A dynamical proof of Pisot’s theorem

Jaroslaw Kwapisz

Department of Mathematical Sciences
Montana State University
Bozeman MT 59717-2400
tel: (406) 994 5343
fax: (406) 994 1789
e-mail: jarek@math.montana.edu
web page: http://www.math.montana.edu/~jarek/

March 9, 2005

Abstract

We give a geometric proof of classical results that characterize Pisot numbers
as algebraic $\lambda > 1$ for which there is $x \neq 0$ with $\lambda^n x \to 0 \pmod{1}$ and identify
such x as members of $\mathbb{Z}[\lambda^{-1}] : \mathbb{Z}[\lambda]^*$ where $\mathbb{Z}[\lambda]^*$ is the dual module of $\mathbb{Z}[\lambda]$.

A real number $\lambda > 1$ is called a Pisot number iff it is an algebraic integer and all
its Galois conjugates (other than λ) are of modulus less that one — the golden mean
$(1 + \sqrt{5})/2$ is an example. Pisot’s 1938 thesis [4] and, independently, Vijayaraghavan’s
1941 paper [7] contain the following beautiful characterization.

Theorem 1 (Pisot, Vijayaraghavan) Suppose that $\lambda > 1$ is an algebraic number
(over the field of rational numbers \mathbb{Q}). The following are equivalent

(i) λ is a Pisot number;

(ii) There exists non-zero real x such that $\lim_{n \to \infty} \lambda^n x = 0 \pmod{1}$ (i.e.
$\lim_{n \to \infty} \min \{|\lambda^n x - k| : k \in \mathbb{Z}\} = 0$ where \mathbb{Z} are rational integers).

Moreover, any x satisfying (ii) belongs to $\mathbb{Q}(\lambda)$, the field extension of \mathbb{Q} by λ.

The property (ii) is responsible for Pisot numbers turning up in a variety of contexts
seemingly unrelated to their definition. The reader may want to savor the ensuing
connections by reading [5, 2]. Our interest in Pisot’s theorem stems from its role in
determination of spectrum for the translation flow on substitution tiling spaces, as
exhibited by [6] and further exploited in [1]. We shall not discuss that connection here.
and turn instead to our goal of supplying a proof of the theorem that offers a direct geometrical insight — something that is missing from the considerations of the classical proofs (as found in [3] or [5]). We shall also derive the following characterization of the set

\[X_\lambda := \{ x \in \mathbb{R} : \lim_{n \to \infty} \lambda^n x = 0 \pmod{1} \}. \]

(1)

In [3], this result is also attributed to Pisot and Vijayaraghavan.

Theorem 2 (Pisot, Vijayaraghavan) Suppose \(\lambda > 1 \) is Pisot. Let \(p' \) be the derivative of the monic irreducible polynomial of \(\lambda \) over \(\mathbb{Z} \), and \(\mathbb{Z}[\lambda]^* := \frac{1}{p'(\lambda)} \mathbb{Z}[\lambda] \). Then \(x \in X_\lambda \) if and only if \(\lambda^n x \in \mathbb{Z}[\lambda]^* \) for some \(n \geq 0 \); i.e.,

\[X_\lambda = \bigcup_{n \geq 0} \lambda^{-n} \mathbb{Z}[\lambda]^* = \mathbb{Z}[\lambda^{-1}] \cdot \mathbb{Z}[\lambda]^*. \]

(2)

We note that \(\mathbb{Z}[\lambda]^* \) is just an explicit form (as given by Euler) of the dual of the module \(\mathbb{Z}[\lambda] \) typically defined as \(\mathbb{Z}[\lambda]^* := \{ x \in \mathbb{Q}(\lambda) : \text{trace}(xy) \in \mathbb{Z} \forall y \in \mathbb{Z}[\lambda] \} \) and that \(\mathbb{Z}[\lambda]^* \) is non-zero only if \(\lambda \) is an algebraic integer (see Prop. 3-7-12 in [8]). That \(x \in X_\lambda \) for \(x \in \mathbb{Z}[\lambda]^* \) is clear by the following standard argument (emulating Theorem 1 in [5]). Let \(\lambda = \lambda_1, \lambda_2, \ldots, \lambda_d \) be all the roots of \(p \) (the Galois conjugates of \(\lambda \)) and \(x = x_1, \ldots, x_d \) be the images of \(x \) under the natural isomorphisms \(\mathbb{Q}(\lambda) \to \mathbb{Q}(\lambda_i), \)

\[x_i \in \mathbb{Q}(\lambda_i). \]

Then

\[Z \ni T_n := \text{trace}(\lambda^n x) = \sum_{i=1}^{d} \lambda_i^n x_i = \lambda^n x + \sum_{i=2}^{d} \lambda_i^n x_i, \]

(3)

and so \(|\lambda^n x - T_n| \to 0 \) due to the Pisot hypothesis: \(|\lambda_i| < 1 \) for \(i = 2, \ldots, d \).

