
p := SR ∩ Sp.

We shall refer to states in S0 as integer states.
Any strand γ contains at most one state, which we denote by γ̂ ∈ S (if it exists);

and Φ induces Φ̂ : S → S characterized by

Φ̂(γ̂) = Φ(γ)∧

valid for any strand γ for which γ̂ exists. Observe that Φ̂(Sp) ⊂ SAp for p ∈ Td; in

particular, integer states are preserved by Φ̂. Also, as a consequence of Lemma 5.1,
Φ̂(SR0) ⊂ SR0 , and for any R > 0 there is n ∈ N such that Φ̂n(SR) ⊂ SR0 .

Definition 7.1 For two edges I, J , we say that I and J are coincident along Es+tω
denoted I ∼tω J , iff there is n ∈ N such that I − tω, J − tω ∈ Sp for some p ∈ Td

and (Φn(I − tω))∧ = (Φn(J − tω))∧. Also, I and J are coincident, denoted I∼J , iff
there is t ∈ R such that I ∼tω J . A family of states I ⊂ S is called non-coincident
iff I ⊂ Sp for some p ∈ Td and no two different states in I are coincident. The
coincidence rank of φ is the maximal cardinality of a non-coincident family:

crφ := max{#I : I ⊂ S non-coincident}. (7.2)

We see that I ∼ J iff, for some n ∈ N, the strands Φn(I) and Φn(J) coincide
along an edge; and ∼ is translation equivariant: if I, J, I + x, J + x are edges and
x ∈ Rd, then

I∼J ⇔ I + x ∼ J + x, x ∈ Rd. (7.3)

It is natural then that crφ can be determined over any q ∈ Td:

Fact 7.2 For any q ∈ Td,

crφ = max{#I : I ⊂ SR0

q non-coincident}.

Proof: Let I ⊂ Sp be any non-coincident family. There exists ǫ > 0 so that
I − tω is a family of states, and thus also a non-coincident family, for all 0 ≤ t < ǫ;
and so is I + x − tω for x ∈ Es. Now, by density of the projection of Es in Td,
there is R1 > 0 such that any z ∈ Td can be represented as z = p− tω+x(mod Zd)
where 0 ≤ t < ǫ and x ∈ Es with |x| < R1. Thus, given q ∈ Td, we can produce
a non-coincident family I + x − t ∈ SR

A−nq where R = R1 + diam(I). If n ∈ N is

chosen big enough, Lemma 5.1 assures that J := Φ̂n(I + x − t) ∈ SR0

q ; and J is
clearly non-coincident with #J = #I. 2

As explained in Section 17, crφ can be readily computed for any given φ; and
here is why this is a worthwhile task.

Theorem 7.3 (Coincidence Theorem) Let hφ be the canonical torus map of
a unimodular Pisot substitution φ. The minimal degree of hφ equals the coin-
cidence rank of φ, mφ = crφ, and there is a full measure Gδ-set Gu

φ ⊂ Td
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such that #h−1
φ (p) = crφ exactly for p ∈ Gu

φ. Moreover, the map p 7→ h−1
φ (p)

is continuous at p ∈ Gu
φ (with the Hausdorff topology on closed subsets of Fφ)

and if hφ(γ1) = hφ(γ2) ∈ Gu
φ for γ1 6= γ2, then γ1 and γ2 are noncoincident:

(γ1 + tω)∧ 6∼ (γ2 + tω)∧ for all t ∈ R.

The proof of the theorem is relegated to the next section. For future reference
let us introduce a special notation for the portion of Fφ on which hφ is generic, the
Eu-generic core of Fφ:

u

Fφ := hφ
−1(Gu

φ). (7.4)

The over-stacked u serves to remind us that
u

Fφ is invariant under T , which is the
action of Eu8. The theorem yields the following picture:

Corollary 7.4
u

Fφ is a full measure Gδ subset of Fmin
φ invariant under Φ and the

flow T ; and the restriction hφ|u

Fφ

:
u

Fφ → Gu
φ is a mφ-1 covering (alas between

non-compact spaces).

In particular, the local product structure for the toral automorphism lifts to
u

Fφ,
which suggests existence of a nice “stable foliation” in Fφ. This idea is developed
in Section 14.

Proof of Corollary 7.4: Immediately from the theorem, we see that hφ :
u

Fφ →
Gu

φ has a structure of a covering: it is mφ-1 and there is ǫ > 0 such that for an open

subset U ⊂ Gu
φ of diameter less than ǫ,

(

hφ|u

Fφ

)−1

(U) = U1 ∪ . . . ∪ Umφ
where

hφ|Ui
: Ui → U is a homeomorphism.

To see that
u

Fφ ⊂ Fmin
φ , let γ ∈

u

Fφ and p = h(γ) ∈ Gu
φ. Pick tk ∈ R, tk → ∞,

such that limk→∞ p + tkω = p in Td. By continuity of hφ
−1, after perhaps passing

to a subsequence of tk, we find η ∈ hφ
−1(p) such that T tk(η) → γ. Thus γ ∈ Fmin

φ

(via Proposition 3.4). 2

8 Proof of Coincidence Theorem

Lemma 8.1
crφ ≤ min{#hφ

−1(p)∧ : p ∈ Td} ≤ mφ.

For γ ∈ F , we shall use

γ|N−N := γ ∩ (pru)−1([−Nω, Nω]). (8.1)

8In Section 18, it will become clear that the complement of the set Gu
φ consists of the Eu-

translation orbit of the unstable boundary of the Markov partition of Td associated to φ.
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For K ⊂ F , K|N−N := {γ|N−N : γ ∈ K}. Although, γ|N−N may fail to be a strand,
we shall adopt Φ(γ|N−N) := Φγ(γ|N−N) as a natural way to extend the action of Φ to
such partial strands (cf. 2.2).

Proof of Lemma 8.1: Fix p ∈ Td and n ∈ N. By Fact 7.2, there is a non-
coincident family I = {J1, ..., Jc} ⊂ S

R0

A−np with crφ = #I. Since I is noncoinci-

dent, #Φ̂n(I) = #I = crφ; and we have

crφ = #Φ̂n(I) ≤ #(Φn(FR0

A−np)
∧) = #Φ̂n(SR0

A−np), n ∈ N, (8.2)

where the inequality hinges on the states in I being substrands of strands in FR0

A−np.
In view of (6.1), taking n → ∞, we obtain

crφ ≤ lim
n→∞

#Φn(FR0

A−np)
∧ = #h−1

φ (p)∧ ≤ #h−1
φ (p).

2

The opposite inequality mφ ≤ crφ requires more work. We start by making
some a priori observations about p ∈ Td with #h−1

φ (p) ≤ c for some c ∈ N. Define,
for n, c ∈ N and N > 0,

Gn
N (c) := {p ∈ Td : #Φn(FR0

A−np)|N−N ≤ c} (8.3)

GN (c) :=
⋃

n≥0

Gn
N (c) (8.4)

G(c) :=
⋂

N>0

GN(c). (8.5)

Fact 8.2 (i) G(c) = {p ∈ Td : #h−1
φ (p) ≤ c}.

(ii) A(GN(c)) ⊂ int(GN(c)).

(iii) |G(c)| = 1 iff |G(c)| > 0 iff ∀NGN(c) 6= ∅.
(Here | · | is the Haar measure on Td.)

Proof: Set Kn
p := Φn

(

FR0

A−np

)

so that (6.1) becomes

h−1
φ (p) =

⋂

n≥0

Kn
p . (8.6)

(i): #h−1
φ (p) ≤ c iff ∀N #h−1

φ (p)|N−N ≤ c iff ∀N∃n #Kn
p |N−N ≤ c iff p ∈

⋂

N>0

⋃

n≥0 Gn
N(c) = G(c), where the last but one equivalence uses that Kn

p ⊃ Kn+1
p

and that, for every N ∈ N, the sequence Kn
p |N−N , n ∈ N, stabilizes on h−1

φ (p)|N−N .
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(ii): Fix n0 ∈ N such that Φn0(FR0+0.1
q ) ⊂ FR0

An0q for any q ∈ Td. It is enough
to see

A(Gn
N(c)) ⊂ int(Gn+n0+1

N (c)).

Consider then p ∈ Gn
N(c). We have

#Φn+n0+1
(

FR0+0.1
A−n−n0p

)

|λN
−λN =#Φ

(

Φn
(

Φn0

(

FR0+0.1
A−n0(A−np)

))

|N−N

)

(8.7)

≤#Φn
(

FR0

A−np

)

|N−N ≤ c (8.8)

Now, since R0 + 0.1 > R0 and λN > N , the above inequality yields

#Φn+n0+1
(

FR0

A−n−n0q

)

|N−N ≤ c

valid for all q in an open ball U around p. Hence A(U) ⊂ int(Gn+n0+1
N (c)).

(iii): Clearly, |G(c)| = 1 iff |GN(c)| = 1 for all N ∈ N; and, by invoking
ergodicity of the toral automorphism, |GN(c)| = 1 iff |GN(c)| > 0. However, by
(ii) |GN(c)| > 0 exactly when GN(c) 6= ∅, which happens iff |Gn

N(c)| > 0 for some
n. 2

Now, to guarantee GN(c) 6= ∅ we check that S
R0

0 can be compressed to at most
c states by an iterate of Φ and a translation:

Lemma 8.3 In order for GN (c) 6= ∅ for all N ∈ N it suffices that, for some
q ∈ Td, n ∈ N and t ∈ R, we have that (Φn(I) − tω)∧ exists for all I ∈ SR0

q and

#{(Φn(I) − tω)∧ : I ∈ SR0

q } = c. (8.9)

Proof. Fix N ∈ N. It is easy to see that (8.9) must hold for a whole open
segment of t ∈ (t0 − ǫ, t0 + ǫ) for some ǫ > 0. Since

{(Φn(I) − t0ω)∧ : I ∈ SR0

q } = {(Φn(I))∧ : I ∈ SR0

q−λ−nt0ω},

we may as well assume that t0 = 0 (at the expense of replacing q by q − t0ω). It
follows that, for any m ∈ N,

#{Φn+m(I)|λmǫ
−λmǫ : I ∈ SR0

q } ≤ c,

which yields
#{Φn+m(I)|N−N : I ∈ SR0

q } ≤ c

provided m is taken large enough. Thus An+mq ∈ Gm+n
N (c). 2

The next logical step is to see that crφ is the minimum of c appearing in the
previous lemma:
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Lemma 8.4 For any R ≥ R0,

crφ = min
{

#{(Φn(I) − tω)∧ : I ∈ SR
0 }
}

(8.10)

where the minimum is taken over all n ∈ N and t ∈ R such that (Φn(I) − tω)∧

exists for all I ∈ SR
0 .

Proof. First observe that #{(Φn(I) − tω)∧ : I ∈ SR
0 } ≥ crφ. Indeed, pick a

non-coincident family of maximal cardinality, I ⊂ S0. Taking t and n as above,
the family (Φn(I) − tω)∧ is well defined, and it must also be of cardinality crφ or
otherwise some two states in I would be coincident. Hence, #{(Φn(I) − tω)∧ :
I ∈ SR

0 } ≥ #(Φn(I) − tω)∧ = crφ.
It is left to show that c ≤ crφ where c is the right hand side minimum in (8.10).

For n ∈ N, let Tn be the set of t ∈ R realizing the minimum c so that if t ∈ Tn, then
{Φn(I) : I ∈ SR

0 } coalesces into c edges upon traversing Es + tω (which is to mean
that the strands in {Φn(I) : I ∈ SR

0 } contain only c different edges intersecting
Es + tω at their interior or initial points). Clearly, Tn ⊂ Tn+1 for n ∈ N, and
non-empty Tn’s exist and have interior. Thus, for any r > 0 (to be specified later),
by picking t0 ∈ int(

⋃

n≥0 Tn) and taking n ∈ N sufficiently large, we can assure

that the family of strands {Φn(I) : I ∈ SR
0 } coalesces into some c edges upon

traversing Es + τω for every τ with |τ − t0| < r. Let J1, . . . , Jc be the c edges to
which {Φn(I) : I ∈ SR

0 } coalesces upon traversing Es + t0ω. We require that r be
large enough so that |τ − t0| < r whenever (Es + τω) ∩⋃c

i=1 Ji 6= ∅. That c ≤ crφ

follows once we show that the family {(Φn(I) − t0ω)∧ : I ∈ SR
0 } = {J ′1, . . . , J ′c},

where J ′i = Ji − t0ω, is non-coincident.
Suppose J ′i∼J ′j for some i, j so that (Φm(J ′i) − t′ω)∧ = (Φm(J ′j) − t′ω)∧ for

some t′ ∈ R and m ∈ N. Thus Φm(Ji) and Φm(Jj) coalesce upon traversing
Es + (λmt0 + t′)ω, which means that {Φn+m(I) : I ∈ SR

0 } coalesces to fewer than
c edges upon traversing Es + (λmt0 + t′)ω — see Figure 8.1. This contradicts the
minimality of c. 2

Conclusion of the proof of Theorem 7.3: By combining the last two lemmas,
we see that G(crφ) is of full measure and so non-empty, which yields mφ ≤ crφ. In
view of Lemma 8.1, we get mφ = crφ. Now, from (i) of Fact 8.2, Gu

φ := {p ∈ Td :

#hφ
−1(p) = mφ} = G(crφ). Also, via (ii),

Gu
φ =A(Gu

φ) = A(G(crφ)) = A

(

⋂

N>0

GN(crφ)

)

=
⋂

N>0

A(GN(crφ)) ⊂
⋂

N>0

int(GN(crφ)) ⊂ G(crφ) = Gu
φ

so that Gu
φ =

⋂

N>0 int(GN(crφ)) making Gu
φ a Gδ set.

Now, regarding the noncoincidence condition, suppose that hφ(γ1) = hφ(γ2) =
p ∈ Gu

φ for γ1 6= γ2 and γ1 and γ2 have coincident edges. Then for large enough
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Φm

Es+(λmt0+t′)ω

Jj

Es+(t0+r)ω

Es+(t0+λ−mt′)ω

Es+t0ω

Es+λmt0ωEs+(t0−r)ω

Ji

Φm(Ji) Φm(Jj)

Figure 8.1: Φn(SR
0 ), on the left, further coalesces under some iterate Φm if Ji ∼ Jj .

n ∈ N and some t ∈ R, Φn(T t(γ1))
∧ = Φn(T t(γ2))

∧. But ηi := Φn(T t(γi)) ∈
hφ
−1(q) where q := An(p + tω) ∈ Gu

φ since Gu
φ is invariant under both T and A.

This violates Lemma 8.1, which guarantees that hφ
−1(q) ∋ η 7→ η̂ ∈ hφ

−1(q)∧ is a
bijection.

Finally the continuity of the inverse h−1
φ , is immediate from the following tech-

nical claim:9

Claim 8.5 Let p ∈ Gu
φ and N > 0 be given. There is ǫ > 0 so that if |y| ≤ ǫ then

hφ
−1(p + y)|N−N = (hφ

−1(p) + y)|N−N

Toward the proof of claim, note that, since A(Gu
φ) = Gu

φ, p1 := A−1(p) ∈ Gu
φ as

well. Let then n ∈ N be such that p1 ∈ Gn
N(crφ). Taking n0 as in the proof of (ii)

of Fact 8.2 and δ > 0 sufficiently small, we get

#Φn+n0+1
(

FR0+0.01
A−n−n0 (p1+x)

)

|N−N ≤ crφ

for all |x| < δ. Thus, by substituting k := n + n0 + 1 and y := Ax,

#Φk
(

FR0+0.01
A−k(p+y)

)

|N−N ≤ crφ

for all |y| < ǫ provided ǫ > 0 is small. Since, hφ
−1(p + y)|N−N ⊂ Φk

(

FR0+0.01
A−k(p+y)

)

|N−N

satisfies (due to Lemma 8.1)

#hφ
−1(p + y)|N−N ≥ #hφ

−1(p + y)∧ ≥ crφ,

9Just by compactness, if pn → p then for any ǫ > 0 there is n0 so that n > n0 forces hφ
−1(pn) ⊂

Bǫ(hφ
−1(p)). What we really have to show then is that, for p ∈ Gu

φ, hφ
−1(p) ⊂ Bǫ(hφ

−1(pn)) for
sufficiently large n.
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we have, in fact,

hφ
−1(p + y)|N−N = Φk

(

FR0+0.01
A−k(p+y)

)

|N−N . (8.11)

On the other hand, hφ
−1(p) ⊂ Φk

(

FR0

A−k(p)

)

so that, after perhaps some further

diminishing of ǫ > 0, |y| < ǫ guarantees

hφ
−1(p) + y ⊂ Φk

(

FR0

A−k(p)

)

+ y = Φk
(

FR0

A−k(p)
+ A−ky

)

⊂ Φk
(

FR0+0.01
A−k(p+y)

)

.

As p ∈ Gu
φ forces #(hφ

−1(p) + y)|N−N = crφ (because the mφ-strands in hφ
−1(p)

never share an edge) we actually have

(hφ
−1(p) + y)|N−N = Φk

(

FR0+0.01
A−k(p+y)

)

|N−N . (8.12)

The claim follows by combining (8.11) and (8.12). 2

9 Geometric Coincidence Conjecture and Pure

Discrete Spectrum

All known examples support the following conjecture.

Conjecture 9.1 (Geometric Coincidence Conjecture) The coincidence rank
of any unimodular Pisot substitutions is crφ = 1.

For d = 2, the conjecture is true (see Section 19). GCC gains particular importance
in connection with the following conjecture, which has been open for some years.

Conjecture 9.2 (Pure Discrete Spectrum Conjecture) The tiling flow of
any unimodular Pisot substitution has pure discrete spectrum.

Let us explain what that is to mean. First of all, for φ that is primitive, the
flow T is not only minimal but also uniquely ergodic, i.e., it has a unique invariant
probability measure µφ. In [34], Solomyak gives a proof of this fundamental fact for
one-dimensional as well as higher-dimensional tiling spaces. Also, in [11], unique
ergodicity of the shift map on the substitutive system associated with φ is shown.
This shift map is naturally conjugate to the return map under T to the subset Σφ :=
{τ ∈ T min

φ : τ has a vertex on Es}. The unique ergodicity of the return map and
the flow are of course equivalent. While we refer the reader to the literature for the
proofs, let us mention that the crux of the matter lies in the following consequence
of the Perron-Frobenius theorem applied to A: each letter i ∈ A occurs in any
bi-infinite word [τ ] of a tiling τ ∈ Tφ with a well defined asymptotic frequency fi

independent of τ , and the vector of those frequencies (f1, . . . , fd) is proportional
to the eigenvector ω = (ω1, . . . , ωd). (We shall use that fact in Section 12.)
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By definition, T has pure discrete spectrum iff its eigenfunctions are linearly
dense in the space L2(Tφ, µφ) of µφ-square integrable functions. (By Corollary 5.7,
T has pure discrete spectrum iff the shift map on the substitutive system Xφ has
pure discrete spectrum.) A function g : Tφ → C is an eigenfunction with eigenvalue
α iff g ◦ T t = e2πiαtg for all t ∈ R. The classical Halmos-von Neumann theorem
(see Ch. 3 in [39]) asserts that pure discrete spectrum for T is equivalent to T
being measure theoretically isomorphic to a translation flow on a compact abelian
topological group (taken with the Haar measure). The group’s characters serve as
the eigenfunctions. Although, we cannot prove PDSC at this time, the following
theorem computes the spectrum of T and thus identifies the pertinent group as Td.

Theorem 9.3 (Spectrum Theorem) If φ is a unimodular Pisot substitution,
then the spectrum of its translation flow T equals {〈k|ω〉 : k ∈ Zd}. Any
α = 〈k|ω〉 is a simple eigenvalue with the corresponding eigenspace generated
by the continuous function γ 7→ χk ◦ hφ(γ) where χk is a kth-harmonic on Td:
χk(x(mod Zd)) := e2πi〈k|x〉, x ∈ Rd.

The theorem readily implies that the toral flow is the maximal equicontinuous
factor of T (via hφ : Fφ → Td) — as it was suggested in [11].

Corollary 9.4 GCC is equivalent to PDSC, i.e., for unimodular Pisot φ, crφ = 1
iff T has pure discrete spectrum.

Proof of Corollary 9.4 from Theorem 9.3: If crφ = 1 then hφ provides the sought
after measure theoretical isomorphism to the translation on Td (cf. the diagram
(5.2)).

For the other implication, suppose that crφ > 1 yet T has pure discrete spec-
trum. To get a contradiction, we shall construct a non-zero element of L2(Tφ, µφ)
orthogonal to all the eigenfunctions.

Fix p ∈ Gu
φ. By Corollary 7.4, for a small ǫ > 0, V := Bǫ(p)∩Gu

φ is well covered

so that h−1
φ (V ) = U1 ∪ . . . Ucrφ

where Uj’s are disjoint and hφ|Uj
: Uj → V is a

homeomorphism. Observe that hφ|Uj
: Uj → V pushes µφ to 1/crφ of the Haar

measure on Td. (Indeed, by unique ergodicity, the push forward (hφ)∗(µφ) is the
Haar measure, and the a.e. defined Jacobian Jφ : Tφ → R must be equal to 1/crφ

because it is invariant under T and of integral one.)
Define a function g ∈ L2(Tφ, µφ) by g|U1

= 1, g|U2
= −1 and g = 0 elsewhere.

Thus, for k ∈ Z,

∫

Tφ

g · χk ◦ hφ =

∫

U1

χk ◦ hφ −
∫

U2

χk ◦ hφ =
1

crφ

∫

V

χk −
1

crφ

∫

V

χk = 0.

This contradicts the linear density of χk ◦ hφ’s in L2(Tφ, µφ) because g is clearly
not a.e. 0. 2

29



10 Coincidence classes for generic Sp

In preparation for the proof of Theorem 9.3, we interpret the minimal degree of hφ

as the number of equivalence classes of ∼0 on the space of states Sp over p ∈ Td.
This is more precise than mφ = crφ but holds only for a generic set of p ∈ Td,
flushed out by the following lemma. (The lemma serves also as the foundation for
the development of the definition of the dual tiling in Section 14.)

Lemma 10.1 There is a full measure dense Gδ set Gs
φ ⊂ Td invariant under Es

translations and the toral automorphism induced by A such that for p ∈ Gs
φ we

have

(i)[cardinality] Sp consists of exactly mφ equivalence classes of ∼0;

(ii)[continuity] if I ∼0 J for I, J ∈ Sp, then I + z ∼0 J + z for all sufficiently
small z ∈ Rd;

(iii)[relative density] there is an R1 such that, for any y ∈ Es, each equivalence
class in Sp has a representative in the cylinder y + CR1.

To complement
u

Fφ, the Eu-generic core defined by (7.4), we introduce

s

Fφ := {γ ∈ Fφ : hφ(γ) ∈ Gs
φ},

su

Fφ :=
s

Fφ ∩
u

Fφ (10.1)

referred to as the Es-generic core of Fφ and the generic core of Fφ, respectively. All

three
u

Fφ,
s

Fφ, and
su

Fφ are full measure Φ-invariant Gδ subsets of Fφ.
10

Proof of Lemma 10.1: We note first that for any p ∈ Td and R ≥ R1 := R0+
√

d,
SR

p has at least mφ equivalence classes of ∼0. Indeed, fix any q ∈ Gu
φ (supplied

by Theorem 7.3) to get mφ-noncoincident strands γ1, . . . , γm ∈ hφ
−1(q). Pick

x ∈ [0, 1]d so that q+x = p(mod Zd). By Theorem 7.3, (γ1+x)∧ . . . (γm+x)∧ ∈ SR
p

are mutually non-coincident.
To construct Gs

φ, for R > R1, we define

Dn
R := {p ∈ Td : #Φ̂n(SR

p ) ≤ mφ}, DR :=
⋃

n>0

Dn
R, D :=

⋂

R>0

int(DR). (10.2)

Thus, from the definition of ∼0, p ∈ DR iff SR
p has at most (and thus, for

R > R1, exactly) mφ equivalence classes of ∼0; and p ∈ D iff SR
p has exactly mφ

such classes “stably” under small perturbation of p for any R > R1. Note that D
is Es-invariant.

From now on we consider R > R1. We claim that DR is dense. Indeed,
otherwise there would be p ∈ Td, ǫ > 0 and (since SR

p is finite) a single I ∈ SR
p

10If φ is, for example, the Fibonacci substitution then the complement of Gs
φ is Es mod Z2.

Generally, it is of the form C + Es mod Zd where C ⊂ Eu is a zero-dimensional set.
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such that I 6∼tω (γi + x)∧ for all i = 1, . . . , mφ and all t with |t| < ǫ (where γi + x
is as before). By applying Φn to I and γi + x’s for n large enough (so that, say,
λnǫ > 100), we would then get mφ + 1 strands intersecting Es along pairwise
noncoincident states — in contradiction with mφ = crφ (see Theorem 7.3).

Moreover, we claim DR ⊂ int(DR). Indeed, p ∈ DR means exactly that there
is n ∈ N such that #Φ̂n(SR

p ) = mφ. But then #Φ̂n(SR
p̃ ) = mφ for all p̃ := p − tω

where 0 ≤ t < ǫ and ǫ > 0 is sufficiently small. Coupled with Es-invariance of ∼0

this yields #Φ̂n(SR
p̃ ) = mφ for all p̃ in a neighborhood of p− ǫ

2
ω thus placing p− ǫ

2
ω

in int(DR).
So far we know that int(DR) is a dense open set. At the same time, for R > R0,

Φ̂(SR
A−1p) ⊂ SR

p yields A−1(DR) ⊂ DR, so int(DR) is in fact of full measure by
ergodicity of the toral automorphism. Thus D is a full measure dense Gδ invariant
under actions of Es and the toral automorphism; and so is

Gs
φ := D \

(

Es + Zd
)

.

(i) follows immediately from Gs
φ ⊂ D and the construction of D.

(ii) alone can be easily seen to hold for all p 6∈ Es + Zd.
As for (iii), we deal first with the special case of the cylinder centered at y =

0. From our initial discussion, we know that SR1

p contains representatives of mφ

equivalence classes for every p. For p ∈ D, there are no more classes in Sp and thus
all are represented in SR1

p .
To get (iii) in full generality, we translate along Es: for y ∈ Es, all the states

of Sp in y + CR1 constitute S
R1

p−y + y and p − y ∈ D whenever p ∈ D. 2

11 Homoclinic returns and Stabilizers

For any compact metric space X with a flow T and a discrete action Φ, one can
speak of the homoclinic return times of a point p ∈ X:

Zu
p := {t ∈ R : T t(p) ∈ W s(p)}. (11.1)

Here, W s(p) is the stable set of p with respect to Φ defined in the usual way:
W s(p) := {q ∈ X : limn→∞ dist(Φn(p), Φn(q))} = 0.

As a basic example, think of the toral automorphism A : Td → Td induced by
the matrix A and its unstable (holonomy) flow x (mod Zd) 7→ x + tω (mod Zd) .
By inspecting the situation in the universal cover Rd, one easily concludes that
the points of Zu

p correspond to the projections of Zd onto Eu; namely, Zu
p · ω =

pru(Zd) = {〈v|ω∗〉 : v ∈ Zd}. Our main interest is of course in dealing with
the translation flow T and the inflation-substitution map Φ on F (associated to a
unimodular Pisot φ). For γ ∈ F , the following definition supplies the counterpart
of the Zd in the above toral example.
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Definition 11.1 The stabilizer of γ ∈ F is

Zγ := {v ∈ Zd : γ̂∼0(γ + v)∧}

v

Φn

Es
tω

W s(γ)

γ

T t(γ)

γ

W u(γ)
T t(γ)

γ+v

Figure 11.1: Homoclinic return time t ∈ Zu
γ and the corresponding v ∈ Zγ .

Inasmuch as Zγ is not a priori subgroup of Zd, our terminology is perhaps a bit
misleading. Nomenclature aside, Zγ and Zu

γ are bijective via pru:

Proposition 11.2 Suppose that p 6∈ Es + Zd and γ ∈ Fp.Then

Zu
γ · ω = pru(Zγ) i.e. Zu

γ = 〈Zγ |ω∗〉.

Proof: First we show that, for any p ∈ Td and γ ∈ Fp, t ∈ Zu
γ implies that

tω = pru(v) for v ∈ Zγ.
Suppose that η := γ+tω ∈ W s(γ). Since h factors Φ to the toral automorphism,

h(η) ∈ W s(h(γ)) so that h(η) + x = h(γ) for a (unique) x ∈ Es. For κ := η + x,
we have h(κ) = h(γ) = p(mod Zd) meaning that κ = γ + v with v := tω + x ∈ Zd.
Hence, Φn(κ), Φn(γ) ∈ FAnp and dist(Φn(κ), Φn(γ)) → 0 by the hypothesis on t.
This forces Φn(κ)∧ = Φn(γ)∧ for sufficiently large n, which means that (γ+v)∧∼0γ̂
showing that v ∈ Zγ. Clearly, tω = pru(v).

Now, suppose that v ∈ Zγ for some γ ∈ Fp with p + Zd ∩ Es = ∅. Then
κ := γ + v satisfies I := Φn(κ)∧ = Φn(γ)∧ for some n ≥ 0. Since Φk(I) is a
common substrand of Φn+k(κ) and Φn+k(γ) and I intersects Es with its interior
by the hypothesis on p = h(γ), we conclude that dist(Φn+k(κ), Φn+k(γ)) → 0, i.e.
κ = γ + v ∈ W s(γ). It follows that γ + tω ∈ W s(γ) provided tω = pru(v) (since
then γ + v = γ + tω modulo Es). 2

Here is the key link between the stabilizers and the GCC.

Proposition 11.3 crφ = 1 is equivalent with Zγ = Zd for generic γ ∈ Fφ. Pre-
cisely, we have

(i) If there is γ ∈ Fφ with Zγ = Zd then crφ = 1;
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(ii) If crφ = 1 then Zγ = Zd for all γ ∈
s

Fφ.

Proof: To begin, observe that any γ ∈ Fφ contains edges of all types (by
primitivity) so that Sp = {(γ + v)∧ : v ∈ Zd} for p = hφ(γ).

(i): If Zγ = Zd then Sp is a single equivalence class of ∼0; and crφ = 1 is
immediate via Fact 7.2.

(ii): Suppose that crφ = 1 and let γ ∈
s

Fφ, i.e. p := hφ(γ) ∈ Gs
φ. By (i) of

Lemma 10.1, Sp consists of exactly mφ = 1 equivalence classes of ∼0. By our initial
observation, Zγ = Zd. 2

The reader interested only in the proof of Theorem 9.3 may move on to the
next section. We turn to some properties of Zγ needed for Section 16.

Fact 11.4 Equip the space of all subsets of Zd with the compact-open topology. Fix
any η ∈ Fφ.

(i) If η ∈
su

Fφ then η + pru(v) ∈
su

Fφ for all v ∈ Zd.