From now on, consider a fixed algebraic number \(\lambda > 1 \). Denote by \(p \) its monic minimal polynomial, which is obviously irreducible. Let \(d := \deg(p) \), and fix a \(d \times d \) matrix \(A \) over \(\mathbb{Q} \) with eigenvalue \(\lambda \). The companion matrix of \(p \) is one such \(A \), and any other is similar to it over \(\mathbb{Q} \). If \(\lambda \) is an algebraic integer then \(A \) can be taken over \(\mathbb{Z} \). Conversely, if \(A \) preserves some lattice in \(L \subset \mathbb{R}^d \), \(AL \subset L \), then \(\lambda \) is an algebraic integer. Here by a **lattice** we understand a discrete rank \(d \) subgroup of \(\mathbb{R}^d \) — \(\mathbb{Z}^d \) being the simplest example.

We shall frequently use the fact that \(A \) is **irreducible over** \(\mathbb{Q} \): if \(W \) is a non-zero subspace of \(\mathbb{Q}^d \) and \(A(W) \subset W \), then \(W = \mathbb{Q}^d \) (as otherwise the characteristic polynomial of \(A|_W \) would divide \(p \)). Also, by irreducibility of \(p \), \(A \) has simple eigenvalues and is diagonalizable over \(\mathbb{C} \) so that we have a splitting

\[\mathbb{R}^d = E^s \oplus E^c \oplus E^u \]

where \(E^s, E^c, E^u \) are the linear spans of the real eigenspaces corresponding to the eigenvalues of modulus less, equal, and greater than 1, respectively. We shall see that, for \(v \in \mathbb{R}^d \setminus \{0\}, \) \(A^n v \to 0 \) iff \(v \in E^s \) lies at the very heart of Pisot’s theorem. Below, \(\langle \cdot | \cdot \rangle \) is the standard scalar product in \(\mathbb{R}^d \).
Lemma 1 If \(\langle A^n v_0 | k_0 \rangle \to 0 \) (mod 1) for some \(v_0 \in \mathbb{R}^d \setminus E^* \) and \(k_0 \in \mathbb{Z}^d \setminus \{0\} \), then
A leaves invariant some lattice in \(\mathbb{Q}^d \); i.e., \(\lambda \) is an algebraic integer.

Lemma 2 Suppose that \(A \) has entries in \(\mathbb{Z} \) and \(k_0 \in \mathbb{Z}^d \setminus \{0\} \). If \(\langle A^n v_0 | k_0 \rangle \to 0 \) (mod 1) for \(v_0 \in \mathbb{R}^d \), then \(v_0 \in \mathbb{Q}^d + E^* \).

Proof of Theorem 1: Taking \(x = 1 \) in (3) shows that (i) implies (ii), so it is left to show (i) from (ii). Pick \(\omega \in \mathbb{R}^d \) to be an eigenvector of \(A \) corresponding to \(\lambda \), \(A \omega = \lambda \omega \).

Fix \(k_0 \in \mathbb{Z}^d \setminus \{0\} \). Observe that \(\langle k_0 | \omega \rangle \neq 0 \) by irreducibility of the transpose \(A^T \) of \(A \) (since \(\{ q \in \mathbb{Q}^d : \langle q | \omega \rangle = 0 \} \) is \(A^T \) invariant). Thus, in the linear span \(\text{lin}_{\mathbb{R}}(\omega) \) of \(\omega \) over \(\mathbb{R} \), we can find \(v_0 \) so that \(x = \langle v_0 | k_0 \rangle \). In this way,

\[
\lambda^n x = \lambda^n \langle v_0 | k_0 \rangle = \langle A^n v_0 | k_0 \rangle, \quad v_0 \in \text{lin}_{\mathbb{R}}(\omega).
\] (4)