(ii)
su

Fφ ⊂ {η + pru(v) : v ∈ Zη}.
(iii) Zη+pru(v) = Zη − v, v ∈ Zη;

(iv) The mapping Fφ ∋ γ 7→ Zγ ⊂ Zd is continuous at γ ∈
su

Fφ; and for any γ ∈
su

Fφ

Zγ ∈ {Zη − v : v ∈ Zη}
Proof: (i): This follows from invariance of Gu

φ and Gs
φ under the Eu and Es

translations, respectively.

(ii): Fix γ ∈
su

Fφ. By Corollary 15.5, there are b, c ∈ F∗φ dual to γ, η, b ↔ η
and c ↔ γ. Pick t ∈ R such that T t(η) is near γ. Pick x ∈ Es such that T ∗x (b) is
near c, as made possible by minimality of T ∗. The idea is very general: near γ we
have product structure so one can adjust t, x so that T t(η) is dual to T ∗x (b) while
keeping those near γ and c, respectively. Then T t(η) is near γ and t ∈ Zu

η — we
are done. Since we did not define what is meant by the product structure; let us
say this again very concretely: I = (T t(η))∧ is a state near J = γ̂, and J also is
near some state K ∈ T ∗x (b) — all three being in particular of the same type. By a
small adjustment of t, x, we can achieve that I = K, which results in T t(η) being
dual to T ∗x (b), as desired.

(iii): The equality is immediate from the definition of Zη.

(iv): Let γ ∈
s

Fφ, c = κ(γ) ∈
s

F∗φ be its dual, and p = hφ(γ) = hφ
∗(c) ∈ Td.

Fix any N, R > 0. Consider all η ∈ Fφ with dist(η, γ) < δ for a small δ > 0.
Denoting y = hφ(η)− p, if δ is sufficiently small then the inverse continuity claims
for hφ and hφ

∗ guarantee that η|N−N = (γ+y)|N−N and (c+y)R is the full equivalence
class of η̂ in SR

p+y. From the definition of Zγ , it follows that Zγ and Zη coincide on
a ball about 0 ∈ Zd with radius proportional to min{R, N}. This establishes the
continuity.

The continuity, (i) and (iii) yield the rest of (iv). 2
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Corollary 11.5

⋃

γ∈
su

F φ

Zγ =
⋃

v∈Zγ

Zγ − v, γ ∈
su

Fφ γ ∈
su

Fφ

and if
su

Fφ ∋ γ 7→ Zγ is constant then Zγ is a subgroup of Zd for γ ∈
su

Fφ.

Proof: The equality follows by putting together (ii), (iii) and (iv). That Zγ is
a subgroup can be seen from (iii) and (i). 2

We note that the corollary is also true upon replacing
su

Fφ by Fφ (see (i) of
Fact 12.2), and Zγ being a subgroup of Zd for some γ ∈ Fφ implies that φ satisfies
GCC (see Corollary 12.6).

12 Subharmonicity precluded

In this section we study the additive subgroup of Zd generated by all of Zγ’s:

Hφ := 〈
⋃

γ∈Fφ

Zγ〉,

and show the following result

Theorem 12.1 (asubharmonicity) For a unimodular Pisot substitution φ, we
have Hφ = Zd.

As will become increasingly clear, the above theorem says that there is no
geometric realization onto a torus that is a covering of our canonical torus.

Before demonstrating the theorem, it is convenient to connect
⋃

γ∈Fφ
Zγ with

recurrence times of tiles of a fixed type. Fix for a moment γ ∈ Fφ and define

Θφ(i) := {min J − min I : J, I edges of γ of the same type i}, (12.1)

Θφ :=
⋃

i

Θφ(i), (12.2)

In literature, one typically encounters the projection pru(Θφ) of Θφ to Eu (see e.g.
[34]).

Fact 12.2 The above defined objects are independent of γ ∈ Fφ and, for any
i = 1, . . . , d, we have

(i)
⋃

γ∈Fφ
Zγ =

⋃

γ∈
su

F φ

Zγ =
⋃

n∈N
A−nΘφ(i),

(ii) Hφ = 〈Θφ(i)〉.
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Proof: The independence on γ is an easy consequence of primitivity.
(i): Fix γ ∈ Fφ. If I, J are two edges of γ of the same type i ∈ {1, . . . , d}, then

obviously min J − min I ∈ Zγ+tω for any t ∈ R such that Es + tω intersects I. In
particular, there is always such t = 〈v|ω∗〉 for some v ∈ Zd. Hence,

Θφ ⊂
⋃

v∈Zd

Zγ+pru(v), (12.3)

⋃

n∈N

A−nΘφ ⊂
⋃

v∈Zd ,n∈N

ZΦ−n(γ)+pru(v). (12.4)

Now, besides being invariant under A, Gu
φ∩Gs

φ is invariant under p 7→ p+pru(v) =

p− prs(v) for v ∈ Zd. Thus, assuming that γ ∈
su

Fφ, in the last inclusion Φ−n(γ) +

pru(v) ∈
su

Fφ, and we get
⋃

n∈N

A−nΘφ ⊂
⋃

γ∈
su

F φ

Zγ . (12.5)

On the other hand, for any γ ∈ F , if v ∈ Zγ , then Φn(γ) and Φn(γ + v) =
Φn(γ) + Anv coincide on an arbitrarily long substrand provided n is large enough.
In particular, any type i is represented in that substrand so that Anv ∈ Θφ(i),
which proves:

Zγ ⊂
⋃

n∈N

A−nΘφ(i), i = 1, . . . , d. (12.6)

The two above inclusions establish all the equalities.
(ii): The “⊃” inclusion is clear. By primitivity, for sufficiently large N > 0,

we have ANΘφ(i) ⊂ Θφ(j) for any i, j. In particular, AN〈Θφ(i)〉 ⊂ 〈Θφ(i)〉; in
fact, AN〈Θφ(i)〉 = 〈Θφ(i)〉 by unimodularity11 of A. By (i), v ∈ Hφ implies
ANv ∈ 〈Θφ(i)〉 so that v ∈ A−N〈Θφ(i)〉 = 〈Θφ(i)〉. 2

We continue to consider an arbitrary fixed γ ∈ Fφ. To every coset v + Hφ,
where v is a vertex of γ, we associate the types of edges of γ outgoing from the
vertices in v + Hφ:

[v + Hφ]
+ := {i : i is the type of an edge I of γ with min I ∈ v + Hφ} (12.7)

and the types of edges of γ incoming into the vertices in v + Hφ:

[v + Hφ]
− := {i : i is the type of an edge I of γ with max I ∈ v + Hφ}. (12.8)

Fact 12.3

v +Hφ 6= u +Hφ =⇒ [v +Hφ]+ ∩ [u + Hφ]
+ = ∅ and [v +Hφ]− ∩ [u + Hφ]

− = ∅.
(12.9)

11Let Γ ⊂ Zd be subgroup and AΓ ⊂ Γ for unimodular A. Then Γ ⊂ A−1Γ ⊂ A−2Γ ⊂ . . . ⊂ Zd

so that A−n−1Γ = A−nΓ for some n ≥ 0, which shows that AΓ = Γ.
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Proof: To see the first equality, suppose i ∈ [v + Hφ]
+ ∩ [u + Hφ]+. Then

min I +Hφ = v +Hφ and min J +Hφ = u +Hφ for some edges I, J of γ of type i,
which puts v − u ∈ Θφ ⊂ Hφ. The second equality is shown analogously 2

Lemma 12.4 For any vertex v ∈ γ, [v + Hφ]
+ = [v + Hφ]−.

Proof: Recall (from Section 9) that by unique ergodicity of the T t flow, each
i ∈ {1, . . . , d} has a well defined frequency fi of occurrence in γ and that fi is
proportional to ωi (i.e. fi = ωi/C where C =

∑

i ωi).
By (12.9), an edge of type in [v +Hφ]

− must be followed by an edge of type in
[v + Hφ]

+, and an edge of type in [v + Hφ]
+ must be preceded by an edge of type

in [v + Hφ]
−. This gives a bijective correspondence between occurrences of types

in [v +Hφ]
+ and occurrences of types in [v +Hφ]

−. An easy estimate — based on
the fact that the distance between the corresponding edges is uniformly bounded
from above — shows that the frequency of [v + Hφ]

+ equals that of [v + Hφ]−:
∑

i∈[v+Hφ]+

ωi =
∑

i∈[v+Hφ]−

ωi.

That [v + Hφ]
+ = [v + Hφ]

− follows then by independence of ωi’s over Z (see
Fact 5.4). 2

Conclusion of Proof of Theorem 12.1: Fix i ∈ {1, . . . , d}. We shall show that
ei ∈ Hφ. By primitivity, there is an edge I of type i in γ. Set u := I− and v := I+.
We have i ∈ [u+Hφ]

+ = [u+Hφ]
− and i ∈ [v +Hφ]

−. By (12.9), u+Hφ = v +Hφ

so that ei = v − u ∈ Hφ. 2

Before leaving this section, we propose the following technical conjecture mo-
tivated by a certain esthetic deficiency of the above proof:

Conjecture 12.5
⋃

γ∈Fφ
Zγ is a subgroup of Zd.

From Theorem 12.1, this subgroup must, in fact, be Zd. For comparison we
record the following corollary (cf. Corollary 11.5).

Corollary 12.6 crφ = 1 iff Zη is a subgroup of Zd for some η ∈ Fφ.

Proof: By Proposition 11.3, if crφ = 1 then Zγ = Zd for all γ ∈
s

F . On the
other hand, for any η ∈ Fφ, (i) of Fact 12.2 and Corollary 11.5 yield

⋃

γ∈Fφ

Zγ =
⋃

γ∈
su

F φ

Zγ =
⋃

v∈Zη

Zη − v. (12.10)

Thus, if Zη is a subgroup, then
⋃

γ∈Fφ

Zγ = Zη

and we conclude that Zη = Zd from Theorem 12.1. crφ = 1 follows now from (i)
of Proposition 11.3. 2
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13 Discrete spectrum from stabilizers (proof of

Spectrum Theorem)

In this section, we finalize determination of the spectrum for the tiling flow T and
thus prove Theorem 9.3.

In preparation for the proof of the theorem, we establish a connection between
the homoclinic return times and the spectrum valid in a general context of Φ and
T that are, respectively, a homeomorphism and a flow on a compact metric space,
both measure preserving and satisfying the commutation relation Φ◦T t = T λt ◦Φ.
Below, we set exp(x) := e2πix.

Lemma 13.1 (Solomyak) Suppose that T is ergodic and, for some t ∈ R and
A ⊂ X of positive measure, limn→∞ dist(Φn ◦ T t(x), Φn(x)) = 0 for all x ∈ A.
Then for any eigenvalue α of T , we must have that exp(λnαt) → 1.

The lemma is extracted from Theorem 4.3 in [34], which is analogous to an earlier
result by Host for substitutive systems (see [13] and also Theorem VI.20 in [24]).

Proof (Solomyak): Let gα ∈ L2(X) be an eigenfunction corresponding to α,
gα ◦ T t = exp(αt)gα, normalized so that |gα| = 1 a.e. (via ergodicity of T ). For
an arbitrary ǫ > 0, one can approximate gα (in L2(X)) by a continuous g with

‖g − gα‖ ≤ ǫ and estimate as follows. Below, ‖u‖B :=
√

∫

B
|g2|.

|exp(λnαt) − 1| ·
√

|Φn(A)| = (13.1)

|exp(λnαt) − 1| · ‖gα‖Φn(A) = (13.2)

‖exp(λnαt)gα − gα‖Φn(A) = (13.3)

‖gα ◦ T λnt − gα‖Φn(A) = (13.4)

‖gα ◦ T λnt ◦ Φn − gα ◦ Φn‖A = (13.5)

‖gα ◦ Φn ◦ T t − gα ◦ Φn‖A ≤ (13.6)

‖g ◦ Φn ◦ T t − g ◦ Φn‖A+ (13.7)

‖gα ◦ Φn ◦ T t − g ◦ Φn ◦ T t‖A + ‖gα ◦ Φn − g ◦ Φn‖A ≤ (13.8)

‖g ◦ Φn ◦ T t − g ◦ Φn‖A + 2ǫ (13.9)

where the norm in the last line converges to 0 by the continuity of g and the
hypothesis on A. Thus |exp(λnαt) − 1| ·

√

|A| → 0, as desired. 2

In the context of Fφ, the lemma can be reinterpreted as follows.

Corollary 13.2 For γ ∈
su

Fφ, t ∈ Zu
γ , and α an eigenvalue, we have

exp(λnαt) → 1. (13.10)
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Proof: First, we claim that t ∈ Zu
η for all η ∈ A := Br(γ) provided r > 0 is

sufficiently small. Indeed, recall that, by Proposition 11.2, t ∈ Zu
γ iff t = pru(v)

for v ∈ Zγ ; and v ∈ Zη for η sufficiently close to γ by the continuity assertion in
(ii) of Fact 11.4.

To see that A has positive measure, observe that
su

Fφ ⊂
u

Fφ ⊂ Fmin
φ where the

last set is the support of the invariant measure. 2

Our next task is to understand α for which (13.10) can hold. This is an issue
in the realm of the theory of Pisot numbers ([28, 6]) and our exposition parallels
the development of a refined version of the classical Pisot theorem in [17].

We shall use the concept of the Fourier dual of a subset Z ⊂ Rd, which is

Z∗ := {k ∈ Rd : 〈v|k〉 ∈ Z for all v ∈ Z}.

For Z that is a lattice (i.e. a discrete subgroup of rank d), Z∗ is its dual lattice.
Generally, Z∗ is a subgroup of Rd, Z ⊂ (Z∗)∗, and Z∗ is a lattice in case Z is
relatively dense in Rd (i.e. every ball of some fixed radius R > 0 contains an
element of Z). Also, Z∗ = 〈Z〉∗ and (Zd)∗ = Zd. Proofs are left as an exercise.

Lemma 13.3 (Pisot theory) Let Z ⊂ Zd and, as before, let A be a Pisot uni-
modular matrix with leading eigenvalue λ > 0 and ω and ω∗ be its right and left
eigenvectors: Aω = λω and AT ω∗ = λω∗.
Given α ∈ R,

exp(λnαt) → 1 for all t ∈ {〈v|ω∗〉 : v ∈ Z}
implies12

α = 〈k|ω〉 for some k ∈ Z∗.

Proof: We start with a key preliminary computation. Suppose that t, α ∈ R

are written in the form t = 〈v|ω∗〉 and α = 〈k|ω〉 for some v, k ∈ Rd; and B = AT .
We have

λntα = 〈v|Bnω∗〉〈k|ω〉 = 〈Anv|ω∗〉〈k|ω〉 = 〈〈Anv|ω∗〉ω|k〉 = 〈pru(Anv)|k〉 =

〈Anv|k〉 − 〈Anv − pru(Anv)|k〉

where the second term converges to 0 (exponentially fast) because Anv −
pru(Anv) = An(v − pru(v)) where v − pru(v) ∈ Es. In this way,

exp(λnαt) → 1 iff exp(〈Anv|k〉) → 1 iff exp(〈v|Bnk〉) → 1 (13.11)

Now, suppose that (13.11) holds for some α = 〈k|ω〉 and any v ∈ Z. Since
v ∈ Zd, ξv : x 7→ exp(〈v|x〉) is a character on Td and Gv := {x ∈ Td : ξv(x) = 1}
is a closed subgroup of Td. In terms of p := k(mod Zd) ∈ Td and the toral
automorphism f := fB : Td → Td induced by B, the condition exp(〈v|Bnk〉) → 1

12The opposite implication holds whenever AZ ⊂ Z.
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translates to dist(fn(p), Gv) → 0. Observe that, in fact, dist(fn(p), Ginv) → 0
where Ginv :=

⋂

l∈Z
f l(Gv). (Indeed, otherwise there would be a subsequence

nj → ∞, z ∈ Gv, and l ∈ Z such that fnj(p) → z and f l(z) 6∈ Gv; and we get
fnj+l(p) → f l(z) 6∈ Gv contradicting dist(fn(p), Gv) → 0.)

Of course, Ginv is a closed subgroup of Td; we claim that Ginv is finite. To show
that, consider its full lift Λ := {x ∈ Rd : x(mod Zd) ∈ Ginv}. From f(Ginv) = Ginv

we have BΛ = Λ, and so AΛ∗ = Λ∗. Since the Pisot hypothesis forces A to be
irreducible over Q, Λ∗ must be of rank d. It follows that (Λ∗)∗ is a lattice in Rd,
which makes Λ ⊂ (Λ∗)∗ also a lattice and shows that Ginv = Λ/Zd is finite.

Now that we know that Ginv is finite, it must just be a finite collection of
periodic orbits of f , and we see that dist(fn(p), Ginv) → 0 implies that there is a
single p0 ∈ Ginv such that dist(fn(p), fn(p0)) → 0. Viewed in the universal cover
Rd, this yields a lift k0 ∈ Rd of p0 such that k − k0 is in the stable space of B so
that k and k0 have equal projections onto the unstable space:

α = 〈k|ω〉 = 〈k0|ω〉.

What is more, k0 (mod Zd) = p0 ∈ Gv translates to ξv(k0(mod Zd)) = 1 that is
〈v|k0〉 ∈ Z, and so k0 ∈ Z∗ by arbitrariness of v ∈ Z. 2

Conclusion of Proof of Theorem 9.3: Set Z :=
⋃

γ∈Fφ
Zγ . From Theorem 12.1,

we have Hφ = 〈Z〉 = Zd. Consider an eigenvalue α of T . From Corollary 13.2 (via
Proposition 11.2), the hypotheses of Lemma 13.3 are satisfied, and we conclude
that α = 〈k|ω〉 where k ∈ Z∗ = 〈Z〉∗ = (Zd)∗ = Zd.

That α is simple follows from ergodicity of the flow T . That any χk ◦ hφ where
k ∈ Zd is an eigenfunction with eigenvalue 〈k|ω〉 is clear since T factors via hφ to
the Kronecker flow on Td. 2

14 Dual Tiling Space F∗
φ

For a unimodular Pisot φ, the tiling space flow T has for its orbits the one di-
mensional unstable sets of Φ thus providing a parametrization of those sets by
Eu ∼= R. This section is devoted to a proof that there is a natural (measurable)
action by Es ∼= Rd−1 having the stable sets of Φ as its orbits. We shall not embark
on detailed study of this dual action here, although, in the subsequent section, we
shall see that GCC is equivalent to the a.e. commutation of the Eu and Es actions.
Lemma 10.1 is the departure point of the considerations of this section.

Let F∗ be the space that consists of collections of edges such that vertices of any
two edges are congruent modulo Zd, each edge intersects Es, and no two edges form
a strand of length two (this last condition clearly regards only edges intersecting Es

at their endpoint). F∗ is to be taken with the topology of Hausdorff convergence
on compact subsets (of Rd), which makes it a compact metrizable space.
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Definition 14.1 The dual tiling space13 of a substitution φ is

F∗φ :=
⋃

p∈Gs
φ

{[I]0 : I ∈ Sp}

where [I]0 is the equivalence class of ∼0 of I and the closure is taken in F∗. The
Es-generic core of F∗φ is

s

F∗φ :=
⋃

p∈Gs
φ

{[I]0 : I ∈ Sp}

In this way, c ∈ F∗ belongs to F∗φ iff for any R, ǫ > 0 there is t ∈ R with |t| < ǫ

such that Es + tω ∩ Zd = ∅ and the edges in c within R distance from 0,

cR := {I ∈ c : dist(I, 0) < R},

are precisely those edges within R distance from 0 that intersect Es + tω and are
∼tω-equivalent (so that Φ̂n(cR − tω) is a single state for some n ∈ N). Note that
every c ∈ F∗ is relatively dense along Es in the sense of (iii) of Lemma 10.1; in
particular, c is nonempty.

Now, the natural action of Es on F∗ by translation induces an action, denoted
T ∗, of Es on F∗φ:

T ∗x (c) := c + x, x ∈ Es. (14.1)

In the next section we show that this action is minimal (see Proposition 15.3).
More subtly, if I is an edge intersecting Es then denote by Φ∗(I) all the edges J
such that I is an edge of Φ(J); and observe that Φ∗(I) ∈ F∗. We have then a
natural

Φ∗ : F∗ → F∗, Φ∗(c) :=
⋃

{Φ∗(I) : I ∈ c}.

Since Φ∗(c) = Φ̂−1(c) for c ∈
s

F∗φ and ∼0 is Φ̂-invariant,
s

F∗φ and F∗φ map to them-
selves under Φ∗. Let us record that (Φ∗)−1 is truly a very decent compactification
of Φ̂:

Fact 14.2 Φ∗ : F∗φ → F∗φ is a homeomorphism.

Proof: Checking continuity of Φ∗ : F∗ → F∗ is left as an exercise. We shall

prove that Φ∗ is 1-1 and onto F∗φ. Regarding “onto”, for any c ∈
s

F∗φ, we have

b := {Φ̂(I) : I ∈ c} ∈
s

F∗φ and Φ∗(b) = c, which shows that
s

F∗φ is in the range,
and thus so is its closure F∗φ. As for “1-1”, we record first that an element c ∈ F∗φ
falls into one of three mutually disjoint categories:
interior: all edges of c intersect Es at an interior point;

13See Proposition 18.4 for a justification of this terminology.
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upper: c has some edges with min vertex on Es;
lower: c has some edges with max vertex on Es.

Of course all c ∈
s

F∗φ are interior. Also, observe that, for two edges I, J intersecting
Es, Φ∗(I)∩Φ∗(J) = ∅ unless I and J form a strand through 0. It follows that, if we
consider b, c ∈ F∗φ and suppose that e := Φ∗(b) = Φ∗(c), then b = c is immediate
unless b is upper and c is lower, or vice versa.

To fix attention suppose that b is upper and thus has an edge I = Ii+v for some
v ∈ Es and i ∈ {1, . . . , d}. Take j and n0 so that φn0(i) = j . . . and φn0(j) = j . . .,
which implies that Ii ∼tω Ij for all sufficiently small t > 0. Because b ∈ F∗φ, there
are small tn > 0 such that tn → 0 and all states among Ik, k = 1, . . . , d, coincident
along Es + tnω belong to b; in particular, Ij ∈ b. Hence, Ii ∈ (Φ∗)n0(b). However,
Ii 6∈ (Φ∗)n0(c) because c is lower; which shows that (Φ∗)n0(b) 6= (Φ∗)n0(c) — a
contradiction with Φ∗(b) = Φ∗(c). 2

The natural map F∗ → Td sending c to p(mod Zd) where p is a vertex of any
of the states in c, restricted to F∗φ, yields what we call the dual canonical torus (or
the dual geometric realization),

hφ
∗ : F∗φ → Td, hφ

∗(c) := vertex of c (mod Zd).

Theorem 14.3 (Dual Coincidence Theorem) hφ
∗ : F∗φ → Td is at most M-

to-1 for some M ∈ N with the minimal degree min{#(hφ
∗)−1(p) : p ∈ Td} = mφ.

Moreover, #(hφ
∗)−1(p) = mφ for p ∈ Gs

φ and the mapping p 7→ (hφ
∗)−1(p) is

continuous at p ∈ Gs
φ.

Proof: We start by noting the following consequence of Lemma 5.1. For every
R > 0, there is n ∈ N such that

cR ⊂ (Φ∗)n
(

cR0

−n

)

⊂ c, c ∈ F∗, c−n := (Φ∗)−n(c). (14.2)

Indeed, by definition of Φ∗, c = (Φ∗)n(c−n) implies that every edge I ∈ cR has Φn(I)
passing through an edge J ∈ c−n. By Lemma 5.1, J ∈ cR0

−n if n is sufficiently large.
Hence, I ∈ (Φ∗)n

(

cR0

−n

)

, which proves the first inclusion. The second inclusion is
clear.

For a proof that the degree of hφ
∗ is uniformly bounded, fix p ∈ Td and let M

be the number of different collections each consisting of edges intersecting Es no
furher than R0 from Eu and with vertices Zd-congruent to some common q ∈ Td.
Note that, taking any R > 0 and n as before, every cR0

−n := (Φ∗)−n(c)R0 where
c ∈ (hφ

∗)−1(p) forms such a collection. From (14.2), we conclude that #{cR : c ∈
(hφ
∗)−1(p)} ≤ M , and so #(hφ

∗)−1(p) ≤ M by arbitraryness of R > 0.
That #(hφ

∗)−1(p) = mφ for p ∈ Gs
φ is immediate from (i) of Lemma 10.1

provided we know:

Fact 14.4 (hφ
∗)−1(p) ⊂

s

F∗φ for p ∈ Gs
φ
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Proof: Here it suffices to see that, for p ∈ Gs
φ and I1, I2 ∈ Sp, if there is a

sequence tk → 0 such that I1 ∼tkω I2 then I1 ∼0 I2. For a proof, let γ1, γ2 ∈ Fφ be
such that J1 := (γ1 + x)∧ ∼0 I1 and J2 := (γ2 + x)∧ ∼0 I2 — as constructed at the
beginning of the proof of Lemma 10.1. By (ii) of Lemma 10.1, Ii ∼tω Ji for i = 1, 2
and all |t| < ǫ for some ǫ > 0. In particular, J1 ∼tkω I1 ∼tkω I2 ∼tkω J2 meaning
that γ1 and γ2 are coincident and thus equal; I1 ∼0 I2 follows. 2

Since mφ is the cardinality of the fiber over a dense set Gs
φ, it must be the

minimal fiber cardinality (since fibers are uniformly discrete).
Lastly, we shall establish continuity of the inverse, which is equivalent to the

following claim.

Claim 14.5 Let p ∈ Gs
φ and R > 0 be given. There is δ > 0 such that if |y| < δ

then
(hφ
∗)−1(p + y)R =

(

(hφ
∗)−1(p) + y

)R
,

and the above collection of states is a full ∼0 equivalence class in SR
p+y.

Proof of Claim: Fix p ∈ Gs
φ. Consider c ∈ (hφ

∗)−1(p). By (ii) of Lemma 10.1,

for any two states I, J ∈ c, we have I + y∼0J + y provided y ∈ Rd is small. Since
there are finitely many states in the R-ball around 0, there is then a common δ > 0
such that if |y| < δ, then (c+y)R is contained in a single equivalence class of ∼0 for
all c ∈ (hφ

∗)−1(p). From the definition of F∗φ, it follows that, any such (c + y)R is

contained in some b ∈ (hφ
∗)−1(p + y); hence, (hφ

∗)−1(p + y)R ⊃ ((hφ
∗)−1(p) + y)

R
.

The other inclusion, (hφ
∗)−1(p + y)R ⊂ ((hφ

∗)−1(p) + y)
R

is a general consequence
of compactness and continuity, which imply that (hφ

∗)−1(p+ y) is contained in the
ǫ-nbhd of (hφ

∗)−1(p) for sufficiently small ǫ > 0. 2

The theorem is shown. 2

For future reference we record the following commutation relations:

hφ
∗ ◦ Φ∗ = A−1 ◦ hφ

∗, Φ∗ ◦ T ∗x = T ∗A−1x ◦ Φ∗. (14.3)

15 Duality Isomorphism between F∗
φ and Fφ

As the final step, we relate the tiling space and its dual. It is convenient to consider

together with the already defined
s

Fφ,
u

Fφ,
su

Fφ,
s

F∗φ the following:

u

F∗φ := {γ ∈ F∗φ : hφ
∗(γ) ∈ Gu

φ} (15.1)
su

F∗φ :=
s

F∗φ ∩
u

F∗φ. (15.2)

From the construction, all these are full measure Gδ subsets of their ambient spaces
invariant under the Φ and Φ∗ actions, whichever applies. (Later, in Section 18,
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we shall see that these sets are complements of the Eu and/or Es orbits of the
stable/unstable boundaries of the natural Markov partitions into so called Rauzy
fractals.)

Definition 15.1 c ∈ F∗ is dual to γ ∈ F , denoted c ↔ γ, iff γ and c share an
edge.

Duality is easily seen to be a closed relation i.e. its graph D := {(γ, c) : γ∩ c 6= ∅}
is closed in F × F∗. Thus the restriction to Fφ × F∗φ,

Dφ := D ∩
(

Fφ × F∗φ
)

is also closed in Fφ × F∗φ.

Proposition 15.2 The appropriate restrictions of D yield continuous maps κ :
s

Fφ →
s

F∗φ and κ∗ :
u

F∗φ →
u

Fφ where κ∗ ◦ κ = Id and κ ◦ κ∗ = Id on their natural

domains. In particular, duality induces a homeomorphism
su

Fφ →
su

F∗φ.
Proof: The key is to realize that Theorem 7.3 and Lemma 10.1 assure that the

restriction of duality to
su

Fφ ×
su

F∗φ yields (is a graph of) a bijection
su

Fφ ↔
su

F∗φ
(where γ ↔ c amounts to c := [γ̂]0). Now, observe that any γ ∈

s

Fφ has a dual and

any c ∈
u

F∗φ has a dual; after all, this is so for γ ∈
su

Fφ, c ∈
su

F∗φ, and
s

Fφ ⊂
su

Fφ,
u

F∗φ ⊂
su

F∗φ, and Dφ is closed. Since generally, any two duals γ1, γ2 of the same c

are coincident, there can be only one dual if c ∈
u

F∗φ. Also, any two duals c1, c2 of

γ ∈
s

Fφ, being equivalence classes of ∼0 in Sp where p = hφ(γ), must coincide since
they share common state γ̂. Continuity of κ and κ∗ is immediate from D being
closed. All other assertions also follow easily. 2

In what follows we shall often silently use the identification of
su

Fφ and
su

F∗φ via
the duality. In particular, we can speak about a.e. defined actions: of Es on Fφ

and Eu on F∗φ. Note that
s

F∗φ and
s

Fφ are invariant under the Es-action and
u

F∗φ
and

u

Fφ are invariant under the Eu-action.

Proposition 15.3 (Es minimality) The natural Es-action T ∗ on the F∗φ is min-
imal.

Proof: First of all notice that, among edges I of fixed type i, Φ∗(I) is determined
by i uniquely up to a translation, and the number of edges of type j in Φ∗(I) is
aji. Since A is primitive so is AT and there is n0 > 0 with (Φ∗)n0(I) containing
edges of all types for each edge I. It follows that there is R2 > 0 such that any
b ∈ F∗φ has edges of all types in bR2 . (Indeed, (iii) of Lemma 10.1 guarantees an

edge I ∈ ((Φ∗)−n0(b))
R1 , and so (Φ∗)n0(I) ⊂ bR2 where R2 depends on R1 and n0.)

Minimality follows readily from the following claim.
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Claim 15.4 Given c ∈
s

F∗φ and ǫ > 0 there is C > 0 such that if b ∈
s

F∗φ then
dist(b + x, c) < ǫ for some x ∈ Es with |x| < C.

(The density of b + Es for all b ∈ F∗φ can be seen by approximating with b ∈
s

F∗φ,
which is viable since C does not depend on b.)