From \(x \neq 0 \), \(v_0 \not\in E^* \) and so \(\lambda \) must be an algebraic integer by Lemma 1. By Lemma 2, \(v_0 = q_0 + z \) for some \(z \in E^* \) and \(q_0 \in \mathbb{Q}^d \), and \(q_0 \neq 0 \) from \(v_0 \not\in E^* \). Consider, \(W := \mathbb{Q}^d \cap (E^* \oplus \text{lin}_{\mathbb{R}}(\omega)) \). Irreducibility of \(A \), \(AW \subset W \) and \(q_0 \in W \) force \(W = \mathbb{Q}^d \). Thus \(E^* \oplus \text{lin}_{\mathbb{R}}(\omega) = \mathbb{R}^d \) and \(\lambda \) is Pisot. □

We turn our attention to proving the lemmas now. The two proofs will partially overlap and could be combined into a single more compact argument, but we shall keep them separate because (in applications) \(\lambda \) is often a priori known to be an algebraic integer. In that case, Pisot’s theorem can be viewed as a feature of the dynamics of the endomorphism \(f : \mathbb{T}^d \to \mathbb{T}^d, x \pmod{\mathbb{Z}^d} \mapsto Ax \pmod{\mathbb{Z}^d} \), induced by \(A \) on the \(d \)-dimensional torus, \(\mathbb{T}^d := \mathbb{R}^d / \mathbb{Z}^d \). Beside the toral endomorphism \(f \), our main tool will be the concept of duality of lattices. Recall that the dual of a lattice \(L \) is defined as \(L^* := \{ v \in \mathbb{R}^d : \langle v | l \rangle \in \mathbb{Z} \ \forall l \in L \} \). One easily checks that \((\mathbb{Z}^d)^* = \mathbb{Z}^d \). For any lattice \(L \), after expressing it as \(L = B \mathbb{Z}^d \) for some nonsingular matrix \(B \), we have \(L^* = (B \mathbb{Z}^d)^* = (B^T)^{-1} \mathbb{Z}^d \) where \(B^T \) is the transpose of \(B \). In particular, \(L^* \) is also a lattice.

Proof of Lemma 1: Let \(V := \{ v \in \mathbb{R}^d : \langle A^n v | k_0 \rangle \to 0 \) (mod 1) \} and \(K := \{ k \in \mathbb{Q}^d : \langle A^n v | k \rangle \to 0 \) (mod 1) \} \} for all \(v \in V \}. These are subgroups of \(\mathbb{R}^d \), \(A(V) = V \), \(A(T(K) = K \), and \(v_0 \in V, k_0 \in K \). Irreducibility of \(A^T \) forces \(\text{lin}_{\mathbb{Q}}(K) = \mathbb{Q}^d \) so that we can find linearly independent \(k_1, \ldots, k_d \in K \). Let \(\Gamma \) be the lattice generated by \(k_j \)'s, \(\Gamma^* \) be its dual, and \(\chi_j : \mathbb{R}^d / \Gamma^* \to \mathbb{C} \) be the associated basis characters on the torus \(\mathbb{R}^d / \Gamma^* \); namely, \(\chi_j(x \pmod{\Gamma^*}) := \exp(2\pi i (k_j \cdot x)), x \in \mathbb{R}^d, j = 1, \ldots, d \).

The convergence \(\langle A^n v_0 | k_j \rangle \to 0 \) (mod 1) translates to \(\chi_j(A^n v_0 \pmod{\Gamma^*}) \to 1 \), which (by continuity of \(\chi_j \) and compactness of \(\mathbb{R}^d / \Gamma^* \)) is equivalent to \(\text{dist}(A^n v_0 \pmod{\Gamma^*}, \chi_j^{-1}(1)) \to 0 \). Therefore, \(\text{dist}(A^n v_0 \pmod{\Gamma^*}, G) \to 0 \) where \(G := \bigcap_{j=1}^d \chi_j^{-1}(1) = \{ 0 \pmod{\Gamma^*} \} \), which is to say that

\[
\text{dist}(A^n v_0, \Gamma^*) \to 0.
\] (5)