It is left to prove the claim. Fix c ∈
s

F∗φ, set p := hφ
∗(c), and take an arbitrary

ǫ > 0. Fix R > 0 large enough so that if c1, c2 ∈ F∗φ are such that cR
1 = cR

2 + tω
with |t| < R−1, then dist(c1, c2) < ǫ. Since p ∈ Gs

φ, there is n ∈ N such that

Φ̂n(SR
p ) consists of mφ non-coincident states. This has an important consequence

that there is δ > 0 such that, for K, L ∈ SR
p and |t| < δ, we have

K ∼0 L iff K ∼tω L. (15.3)

By further increasing n, we may also require that Es − tλ−nω interior intersects
all the states in SR

p and
√

dλ−n < min{δ, R−1}.
Set I = Φ̂n(cR) ∈ SR

Anp. Find a state J ∈ b−n := (Φ∗)−n(b) such that J ∈ bR2

−n

and J is of the same type as I. Translate J to I: pick x ∈ Es and t ∈ [−
√

d,
√

d]
so that I = J + x + tω; clearly,

(Φ∗)n(I) = (Φ∗)n(J) + y + λ−ntω, y = A−nx. (15.4)

Note that (Φ∗)n(I) is “a big patch” of c: cR ⊂ (Φ∗)n(I) ⊂ c. If we also knew that
(Φ∗)n(J) + y is a “big patch” of b + y, i.e.

(b + y)R ⊂ (Φ∗)n(J) + y ⊂ b + y, (15.5)

then we would conclude that dist((Φ∗)n(I), (Φ∗)n(J) + y) < ǫ and be done.
In (15.5), only the left inclusion poses a challenge: we have to show that any

K ∈ (b + y + tλ−nω)R ⊂ SR
p belongs to (Φ∗)n(J) + y + tλ−nω = (Φ∗)n(I). Pick

then any state L ∈ (Φ∗)n(I) ⊂ SR
p . Since L− tλ−nω, K − tλ−nω ∈ b + y ∈

s

F∗φ, we
have that L− tλ−nω ∼0 K − tλ−nω, i.e. L ∼λ−nt K. The choice of δ and n assures
L ∼0 K and thus yields K ∈ cR ⊂ (Φ∗)n(I). 2

For future reference we record the following corollary

Corollary 15.5 Every c ∈ F∗φ has a dual γ ∈ Fφ, and every γ ∈ Fmin
φ has a dual

c ∈ F∗φ.

Proof: The natural projections of Dφ into Fφ and F∗φ are closed sets invariant
under the actions of Eu and Es, respectively. Thus our claim follows by minimality
of these actions. 2
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16 Commutation of Eu and Es actions and GCC

Having identified
su

F∗ and
su

F via duality γ ↔ c we can meaningfully talk about Eu

and Es acting (measurably) on the same space, (be that
su

F∗ or
su

F). In this section,
we show that GCC is equivalent with commutation, or merely partial commutation,
of these two actions T and T ∗. This will be our departure point for development
of algorithms for verifying GCC in the next section.

Proposition 16.1 crφ = 1 iff the Eu and Es actions commute.

Proof: If crφ = 1 then the Eu and Es actions are conjugated via hφ to the
translation (Kronecker) actions on Td and they manifestly commute.

Assume that T and T ∗ commute. Consider an arbitrary γ, T r(γ) ∈
su

Fφ, r ∈ R.
Commutation amounts to each of the two actions permuting the orbits of the other.

In particular, since W s(γ) (restricted to
su

Fφ) is the Es-orbit of γ, The commutation
implies that T r(W s(γ) = W s(T r(γ)). Now, v ∈ Zγ iff t := pru(v) ∈ Zu

γ (see
proposition 11.2) iff T t(γ) ∈ W s(γ) iff T t+r(γ) ∈ T r(W s(γ)) = W s(T r(γ)) iff

v ∈ ZT r(γ); hence, Zγ = ZT r(γ). We conclude that Zγ is constant on
su

Fφ by density

of T r(γ), r ∈ R, in
su

Fφ (see Fact 11.4).
To finish, Corollary 11.5 implies that Zγ =

⋃

γ∈
su

F φ

Zγ is a subgroup of Zd, which

must then be equal to Zd by Theorem 12.1 (and (i) Fact 12.2). Proposition 11.3
yields crφ = 1. 2

In order to improve on the above proposition, let us weaken the condition on
non-constancy of γ 7→ Zγ used above for for detecting failure of GCC.

Lemma 16.2 If crφ > 1 then

⋂

γ∈
su

F φ

Zγ = {0}.

Proof: By using (i) and (iii) of Fact 11.4, one sees that Γ :=
⋂

γ∈
su

F φ

Zγ is a

subgroup of Zd. Being invariant under A, Γ is a co-compact lattice as soon as it

is non-zero, which we assume. Now, observe that, for any γ ∈
su

Fφ, Zγ is a union
of cosets of Γ in Zd. Indeed, v ∈ Zγ allows us to write Γ ⊂ Zγ+pru(v) = Zγ − v, so
v+Γ ⊂ Zγ. Consider then the function g : γ 7→ Zγ/Γ ⊂ Zd/Γ. Because g◦Φ = A◦g
and there is n0 ∈ N with A inducing identity on Zd/Γ, we see that g ◦Φn0 = g. By

ergodicity of Φn0 , g is a.e. constant. By continuity of
su

Fφ ∋ γ 7→ Zγ , g is constant

on all of
su

Fφ. This implies crφ = 1 (as in the conclusion of the previous proof). 2
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Theorem 16.3 (partial commutation) Suppose that crφ > 1. For any ǫ > 0,
there is D > 0 such that if K, L ∈ Sp are two edges with K ∼tω L for all t ∈ [−ǫ, ǫ]
with p + tω ∈ Gs

φ, then dist(K, L) < D.

Proof: Suppose crφ > 1 yet the assertion of the theorem fails. We claim that
there are then ǫ > 0, p ∈ Td and an infinite unbounded family of states in Sp,
J1, J2, . . ., such that Ji ∼tω Jj for all i, j ∈ N and all t ∈ [−ǫ, ǫ] with p + tω ∈ Gs

φ.
Indeed, by our hypothesis, there exist ǫ > 0 and Kn, Ln ∈ Spn

, n ∈ N, such that
dist(Kn, Ln) > n and Kn ∼tω Ln for all t ∈ [−2ǫ, 2ǫ] with pn + tω ∈ Gs

φ and with
all Kn of the same type. By compactness, one can arrange that the pn converge
to some p ∈ Td. Taking vn ∈ Rd so that pn + vn = p and vn → 0, one readily sees
that J1 := Kn + vn, J2 := Ln + vn, J3 := Ln+1 + vn+1, J4 := Ln+2 + vn+2, ... are as
desired provided n is large enough.

To finish, we use the claim to show
⋂

γ∈
su

F φ

Zγ 6= {0}, which yields the contra-

diction crφ = 1, via the previous lemma.
To do that, for every k ∈ N, pick from among the partial strands

Φk(J1)|λkǫ
−λkǫ, Φ

k(J2)|λkǫ
−λkǫ, . . . two, call them αk and βk, that are disjoint and de-

termine the same word ak := [αk] = [βk], and intersect Es at points xk and yk

that are further than 100R0 apart. Here R0 is as in Lemma 5.1; in particular,
αk ⊂ xk + C2R0 and βk ⊂ yk + C2R0 . What is more, by replacing αk and βk with
Φl(αk)|λkǫ

−λkǫ and Φl(βk)|λkǫ
−λkǫ for some large l > 0, we may require as well that

dist(xk, yk) < 200λR0. Finally, let us translate αk and βk by a common vector in
Es so that αk, βk ⊂ C200λR0+4R0 .

By passing to a subsequence if necessary, we have ak → a, αk → α,
βk → β for some bi-infinite word a and bi-infinite strands α, β. By construction,
α(mod Es), β(mod Es) ∈ Tφ and α ∼tω β for all t ∈ R for which q+tω ∈ Gs

φ where
q = h(α). (Above we use that Gs

φ is invariant under the toral automorphism.)
From α(mod Es) ∈ Tφ, there is x ∈ Es so that γ := α + x ∈ Fφ. Also,

β + x = γ + v for some v ∈ Rd \ {0}. Note that v ∈ Zd \ {0} because the vertices
of αk and βk are in the same coset of Zd and thus the same is true for α and β.
We have γ ∼tω γ + v and thus v ∈ ZT t(γ) for all t ∈ R with hφ(γ) + tω ∈ Gs

φ. This
implies (via Fact 11.4) that v ∈ ⋂

γ∈
su

F φ

Zγ . 2

Remark 16.4 In the formulation of theorem, one can replace “for all t ∈ [−ǫ, ǫ]
with p + tω ∈ Gs

φ” by “for a dense set of t ∈ [−ǫ, ǫ]”.

Proof: This is immediate from the following observation. From Lemma 10.1,
for t such that p + tω ∈ Gs

φ, if I ∼tω J then I ∼sω J for all s sufficiently close to t.
2
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17 Algorithms

Although GCC is open it is easy to algorithmically decide it for a particular sub-
stitution. Let us indicate how this can be done. For more a comprehensive picture
see [34, 32, 30, 31].

Two (I, J), (K, L) ∈ S
R0

0 ×S
R0

0 are considered translation equivalent iff (I, J) =
(K +v, L+v) for some v ∈ Zd. We shall refer to the translation equivalence classes
in S

R0

0 × S
R0

0 as configurations; let V be the set of all such classes. One naturally

constructs the configuration graph of φ as the directed graph G
(2)
φ with V serving

as the set of vertices by putting an edge from [(I, J)] to [(K, L)] iff there is w ∈ Zd

such that K + w ⊂ Φ(I) and L + w ⊂ Φ(J). For specific φ, GCC can be decided

by checking a simple connectivity property in G
(2)
φ :

Proposition 17.1 (configuration graph) crφ = 1 iff from any vertex in V there

is a path in the graph G
(2)
φ to a vertex in the diagonal V diag := {[(I, I)] : I ∈ SR0

0 }.

Proof: Simple induction on n yields from the definition of G
(2)
φ the following:

Claim: There is a path of length n from [(I, J)] to [(K, L)] iff there is w ∈ Zd

such that K + w ⊂ Φn(I) and L + w ⊂ Φn(J).
It follows that a finite path from [(I, J)] to a vertex in the diagonal V diag exists

iff I ∼ J . Thus if every vertex can be connected to the diagonal then crφ = 1 (via
Fact 7.2), and vice versa. 2

The graph G
(2)
φ may be quite big and its practical construction is made awkward

by the necessity to compute R0 appearing in Lemma 5.1 (which requires the adapted
norm of A). The inconvenience can be overcome by employing the Es action.

Let Γ be the 1-skeleton of the unit cube in Rd (i.e. the union of all edges of
[0, 1]d).

Proposition 17.2 (flipping) crφ = 1 iff, for a dense set of t ∈ R, if I, J ⊂ Γ
are two edges intersecting Es + tω then I ∼tω J .

Proof: Let T0 be the set of t ∈ R such that if I, J ⊂ Γ are two edges intersecting
Es + tω then I ∼tω J . (By this definition, t ∈ T0 if one of the two edges is not
intersecting Es + tω.)

If crφ = 1 then Lemma 10.1 assures that Sp is a single equivalence class of ∼0

for a dense Gδ Es-invariant set of p ∈ Gs
φ ⊂ Td. Since I ∼tω J iff I − tω ∼0 J − tω,

we conclude that t ∈ T0 whenever 0 − tω ∈ Gs
φ. This makes T0 a dense Gδ.

To prove the other implication, suppose that T0 is dense. From the definition
of ∼tω, if I ∼tω J for some two edges and t ∈ R, then I ∼sω J for all s is an
open segment ending at t. Thus the interior of T0, int(T0), is dense in R as well.
By Baire category, T∞ :=

⋂

v∈Zd T0 + pru(v) is a dense Gδ. Let G ⊂ Td be the
projection to the torus of

⋃

t∈T∞
tω + Es; G is a dense Gδ.
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Consider p ∈ G and suppose that K1, . . . , KN ∈ Sp are such that, for every
i = 1, . . . , N − 1, Ki and Ki+1 are in the skeleton in the same unit cube (i.e.
Ki, Ki+1 ⊂ Γ + y for some y ∈ Rd). By construction of G, Ki ∼0 Ki+1 for every
i = 1, . . . , N − 1. By transitivity, K1 ∼0 KN . Since every two states in Sp can be
obtained as K1 and KN above, Sp is a single equivalence class of ∼0. Since G is
dense in Td, Lemma 10.1 assures that crφ = 1. 2

By using Proposition 16.3, one can make do above by using any single face of
Γ above. Indeed, fix any i, j ∈ A, i 6= j, and let Γij be the boundary of the unit
square with vertices 0, ei, ej , ei + ej .

Proposition 17.3 (less flipping) Fix any i, j ∈ A, i 6= j. crφ = 1 iff for a dense
set of t ∈ R, if I, J ⊂ Γij are two edges intersecting Es + tω then I ∼tω J .

Proof. As before, let T0 be the of t ∈ R such that if I, J ⊂ Γij are two edges
intersecting Es + tω then I ∼tω J .

We already know that if crφ = 1 then T0 is dense. Suppose then that T0 is
dense. By imitating the previous argument, we get a dense Gδ set of t ∈ R such
that for any two states K and L intersecting Es + tω and contained in the two
dimensional grid

⋃

k,l∈Z

Γij + kei + lej

we have K ∼tω L.
Now, for a fixed small ǫ > 0, one easily obtains such K,L that are arbitrarily

distant yet intersect Es + tω for a dense Gδ set of t ∈ (−ǫ, ǫ). Thus K ∼tω L for
t ∈ (−ǫ, ǫ) and Proposition 16.3 forces crφ = 1. 2

Let us forge Proposition 17.3 into an algorithm. A pair of finite strands B =
(α, β) with common endpoints will be called a bubble. The bubble B is simple
iff α and β have no common edges and B is coincident iff Φn(α) and Φn(β) share
an edge for some n ∈ N, i.e. Φn(B) := (Φn(α), Φn(β)) fail to be simple for some
n ∈ N. If Φn(α) and Φn(β) share an edge I for some n ∈ N, then we can write
Φn(α) = α1∪I∪α2 and Φn(β) = β1∪I∪β2. Bubbles (α1, β1) and (α2, β2) obtained
in this way are called offspring of (α, β), as is Φn(B) itself. By a balanced pair we
understand a class of bubbles congruent by a translation in Rd. The balanced pair
[B] associated to bubble B is of course uniquely determined by the words [α] and
[β]; and the concepts of simplicity, coincidence, and an offspring extend to balanced
pairs in an obvious way.

Proposition 17.4 (balanced pairs) Fix arbitrarily any two letters i 6= j ∈ A.
crφ = 1 iff the balanced pair (ij, ji) has finitely many simple offspring.

Proof: (⇐): Suppose that (ij, ji) has finitely many offspring. Fix C > 0
so that offspring of (ij, ji) have length not exceeding C. Then any substrand of
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Φ(Ii ∪ (Ij + ei)) of length exceeding C shares an edge with Φ(Ij ∪ (Ii + ej)). This
means that if I, J ⊂ Γij are two edges intersecting Es + tω then I ∼sω J for s ∈ R

with |s − t| < C1λ
−n for some constant C1 independent of n. We are done by

arbitrariness of n and Proposition 17.2.
(⇒): From Proposition 17.2, if crφ > 1, then there is an open segment U ⊂ R

and edges I, J ⊂ Γij such that Es + tω intersects I and J and I 6∼tω J for all t ∈ U .
It follows that the balanced pair (φn(ij), φn(ji)) contains an offspring of (ij, ji) of
length exceeding C1|U |λn for some constant C1 independent of n. Thus there are
infinitely many simple offspring of (ij, ji). 2

The obvious implementation of the proposition — where one recursively tests
for new offspring until none are generated — has the deficiency that it would not
stop if GCC failed. This can be overcome by using Proposition 17.3 more indirectly
to limit the number of vertices one has to consider in the configuration graph G

(2)
φ

appearing in Proposition 17.1:

Remark 17.5 (essential configuration graph) Fix arbitrarily two letters i 6=
j ∈ A. Let Vij consist of all configurations in V that can be obtained as an end

of a path in G
(2)
φ that starts at a configuration [(I, J)] with I, J ⊂ Γij. crφ = 1 iff

from any vertex in Vij there is a path in the graph G
(2)
φ to a vertex in the diagonal

V diag := {[(I, I)] : I ∈ SR0

0 }
Proof: One can adapt the proof of Proposition 17.1 to the current situation.

We leave the details to the reader. 2

18 Cylinder Model, Rauzy fractals, and IFS’s

The geometric realization map hφ can be viewed as a composition Fmin
φ ∋ γ 7→

γ̂ 7→ min γ̂ (mod Zd) ∈ Td. Unlike hφ, the map Fmin
φ ∋ γ 7→ γ̂ ∈ S is known

to be a.e. 1-1 (Theorem 7.3) and — as long as GCC remains open — may serve
as a partial geometric realization. Its image consists of fractal domains (Rauzy
sets) constituting a Markov partition for Φ̂ and engaged in a domain exchange
transformation giving rise to a flow isomorphic to T t. Details follow. (As before,
φ is assumed to be unimodular Pisot.)

Each box of the canonical Markov partition for Φ,

Ri := {γ ∈ Fmin
φ : γ has an edge of type i intersecting Es}, (18.1)

determines a subset of Rd given by

Ωi := {min(I) : I is an edge of γ of type i intersecting Es, γ ∈ Ri}. (18.2)

Note that Ωi is a rectangle with respect to the product structure Rd = Es × Eu;
precisely, having set Ωs

i := Ωi ∩ Es and Ωu
i := pru(Ii − ei) we have

Ωi =
⋃

t∈[0,1]

Ωs
i − tpru(ei) = Ωs

i × Ωu
i .
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Figure 18.1: Rauzy Fractals for Tribonacci: 1 7→ 12, 2 7→ 13, 3 7→ 1, and 1 7→ 12,
2 7→ 31, 3 7→ 1, and 1 7→ 21, 2 7→ 31, 3 7→ 1.

The sets Ωs
i are called Rauzy fractals and their structure can be understood in

the context of the dynamics induced on their union by Φ. Consider a disjoint union
Ω :=

∐d
i=1 Ωi as a subset of B :=

∐d
i=1 Bi where

Bi :=
⋃

t∈[0,1]

Es − tei. (18.3)

To avoid dealing with discontinuous maps, for each y ∈ Es, identify the 2d points
of the form y − tei where t = 0, 1 and i = 1, . . . , d, Denote by ∼ the resulting
equivalence relation on B. Of course, B/ ∼ is simply a bouquet of infinite Euclidean
cylinders, each isomorphic to Es × T1 and all d meeting along a common copy of
Es. By associating to γ ∈ F the min vertex of an edge I ⊂ γ intersecting Es we
get a well defined partial geometric realization map

τ : F → B/ ∼ with τ(Fmin
φ ) = Ω/ ∼ .

The inflation substitution map Φ : F → F factors through τ to a map F : B/ ∼→
B/ ∼. To give an explicit description of F , consider the transition graph Gφ of the
canonical Markov partition (into Ri’s); A is the vertex set and there is a transition
(a directed edge) e from i to j for each occurrence of j in φ(i). Let us also place
over the edge e a vector weight ve ∈ Zd so that the pertaining edge J of type j
in Φ(Ii) has min J = ve. One easily identifies then a subset Be ⊂ Bi of the form
Es × Iu

e where Iu
e is a segment in Eu so that

F (y) = Ay + ve, y ∈ Be. (18.4)

In fact, by projecting Bi onto Ii−ei along Es, one can factor F : B/ ∼→ B/ ∼
to the winding map fφ : Tφ → Tφ from Section 4. The set Be is the preimage of
the subarc in Tφ in corresponding to the transition e for the Markov partition of
Tφ into I1, . . . , Id.

Below, any mention of a measure on B/ ∼ refers to the natural measure induced
by the Lebesgue volume in Rd.
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Figure 18.2: Transition graph for the Tribonacci substitution, φ : 1 7→ 12, 2 7→ 13, 3 7→ 1.

Proposition 18.1 (cylinder model)

(1-1) The restriction τφ := τ |Fmin
φ

is 1-1 on a full measure dense Gδ.

(dynamical 1-1) F maps Ω/ ∼ onto itself and is a.e. 1-1 and measure preserving
on Ω/ ∼

(topreg) Ωi is topologically regular, cl(int(Ωi)) = Ωi.

(measreg) the boundary of Ωi has zero measure, |∂(Ωi)| = 014.

(attractor) Ω/ ∼ a.e. coincides with the global attractor of for F ; precisely, for
sufficiently large R > 0,

⋂

n≥0

F n ({(i, y) ∈ B/ ∼: |y| < R})

equals τ(Fφ).15

Proof of Proposition 18.1: (1-1): From Theorem 7.3,
u

Fφ is a dense Gδ in Fmin
φ

and the mapping
u

Fφ ∋ γ 7→ γ̂ ∈ S is 1-1. It follows that τ is 1 − 1 on
u

Fφ with
strands having a vertex on Es removed.

(topreg): Let Ω̃i := {y ∈ Ωi : y(mod Zd) ∈ Gu
φ}. By continuity of the mapping

Gu
φ ∋ p 7→ h−1(p) as provided by Theorem 7.3, we see that Ω̃i ⊂ int(Ωi). On the

other hand,
u

Fφ = hφ
−1(Gu

φ) (as defined by (7.4)) is T invariant and thus dense in

Fmin
φ so that any τ(γ) ∈ Ωi can be approximated by τ(η) where η ∈

u

Fφ. Since

τ(η) ∈ Ω̃i if the approximation is close enough, we have shown Ωi ⊂ cl(Ω̃i).
(dynamical 1-1): That F (Ω/ ∼) = Ω/ ∼ follows immediately from surjectivity

of Φ : Fmin
φ → Fmin

φ . As for a.e. 1-1, suppose that y ∈ Ωi and z ∈ Ωj are such

14See [37] and the references therein for a more detailed study of the boundary of Ωi.
15It coincides with the preimage of the inverse limit of fφ under the natural map from B to

the bouquet of the circles.
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that F (y) = F (z). Then the states I := y + Ii and J := z + Ij are coincident,

Φ̂(I) = Φ̂(J), which is only possible when I, J ∈ Sp for the measure zero set of
p 6∈ Gu

φ (see Theorem 7.3). Finally, from (18.4), the Jacobian of F is det(A) = 1
making the restriction of F to Ω/ ∼ measure preserving.

(attractor): Definition 5.2 of Fφ readily implies that τ(Fφ) ⊂ Λ :=
⋂

n≥0 F n(BR/ ∼). By growing states into strands, it is not hard to see the op-
posite inclusion. Concretely, given a point z ∈ Λ, we have a sequence of states J−n

such that min J0 = z, Φ̂(J−n−1) = J−n, and min J−n is uniformly bounded for all
n ≥ 0. The limit γ := limn→∞Φn(J−n) is an infinite strand. If γ is bi-infinite, then
γ ∈ Fmin

φ ; otherwise, one can extend γ to a bi-infinite strand in Fφ. In any case,
τ(γ) = z.

(measreg): This is a general property of Markov Boxes. The boundary of
Ωi = Ωs

i ×Ωu
i consists of the stable boundary ∂Ωs

i ×Ωu
i and the unstable boundary

Ωs
i × ∂Ωu

i . The later is manifestly of zero measure. Also, the union of the stable
boundaries of Ω1, . . . , Ωd is invariant under F |−1

Ω/∼ and thus is of measure zero. Here

we used that, being a.e. conjugate to Φ, F : Ω/ ∼→ Ω/ ∼ is ergodic. 2

We saw that by collapsing each Bi along Es, the cylinder model F : B/ ∼→
B/ ∼ yields fφ : Tφ → Tφ. One can also attempt to collapse each Bi along Eu

onto its base Es. As a result one obtains not a single map but an Iterated Function
System of the substitution φ, denoted IFSφ. Precisely, the IFSφ consists of a
disjoint union Es

1 ∪ . . . Es
d of d copies of Es together with a system of contractions

obtained by associating to every edge e of Gφ the map Fe : Es → Es given by
y 7→ Ay + prs(ve) where prs : Rd → Es is the projection along Eu — cf. (18.4).
We leave it to the reader to reinterpret Proposition 18.1 to get the following:

Remark 18.2 Ωs
1 ∪ . . . ∪ Ωs

d is the fixed point of IFSφ. In particular, Ωs
i ⊂ Es

i is
a union of translates of AΩs

j corresponding to the edges of Gφ incoming into i.

Note that the tautological map Ω/ ∼→ Td is a.e. crφ-to-1 so that GCC holds
for φ exactly when Ω1, . . . , Ωd (mod Zd) form a Markov Partition of Td. In fact,
|Ω/ ∼ | = crφ and the normalization

∑d
i=1 ωiω

∗
i = 1 forces that

|Ωi| = crφω
∗
i ωi. (18.5)

(That |Ωi| is proportional to ωiω
∗
i follows from Ωi’s being a Markov partition of

F : Ω/ ∼→ Ω/ ∼ with transition matrix AT and of F−1 with transition matrix A.)
By projecting via prs : Rd → Es, these observations can be translated in terms of
Ωs

i ’s:

Remark 18.3 The d−1-dimensional volume of Ωs
i in Es is |Ωs

i | = crφωi|ω∗| where
|ω∗| is the Euclidean norm of ω∗.

Finally, the following proposition explains why F∗φ can be thought of as a space
of tilings of Es with tiles Ωs

i , i = 1, . . . , d.
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Proposition 18.4 For c ∈ F∗φ consider the family of sets

Ω(c) := {−Ωi + min I : where i = [I] is the type (letter) of I, I ∈ c}.

The sets in Ω(c) have pairwise disjoint interiors and their union Ω(c) contains Es.
Thus to every c ∈ F∗φ we have associated a tiling of Es into sets congruent to Ωs

i ’s.
The action of Φ∗ on F∗φ corresponds to the inflation-and-substitution map on the
space of thus obtained tilings of Es. The transpose AT of A = (aij) is the matrix
of that map in the sense that each tile A−1(Ωs

i ) naturally subdivides into aji of the
Ωs

j’s.

Proof: (disjointness:) Suppose that I, J ∈ c, i := [I], j := [J ], a := min I,
b := min J , and disjointness fails: there is q ∈ int(−Ωi + a) ∩ int(−Ωj + b). Note
that I ∼ J by definition of F∗φ. Our goal is to contradict that and show I 6∼ J .
Let K be an edge of type i with max K = q and L be an edge of type j with
max L = q. Now, if we transform −Ωi + a and K via x 7→ −x + a and −Ωj + b
and L via x 7→ −x + b, we obtain K̃ with min K̃ = a − q ∈ Ωi and L̃ with
min L̃ = b − q ∈ Ωj . By definition of Ωi’s, there are strands γ, η ∈ Fmin

φ such that

K̃ is an edge of γ and L̃ is an edge of η. By a small perturbation of q, we can assure
that hφ(η) = b− q (mod Zd) = a− q (mod Zd) = hφ(γ) ∈ Gu

φ. From Theorem 7.3,

since hφ(η) = b − q (mod Zd) and hφ(γ) = a − q (mod Zd), we have that γ and η
are then noncoincident; in particular, K̃ 6∼ L̃. Thus I 6∼ J because the pair (I, J)
is congruent by translation to (K̃, L̃).

(covering): Fix i, j ∈ A and n ∈ N. Let Ej be the set of all edges joining j
to i in Gφn , the graph associated with φn. (Such edges are in natural bijective
correspondence with paths from j to i of length n in Gφ, as well as with words a
such that φn(j) = ais for some word s.) In view of F n(Ω/ ∼) = Ω/ ∼, the formula
(18.4) (applied to φn), and the Markov Property, we have

Ωi ⊂
d
⋃

j=1

⋃

e∈Ej

(AnΩj + ve) .

Given a state I of type [I] = i and with min I ∈ Ωi, let c ∈ F∗φ be such that

Φ̂−n(I) ⊂ c. For each J ∈ Φ̂−n(I) with [J ] = j, An(min J) + ve = min I for some
e ∈ Ej. It follows that

An





⋃

J∈Φ̂−n(I)

(

min J − Ω[J ]

)



 = min I −
d
⋃

j=1

⋃

e∈Ej

(AnΩj + ve) ⊃ min I −Ωi. (18.6)

Thus
⋃

J∈Φ̂−n(I)

(

min J − Ω[J ]

)

⊃ A−n(min I − Ωi), (18.7)

53



which means that the tiling associated with c covers A−n(min I − Ωi) ∩ Es. Since
(min I −Ωi)∩Es contains a ball of positive radius r > 0 and n ≥ 0 is arbitrary, we
see that the tiling of c covers balls of arbitrarily large radius. By using minimality
of T ∗, one readily shows that the tiling associated to any alement of F∗φ covers all
of Es. 2

By using (18.5), one readily sees that crφ = 1 iff the union
⋃d

i=1 Ωi is essentially
disjoint and forms a fundamental domain for Td = Rd/Zd (i.e. tiles Rd). Similar
statements can be made in terms of tiling properties of Ωs

i and one can augment
Remark 18.3 as follows.

Remark 18.5 crφ = 1 iff the union
⋃d

i=1 Ωs
i is essentially disjoint and forms a

fundamental domain for the sublattice generated by prs(ei)−prs(ej), i, j = 1, . . . , d.
Also, for 1 ≤ i ≤ d, crφ = 1 iff Ωs

i is a fundamental domain of the sublattice of Es

generated by prs(ej), j ∈ {1, . . . , d} \ {i}.

Let us stress that this is certainly not new and a proof from an alternative point
of view can be found in [30, 2], for instance.

Proof: That any of the assertions about Ωi implies crφ = 1 is clear by consid-

ering the measure of Ωi per Remark 18.3. Suppose now crφ = 1. Since
⋃d

i=1 Ωi

is essentially disjoint and forms a fundamental domain for Td = Rd/Zd, we have
Rd tiled by the family {−Ωk + v : v ∈ Zd, k ∈ A}. Fix i ∈ A. To show
that Ωs

i is the fundamental domain of the sublattice of Es generated by prs(ej),
j ∈ {1, . . . , d} \ {i}, it suffices to show that the translates of Ωs

i by the vectors
of the sublattice are essentially disjoint. Suppose this is not so, which is to say
that there are u, v ∈ Zd with u − v ∈ Zd−1

i := {w ∈ Zd : 〈w|ei〉 = 0} such that
prs(−Ωi + v) ∩ prs(−Ωi + u) has nonempty interior in Es. As in Proposition 18.4,
A−n(−Ωi+v) passes through a certain family of Markov boxes labeled by the edges
of (Φ∗)n(Ii); precisely, the family is

Cn
v :=

{

−Ω[J ] + min J : J ∈ (Φ∗)n(Ii + v)
}

.

Let us denote by Cn
u the analogous family for A−n(−Ωi + u). Observe that Cn

u ∩
Cn

v = ∅ because u − v ∈ Zd−1
i precludes existence of an edge K such that Φn(K)

contains both Ii + v and Ii + u. On the other hand, by our hypothesis, as n → ∞,
A−n(−Ωi + v) and A−n(−Ωi + u) are exponentially close (i.e. like Const · λ−n) to
each other inside a ball of exponentially growing radius. As a consequence, they
both have to pass through the same Markov box at some point; that is, there must
be w ∈ Zd and k ∈ A such that they both pass through −Ωk + w. This means
that w + Ik ∈ Cn

u ∩ Cn
v — a contradiction.

That
⋃d

i=1 Ωs
i is the fundamental domain for the lattice generated by prs(ei) −

prs(ej), i, j = 1, . . . , d, is shown in an analogous way based on the fact that

A−n(
⋃d

i=1 Ωi) passes through the Markov boxes corresponding to the edges of
⋃

i∈A(Φ∗)n(Ii) and that if u − v ∈ {w ∈ Zd : 〈w|(1, . . . , 1)〉 = 0} then Φn(K)
cannot have edges in both

⋃

i∈A Ii + v and
⋃

i∈A Ii + u. 2
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Finally, let us briefly connect with the theory of substitution Delone sets which
are the endpoints of the tiles of the tilings in T min

φ . (See [22] for background
on model sets.) Delone sets that are regular model sets are known to generate a
translation action with pure discrete spectrum (see [29]). The opposite implication
has been established for lattice substitution sets in [19] and appears in the recent
preprint [18] for general substitution Delone sets. In our (narrower) context, this
is taken care of by the following easy remark.

Remark 18.6 For a unimodular Pisot substitution φ, if the tiling flow T has pure

discrete spectrum then, for any γ ∈
u

Fφ, the projection via pru of the vertices of γ
is a regular model set in Eu, i.e., a generic tiling in Tφ generates a regular model
set.

Proof: Pure discrete spectrum is equivalent to crφ = 1 by Corollary 9.4. By
Proposition 18.1, Ωs is the closure of its interior with zero measure boundary (as a
subset of Es). Thus, for any p ∈ Gu

φ, the set Λp := pru
(

(prs)−1(Ωs) ∩ (p + Zd)
)

is a
regular model set (with Ωs serving as the window). Now, given u, v ∈ (prs)−1(Ωs)∩
(p + Zd), from the definition of the sets Ωi, there are γ, η ∈ Fφ such that u is
a vertex of γ and v is a vertex of η. Since crφ = 1 and p ∈ Gu

φ and γ, η ∈
hφ
−1(p), we conclude that γ = η (via Theorem 7.3). This shows that the points of

(prs)−1(Ωs)∩ (p+Zd) are exactly the vertices of a single γ ∈
u

Fφ. Thus Λp consists
of the endpoints of the tiles of the tiling of γ. 2

19 GCC in the case d = 2

In [5], it is shown that there is always a pair of basic edges that are coincident.
For the case of alphabet with two letters (d = 2), this means that I1 ∼ I2, which
is used in [12, 32] to confirm that T has pure discrete spectrum. At this point it
is easy to give an alternative proof of this fact. Let us retrace the argument of [5]
and augment it to show that (GCC) holds for d = 2. As usual, we assume that φ
is a unimodular Pisot substitution.

Among cardinality m subsets of Sp where p ranges over Td consider the re-
lation of congruence by translation and call the resulting equivalence classes m-
configurations. Given a subset C = {J1, . . . , Jm} ⊂ Sp let min C := maxm

k=1 min Jk

and max C := minm
l=1 max Jl be the innermost min/max vertices of C. Within each

m-configuration c, as a consequence of irrationality of Es (see (i) of Fact 5.4), there
is a unique representative set c− with min c− = 0 and c+ with max c+ = 0.

Let m := crφ. Any point p ∈ Gu
φ determines a configuration p̂ represented by

the set {γ̂1, . . . , γ̂m} where hφ
−1(p) = {γ1, . . . , γm}. Denote by Â the (finite) set

of all thus obtained configurations. By translating p along Eu, we can associate
with p a parametrized bi-infinite word [p] = (ci)i∈Z in the alphabet Â. To be
precise, index the vertices of

⋃m
j=1 γj as a sequence (vi)i∈Z so that pru(vi) = tiω
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with ti < ti+1 for all i ∈ Z, then ci := (p + tiω)∧. 16 Note that
⋃m

j=1 γj can be
assembled from the ci in the sense that

m
⋃

j=1

γj =
⋃

i∈Z

(ci)− + vi, vi+1 − vi = max ci − min ci. (19.1)

Below, we say that configuration a follows b iff ab is a subword of some [p] for
p ∈ Gu

φ.

Fact 19.1 If a and b are two different m-configurations each of which follows c,
then the symmetric difference of a− and b− consists of basic states, i.e.,

a−△b− ⊂ {I1, . . . , Id},

and, for every t ∈ [0, ǫ) with 0− tω ∈ Gs
φ, there is a bijection σ : a− \ (a− ∩ b−) →

b− \ (a− ∩ b−) such that if K = σ(J) then J ∼tω K.

Proof: The first assertion is immediate from the definitions. Pick ǫ > 0 small
enough so that Es + ǫω intersects all of the edges in a− and b−. Below we shall
consider t ∈ [0, ǫ). By Theorem 7.3, the strands in hφ

−1(p) are non-coincident so
that no two different edges in a− or b− are equivalent with respect to ∼tω. On the
other hand, as long as 0 − tω ∈ Gs

φ, the equivalence relation ∼tω on a− ∪ b− can
have at most (and so exactly) m different equivalence classes (see Lemma 10.1). It
follows that every J ∈ a− \ (a− ∩ b−) is ∼tω-equivalent to some K ∈ b− \ (a− ∩ b−)
and such K is unique. The same argument applied with the roles of a− and b−
reversed shows that J 7→ K is a bijection. 2

Corollary 19.2 (Barge-Diamond) There exist configurations a, b, c satisfying
the hypotheses of Fact 19.1. In particular, Ii ∼ Ij for some i 6= j.

Proof: For a proof by contradiction, assume that every configuration c ∈ Â
has only one configuration b ∈ Â that can follow c. Consider p ∈ Gu

φ and let
[p] = (ci)i∈Z. By our hypothesis, ci+1 is determined by ci, which implies that the
sequence (ci)i∈N is eventually periodic. Taking into account (19.1) and that ci’s
and v0 already determine all vi’s, we see that a large M > 0 and a positive vector
u ∈ Zd exist such that C :=

⋃

i≥M(ci)− + vi ⊂
⋃d

j=1 γj ⊂ CR0 satisfies TuC ⊂ C.

In this way TkuC ⊂ CR0 for all k ≥ 0, which is impossible because u 6∈ Eu. 2

Proposition 19.3 If d = 2 then crφ = 1.

16Thus p determines a tiling of R into segments [ti, ti+1] (labeled by ci), which belongs to the

tiling space of a certain substitution φ̂ : Â → Â∗ induced by φ. The underlying idea is that,
unlike for φ, the tiling space of φ̂ is a priori measure theoretically isomorphic to the toral flow.
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Proof: Suppose crφ > 1. Fix p ∈ Gu
φ and two different γ1 and γ2 in hφ

−1(p). By
the corollary I1 ∼ I2 so that γ1 and γ2 do not intersect and are separated by some
minimal Es-distance δ1 > 0; namely, δ1 := mint∈R{diam((Es + tω) ∩ (γ1 ∪ γ2))}.
By minimality of T , we pick tn → ∞ such that γ1 + tnω → γ2. Upon passing
to a subsequence, we can require that γ2 + tnω → η1 for some η1 ∈ Fφ. By
construction, mint∈R{diam((Es + tω)∩(γ2∪η1))} = δ1. More importantly, because
Es is 1-dimensional and γ1 and η1 must lie on opposite sides of γ2, we have

min
t∈R

{diam((Es + tω) ∩ (γ1 ∪ η1))} ≥ δ1 + δ1 = 2δ1.

Repeating the construction with γ2 replaced by η1 yields η2 ∈ Fφ with

min
t∈R

{diam((Es + tω) ∩ (γ1 ∪ η2))} ≥ 2δ1 + 2δ1 = 4δ1.

Continuation of this process results in a sequence of ηk ∈ Fφ, k ∈ N, with

min
t∈R

{diam((Es + tω) ∩ (γ1 ∪ ηk))} ≥ 2kδ1.

A contradiction arises as soon as 2kδ1 > 2R0 because γ1, ηk ∈ Fφ ⊂ CR0 . 2

Corollary 19.4 ([12]) A unimodular Pisot substitution over two letters has pure
discrete spectrum.

57



20 Appendix: Recognizability

Our goal is to show the following theorem, which immediately implies Theorem 4.4.

Theorem 20.1 If φ is a primitive translation aperiodic substitution, then there is
M ∈ N such that Φ : ΦM (T ) → ΦM+1(T ) is injective.

This hinges on the following a priori bound. For a, b ∈ A∗, we shall write
a . . . = b iff a is a prefix of b and a . . . = b . . . iff a and b have the same prefix of
length min{|a|, |b|}. Denote by Per+(φ) the forward infinite φ-periodic words, i.e.,
Per+(φ) := {[γ] : γ ∈ Per+(Φ). Also, let N = Nφ be the stabilizing iterate as
defined in Section 3.

Lemma 20.2 (a priori estimate) For primitive and translation aperiodic φ,
there is an R > 0 such that if P ∈ Per+(φ) and P = ar . . . for a ∈ A∗ then
r ≤ R.

a a

a aaa a a

b c b1

P :

φkN (P ) :

camb1alb

ΦkN

≤r|a|

Figure 20.1: A priori estimate (Lemma 20.2).

Proof: To see that R = 6λN works, we shall derive a contradiction from P =
ar . . . with r ≥ 6λN . We may assume that a is not a power, i.e. a = ãl implies
ã = a. Let k := ⌊ ln r−ln 2

N ln λ
⌋ ∈ N so that λ−Nr/2 ≤ λkN ≤ r/2. Since λkN |a|u ≤

r|a|u, φkN(P ) = φkN(a) . . . = P = ar . . . implies φkN(a) = alb for some b ∈ A∗
with |b| < |a| and l ≥ λkN − 1 ≥ λ−Nr/2 − 1 ≥ 2. (Here |b| > 0 as otherwise
φkN(a) = al in violation of aperiodicity of φ.) Similarly, since 2λkN |a|u ≤ r|a|u,
φkN(P ) = φkN(aa) . . . = φkN(a)φkN(a) . . . = albφkN(a) . . . = P = ar . . . guarantees
(by canceling the prefix alb) that φkN(a) = camb1 for some c, b1 ∈ A∗ with bc = a,
|b1| < |a| and m ≥ λkN − 1 ≥ λ−Nr/2 − 2 ≥ 1. Therefore, alb = camb1, that is
(bc)lb = c(bc)mb1 and so bc = cb forcing a = bc to be a power — a contradiction.
2

Let Rφ be the minimal R as in Lemma 20.2. The definition of the stabilizing
iterate N ∈ N and Fact 3.1 easily yield C1 > 0 such that, if i ∈ A and m ≥ N
then φm(i) = p . . . where p . . . = P ∈ Per+(φ) and |p|u ≥ C1λ

m. (In fact, C1 =
λ−N min{|l|u : l ∈ A}.) This leads to the following:
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Corollary 20.3 There is 0 < ǫ = ǫφ such that if aφm(i) . . . = φm(j) . . . for m ∈ N,
a ∈ A∗ and i, j ∈ A, then |a|u ≥ ǫλm.

This is to say that |a|u is comparable to |φm(j)|u: |a|u/|φm(j)|u ≥ λmǫ
λm|j|u

= ǫ
|j|u

.

a

a

a

b

b

b

b

c

φkN (b)

P :

ΦkN

ΦkN

ΦkN

P :

Q:

Q:

Q:

Figure 20.2: Proof of Corollary 20.3).

Proof: We may assume m ≥ N . Let φm(i) = p . . . and φm(j) = q . . . where
P = p . . . , Q = q . . . ∈ Per+(φ), and |p|u, |q|u ≥ C1λ

m.
Assume k ≥ 1 is such that |a|uλ2kN ≤ C1λ

m. Since |a|u ≤ C1λ
m ≤ |q|u, we have

a . . . = q so that φkN(a) . . . = φkN(q) = q . . . = a . . ., which implies φkN(a) = ab
for some b ∈ A∗. Applying φkN again yields (via |a|uλ2kN ≤ C1λ

m)

φ2kN(a) = abφkN(b) = q . . . . (20.1)

At the same time, ab . . . = q . . . = ap . . . and |b|u ≤ λkN |a|u ≤ C1λ
m ≤ |p|u yield

b . . . = p so that φkN(b) . . . = φkN(p) . . . = p . . . = b . . ., which implies

φkN(b) = bc = p . . . (20.2)

for some c ∈ A∗ (see Figure 20). By plugging (20.1) and (20.2) into q . . . = ap . . .
we arrive at abφkN(b) . . . = abc . . . so that φkN(b) . . . = c . . ., which is to say that
bc = c . . .. We conclude that c = br . . . where (taking into account p = br+1 . . . and
the lemma)

Rφ ≥ r + 1 ≥ |c|/|b| ≥ C−2|c|u/|b|u = C−2(λkN |b|u − |b|u)/|b|u = C−2(λkN − 1),

where C > 0 is as in (2.3). Thus we have shown that: |a|uλ2kN ≤ C1λ
m ⇒

λkN ≤ C2Rφ + 1, k ∈ N. The corollary follows easily. (To be concrete, |a|u ≥
C1λ

m(C2Rφ + 1)−2 so that ǫ := C1(C
2Rφ + 1)−2.) 2

Given an edge I of a strand, a subsegment K ⊂ I is called sup-peripheral (with
respect to I) if K contains max I, K is called inf-peripheral if it contains min I, and
K is called full if it coincides with I.
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For K ⊂ Ii and K ′ ⊂ Ij, i, j ∈ A, we write K
n∼ K ′ iff K 6= K ′, Φn

Ii
(K) and

Φn
Ij

(K ′) are two strands with the same word, |K|u, |K ′|u ≥ ǫφ, and either one of K
and K ′ is sup- and the other is inf-peripheral or one of K and K ′ is full. (Clearly,
“

n∼” is symmetric but not an equivalence relation.
Given a strand µ and a (non-degenerate) subsegment K ⊂ µ, there is a unique

edge I such that K ⊂ I and we associate with K a segment Kµ := K − min I ⊂
⋃

i∈A Ii. Although we have defined
n∼ only on subsegments of

⋃

i∈A Ii, we shall

often abuse the notation and let K
n∼ K ′ stand for Kµ

n∼ K ′µ′ .

In order to link “
n∼” with Φn’s failure to be injective, we shall talk about

partitions of strands. By a partition we understand a covering by subarcs any two
of which intersect in at most one point. Clearly, a partition Q is determined by
∂Q, the set of endpoints of all its the subarcs. By P ∨ Q we denote the common
refinement of P and Q; ∂(P ∨ Q) = ∂P ∪ ∂Q. Every strand η has a canonical
partition Pη into its edges.

Fact 20.4 Suppose that µ, µ′ ∈ Φ−n(γ). If M ∈ Φn
µ(Pµ) ∨ Φn

µ′(Pµ′) then K :=
(Φn

µ)−1(M) ⊂ µ and K ′ := (Φn
µ′)
−1(M) ⊂ µ′ are such that pru(K) = pru(K ′) and

either K = K ′ or K
n∼ K ′.

Proof: From Φn
µ(K) = Φn

µ′(K
′) = M , we have pru(K) = pru(K ′) (and |K|u =

|K ′|u = |M |u/λn). Let I and I ′ be the unique edges of µ and µ′ such that K ⊂ I
and K ′ ⊂ I ′. Observe that Φn(I) ∩ Φn(I ′) = M and depending on whether
Φn(I), Φn(I ′) ⊂ γ are contained in one another or not, one of the two possibilities
is realized:

(i) K = I or K ′ = I ′;

(ii) K ⊂ I and K ′ ⊂ I ′ are a pair of sup- and inf-peripheral segments.

Thus, unless K = K ′, K
n∼ K ′ as long as we can show |K|u = |K ′|u ≥ ǫφ. Under

(i), the inequality is immediate. Assume then (ii). To fix attention, let K ⊂ I be
sup-peripheral and K ′ ⊂ I ′ be inf-peripheral.

Let J be the edge of µ following I. We have [Φn
µ(K)][Φn(J)] . . . = [Φn(I ′)] . . .

and Corollary 20.3 yields |Φn
µ(K)|u ≥ ǫφλ

n so that |K|u ≥ ǫφ. 2

Set Rm := {(K, K ′) : K
m∼ K ′, K, K ′ ∈ ⋃i∈A Ii} and R :=

⋃

m∈N
Rm. Note

that Rm ⊂ Rm+1.

Fact 20.5 R is finite so that there is Mφ ∈ N with R = Rm for m ≥ Mφ.

We first deduce the theorem and then give a proof of the fact.

Proof of Theorem 20.1: Let m = Mφ. Suppose that γ ∈ Φm+1(T ) and η, η′ ∈
Φ−1(γ)∩Φm(T ). We have to show that η = η′. Fix µ, µ′ ∈ T so that η = Φm(µ) and
η′ = Φm(µ′). Let {Mi}i∈Z be the elements of the the partition Qγ := Φm+1

µ (Pµ) ∨
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Φm+1
µ′ (Pµ′) ordered so that Mi follows Mi+1 (on γ). Set Ki := (Φm+1

µ )−1(Mi) and

K ′i := (Φm+1
µ′ )−1(Mi). From Fact 20.4, pru(Ki) = pru(K ′i) and either Ki = K ′i

or Ki
m+1∼ K ′i. In the latter case, Ki

m∼ K ′i by definition of m = Mφ. Hence,
in any case [Φm

µ (Ki)] = [Φm
µ′(K

′
i)]. Since also pru(Φm

µ (Ki)) = pru(Φm
µ′(K

′
i)) (from

pru(Ki) = pru(K ′i)), we get that Φm
µ (Ki) = Φm

µ′(K
′
i) modulo translation along Es.

This implies η = η′ modulo Es and so η = η′. 2

Ii

Ii′

Ii′=K ′n=L′n
Ii

K ′n

L′n
Ln

Kn

Ln

Kn

Figure 20.3: Proof of Fact 20.5.( Left: (i) the peripheral case; Right: (ii) full case.)

Proof of Fact 20.5: Suppose that R is infinite. Then R has accumulation points
in the compact space X × X where X = {K : K compact subset of

⋃

i∈A Ii}
is taken with the Hausdorff distance between compact sets. Hence, for each
n ∈ N, there is mn ∈ N such that Rmn contains (Kn, K ′n) 6= (Ln, L′n) and
dist ((Kn, K

′
n), (Ln, L′n)) → 0. Because R is symmetric, we may assume Kn 6= Ln.

Also, because A is finite, (after perhaps passing to a subsequence) we may assume
Kn, Ln ⊂ Ii and K ′n, L

′
n ⊂ Ii′ , for some i, i′ ∈ A and all n ∈ N. We claim that, for

each n ∈ N, there are two (nonexclusive) possibilities:

(i) Kn, K
′
n, Ln, L

′
n are all peripheral

(ii) K ′n = L′n = Ii′ .

Indeed, suppose (i) fails. To fix attention, assume that this is Kn that is not
peripheral. Then K ′n = Ii′ by definition of R so that L′n ⊂ K ′n, which implies
Ln ⊂ Kn (by considering the projections to Eu). Hence, Ln is not peripheral and
L′n = Ii′ again by definition of R, i.e. (ii) holds.

Suppose that (i) holds for infinitely many n. By passing to a subsequence, we
may assume that Kn and Ln contain the same endpoint of Ii and likewise for K ′n
and L′n; to fix attention, suppose min Ii ∈ Kn ∩ Ln and max Ii′ ∈ K ′n ∩ L′n. After
possibly swapping Kn with Ln, we may also take that Kn ⊂ Ln. We have

[Φmn

µ (Ln)] = [Φmn

µ′ (L′n)] = [Φmn

µ′ (L′n \ K ′n)][Φmn

µ′ (K ′n)] = [Φmn

µ′ (L′n \ K ′n)][Φmn

µ (Kn)].
(20.3)
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Since |Ln|u, |Kn|u ≥ ǫφ, [Φmn
µ (Ln)] and [Φmn

µ (Kn)], both prefixes in φmn(i), are of
comparable length to φmn(i). Precisely, if we take j to be the first letter of φC2(i)
for C2 ∈ N large enough (namely, C2 ≥ ln (max{|i|u : i ∈ A}/ǫφ) / ln λ), then
[Φmn

µ (Ln)] = φln(j) . . . and [Φmn
µ (Kn)] = φln(j) . . . for ln := mn −C2. Thus, taking

a := [Φmn

µ′ (L′n \K ′n)], we see that φln(j) . . . = aφln(j) . . .. Corollary 20.3 yields then

|Φmn

µ′ (L′n \ K ′n)|u = |a|u ≥ ǫφλ
ln so that |L′n \ K ′n|u ≥ ǫφλ

ln/λ−mn ≥ ǫφλ
−C2 6→ 0 —

a contradiction.
Suppose that (ii) holds for infinitely many n. To fix attention, assume min Ln <

min Kn. For large enough n, |Ln \Kn|u ≤ ǫφ/4 so that |Ln ∩Kn|u ≥ 3/4ǫφ because
|Ln|u = |Kn|u ≥ ǫφ. Hence, [Φmn

µ (Ln ∩ Kn)] is a prefix of comparable length in

[Φmn
µ (Kn)] = [Φmn

µ (Ii′)] = φmn(i′) and we can find C3 ∈ N for which j′ := φC3

+ (i′)
satisfies [Φmn

µ (Ln∩Kn)] = φln(j′) . . . for ln = mn−C3. Now, taking a := [Φmn
µ (Ln \

Kn)], we have φmn(i′) = [Φmn

µ′ (Ii′)] = [Φmn
µ (Ln)] = [Φmn

µ (Ln\Kn)][Φmn
µ (Ln∩Kn)] =

aφln(j′) . . . . Again by Corollary 20.3, |Φmn
µ (Ln \ Kn)|u = |a|u ≥ ǫφλ

ln so that
|Ln \ Kn|u ≥ ǫφλ

ln/λ−mn ≥ ǫφλ
−C3 6→ 0 — a contradiction. 2

21 Appendix: Tiling spaces as inverse limits

In Section 4, we introduced the winding map, fφ : Tφ → Tφ, defined on the
wedge of d circles Tφ := {(x1, . . . , xd) : xi 6∈ Z for at most one i}/Zd. Now, given
γ ∈ T min

φ ⊂ {γ ∈ F : 0 ∈ γ}, let Ii − sei be the edge of γ containing 0. Then

r(γ) := sei ( mod Zd) defines a continuous map so that

T min
φ

Φ−−−→ T min
φ

r





y

r





y

Tφ

fφ−−−→ Tφ

(21.1)

commutes. In case φ is primitive and translation aperiodic, this diagram induces
a semi-conjugacy (Proposition 4.3)

T min
φ

Φ−−−→ T min
φ

r̂





y
r̂





y

Xfφ

←

f φ−−−→ Xfφ

(21.2)

on the inverse limit level defined by r̂(γ) = (r(γ), r(Φ−1(γ)), r(Φ−2(γ)), . . .), made
possible by recognizability of φ (Theorem 4.4). We will show that if, in addition,
φ is proper then r̂ is actually a conjugacy. Using the notation of Section 3, with
N the stabilizing iterate of φ, φ is said to be proper provided φN

+ (A) = {i} and
φN
− (A) = {j} are singletons. That is, for each k, the word φN(k) starts with i and

ends with j.
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Proposition 21.1 If φ is primitive, translation aperiodic, and proper, then r̂ is a
homeomorphism.

Proof: Surjectivity of r̂ follows from that of r. To prove that r̂ is injective,
suppose that r(Φ−n(γ)) = r(Φ−n(γ′)) for some γ, γ′ ∈ T min

φ and all n ∈ Z+. This
means that, for every n, either

(in) Φ−n(γ) and Φ−n(γ′) have a vertex at 0, or

(iin) Φ−n(γ) and Φ−n(γ′) contain a common edge Iin − snei with 0 < sn < 1.

If (in) occurs for all n, then ΦN(Φ−(k+1)N (γ)) and ΦN(Φ−(k+1)N (γ′)) both contain
the edges Ij − ej and Ii (where i, j, N are as in the definition of proper). Then
γ = γ′ =

⋃

k≥0 ΦkN (Ij − ej ∪ Ii).
If (iM ) fails for some M , then (iin) must occur for all n ≥ M , and we consider

two subcases

(ii)′ there is a subsequence nk so that snk
is bounded away from {0, 1};

(ii)′′ lim supn→∞ sn ⊂ {0, 1}.

In case (ii)′, we have γ =
⋃

k≥0 Φnk(Iink
− snk

eink
) = γ′. In case (ii)′′, it

must either happen that sn → 0 or sn → 1 as n → ∞; let’s assume the former.
It must then be that in = i and sn+1 = sn/λ for all sufficiently large n (by
properness). Let Ikn

− snei − ekn
be the edge of Φ−n(γ) preceding Ii − snei. Then

ΦN (Iikn+N − sn+Nei − ekn+N
) = ΦN (Iikn+N − sn/λNei − ekn+N

) contains [ends with]
the edge Ij−snei−ej , by properness, so that kn = j. The same is true for γ′. Thus,
taking K > 0 large enough, γ =

⋃

k≥K ΦkN((Ij − skei − ej)∪ (Ii − skNei)) = γ′. 2

In case when φ is not proper, we may “rewrite” φ, or some power of φ, to
obtain a proper substitution. If φ has an allowed fixed word, that is, if for some i
and j, φ(i) = i . . ., φ(j) = . . . j, and ji is allowed17, then we may rewrite φ using
starting rule i and stopping rule j as follows. Let w = . . . j.i . . . be a bi-infinite fixed
word of φ. We may factor w uniquely, up to translation, as a product of words
w = . . . w−1.w0w1 . . . with the property that each wk begins with i and ends with j,
and contains no occurrence of the two letter word ji. Since ji occurs with bounded
gap in w (via Proposition 3.5) the collection {wk : k ∈ Z} is actually finite, say
{a1, . . . , am} = {wk : k ∈ Z}. Let Ã = {1, . . . , m} and define φ̃ : Ã → Ã∗ by
φ̃(l) = l1 . . . lk iff φ(al) = al1 . . . alk . The rewriting φ̃ is primitive and translation
aperiodic (if φ is) and is proper. (In case φ has no allowed bi-infinite fixed words,
we may replace φ by φn for some n, 1 < n ≤ d, and then carry out the above
rewriting.)

17A word u is allowed if it is a subword of φn(k) for some k ∈ A and n ∈ N. Subwords of
strands in T min

φ are allowed, see (ii) of Proposition 3.4.
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Proposition 21.2 If φ is primitive and translation aperiodic and φ̃ is a rewriting
of φ (as above) then there is a homeomorphism β : T min

φ̃
→ T min

φ that conjugates Φ̃

with Φ and the translation flow on T min
φ̃

with that on T min
φ . (If φ̃ is obtained from

the rewriting of φn, then β conjugates Φ̃ with Φn and β ◦ T t
φ̃

= T λnt
φ ◦ β.)

Proof: Let β : Ã∗ → A∗ be the morphism such that β(k) = ak and let B = (bkl)
be the d × m incidence matrix of β: bkl is the number of k’s in the word al. Then
φ ◦ β = β ◦ φ̃ and AB = BÃ, where A and Ã are the matrices of φ and φ̃. It
follows that B takes the spaces Ẽs and Ẽu (for Ã) into and onto the spaces Es

and Eu (for A). This allows us to define β : T̃ → T so that β ◦ Φ̃ = Φ ◦ β.
From this we see that β(Tφ̃) ⊂ Tφ. It is clear that β ◦ T t

φ̃
= T t

φ ◦ β, and from this

it follows that β(T min
φ̃

) = T min
φ . It remains to show that β is injective on T min

φ̃
.

The formula β ◦ T t
φ̃

= T t
φ ◦ β implies that β is injective on the arc component

{T t
φ̃
(γ) : t ∈ R} for each γ ∈ T min

φ̃
(since φ is translation aperiodic). Now, if

β(γ) = β(γ′) for some γ, γ′ ∈ T min
φ̃

and if x and x′ are the bi-infinite words in

the alphabet Ã corresponding to γ and γ′, then β(x) = β(x′) are bi-infinite words
corresponding to the same strand β(γ) = β(γ′). That is, x and x′ are rewriting
of the same bi-infinite allowed word for φ. Since rewriting a word is unique, up to
translation, γ′ = T t

φ̃
(γ) for some t. From injectivity on arc-components, γ = γ′. 2

Corollary 21.3 If φ is primitive and translation aperiodic then there is a map f
on a wedge of circles and a homeomorphism from T min

φ that conjugates Φn with the

shift homeomorphism
←

f . In case φ has an allowed fixed bi-infinite word, we may
take n = 1; otherwise, n is the period of an allowed b-infinite periodic word for φ.

Notes: In the terminology of Williams ([40]), the corollary provides an “elemen-
tary presentation” of the dynamical system Φn : T min

φ → T min
φ . The properness of

the substitution φ translates to the “flattening axiom” for fφ.
If the substitution does not have an allowed bi-infinite fixed word and an ele-

mentary presentation of Φ is desired, it is necessary (and sufficient) that the map
fφ has a fixed point p other than the branch point 0 ∈ Tφ. The procedure then is to
split the symbol, say a, corresponding to the petal Ia (mod Zd) in which p occurs,
into initial, a1, and terminal, a2, symbols. One obtains a new substitution on d+1
letters (A \ {a}) ∪ {a1, a2} that has an allowed bi-infinite word . . . a1.a2 . . .. (The
definition of the substitution on a1 and a2 is determined by the precise location of
p in Ia.) If this substitution is then rewritten using starting rule a2 and stopping
rule a1 to obtain the substitution φ̃, fφ̃ on Xf

φ̃
provides an elementary presentation

of Φ on T min
φ .

In case the map fφ has no fixed points, Anderson and Putnam ([1]) describe a

procedure for presenting Φ as a shift
←

f on an inverse limit where f : X → X is a
map on a finite graph determined by “collaring” φ as outlined below.
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Given φ (primitive and translation aperiodic), let {w1, . . . , wm} be the collection
of all allowed three letter words for φ. Let Ã = {1, . . . , m} and define φ̃ : Ã → Ã∗
by φ̃(i) = j1 . . . jn−2 provided wi = abc with φ(a) = . . . i1, φ(b) = i2 . . . in−1,
φ(c) = in . . ., and wj1 = i1i2i3, wj2 = i2i3i4, . . ., wjn−2

= in−2in−1in. Now, let
X be the topological graph with vertices labeled by the allowed two letter words
(for φ) and with a directed edge, labeled i, from vertex ab to vertex bc provided
wi = abc, and let this edge have length ωb, the bth entry in the right Perron-
Frobenius eigenvector for A = Aφ. Let f : X → X be the map that follows the
pattern φ̃ and is uniformly stretching by the factor λ (the dominant eigenvalue of

A). A conjugacy between Φ and
←

f can be then constructed along the lines of the
proof of Proposition 21.1.
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[30] A. Siegel. Représentation géométrique, combinatoire et arithmétique des substitu-
tions de type Pisot. PhD thesis, Université de la Méditerranée, 2000.
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