Fix \(\epsilon > 0 \) so that, for \(x, y \in \Gamma^* \cup \Gamma^* \), \(\text{dist}(x, y) < \epsilon \) forces \(x = y \). (This is possible because \(\Gamma^* / \Gamma^* \) is discrete in \(\mathbb{R}^d / \Gamma^* \), as can be seen by picking \(a \in \mathbb{N} \) so that \(aA \) has all integer entries and observing that \(\mathbb{A} \mathbb{G}^* \subset a^{-1} \Gamma^* \), which yields \(\Gamma^* / \Gamma^* \subset (a^{-1} \Gamma^*) / \Gamma^* \).)
From (5), there are \(u_n \in \Gamma^* \), \(n \in \mathbb{N} \), such that \(\text{dist}(A^n v_0, u_n) \to 0 \). Since, \(\text{dist}(u_{n+1}, A u_n) \leq \text{dist}(u_{n+1}, A^{n+1} v_0) + \text{dist}(A A^n v_0, A u_n) \), we have \(\text{dist}(u_{n+1}, A u_n) \to 0 \) and so, as soon as \(\text{dist}(u_{n+1}, A u_n) < \epsilon \), it must be that \(u_{n+1} = A u_n \). Therefore, for some \(n_0 \in \mathbb{N} \) and all \(l \geq 0 \), we have \(A^l u_{n_0} = u_{n_0 + l} \in \Gamma^* \). Now, from \(v_0 \not\in E^* \), \(A^n v_0 \not\in \Gamma^* \) so that \(u_{n_0} \neq 0 \). But \(u_{n_0} \in M := \{ v \in \Gamma^* : A^l v \in \Gamma^* \forall l \geq 0 \} \), which makes \(M \) a nonzero subgroup of \(\Gamma^* \). Clearly \(A M \subset M \). By irreducibility of \(A \), \(\text{lin}_Q(M) = Q^d \) so that \(M \) is a lattice. \(\square \)

Proof of Lemma 2: Let \(f : \mathbb{T}^d \to \mathbb{T}^d \) be the toral endomorphism associated to \(A \), \(\chi : \mathbb{T}^d \to \mathbb{C} \) be the character associated to \(k_0 \), \(\chi(x (\text{mod} \mathbb{Z}^d)) := \exp(2\pi i (x | k_0)) \), and set \(p := v_0 \) (mod \(\mathbb{Z}^d \)). The hypothesis \(\langle A^n v_0 | k_0 \rangle \to 0 \) (mod 1) translates to \(\chi(f^n(p)) \to 1 \), which is equivalent to \(\text{dist}(f^n(p), G) \to 0 \) where \(G := \chi^{-1}(1) \). We claim that, in fact,

\[
\text{dist}(f^n(p), G_\infty) \to 0, \quad G_\infty := \bigcap_{n \geq 0} f^{-n}(G). \quad (6)
\]

Indeed, otherwise \(f^{n_k}(p) \to w \not\in f^{-l}(G) \) for some \(w \), \(l \geq 0 \), and \(n_k \to \infty \); and so \(f^{n_k+l}(p) \to f^l(w) \not\in G \) contradicting \(\text{dist}(f^n(p), G) \to 0 \).

To identify \(G_\infty \) as a finite subgroup of \(\mathbb{T}^d \), consider its lift to \(\mathbb{R}^d \),

\[
\Gamma := G_\infty + \mathbb{Z}^d := \{ x \in \mathbb{R}^d : x (\text{mod} \mathbb{Z}^d) \in G_\infty \}.
\]

Denote by \(L_{k_0} \) the smallest sublattice of \(\mathbb{Z}^d \) containing \((A^T)^n k_0 \) for all \(n \geq 0 \). Its dual, \(L_{k_0}^* \), is a lattice in \(\mathbb{Q}^d \). For \(v \in \mathbb{R}^d \), we have \(v \in \Gamma \) iff \(\langle A^n v | k_0 \rangle = \langle v | (A^T)^n k_0 \rangle \in \mathbb{Z} \) for all \(n \geq 0 \) iff \(v \in L_{k_0}^* \). Thus \(G_\infty = \Gamma / \mathbb{Z}^d \) where

\[
\Gamma = L_{k_0}^* \subset \mathbb{Q}^d. \quad (7)
\]

Let \(q_n \in G_\infty \) realize the distance in (6) so that \(\text{dist}(f^n(p), q_n) \to 0 \) and thus also \(\text{dist}(f(q_n), q_{n+1}) \to 0 \). Since \(G_\infty \) is discrete, there is \(n_0 \in \mathbb{N} \) such that

\[
q_{n+1} = f(q_n), \quad n \geq n_0. \quad (8)
\]

Moreover, if we pick \(\epsilon > 0 \) small enough and \(n_1 > n_0 \) large enough, then for every \(n \geq n_1 \) we can write \(f^n(p) = q_n + x_n + y_n + z_n \) for some unique \(x_n \in E^s \), \(y_n \in E^c \), \(z_n \in E^u \), each of norm less than \(\epsilon \). From (8), we have \(x_{n+1} = Ax_n \), \(y_{n+1} = Ay_n \), \(z_{n+1} = Az_n \) for \(n \geq n_1 \). What is more, \(\text{dist}(f^n(p), q_n) \to 0 \) forces \(y_n \to 0 \) and \(z_n \to 0 \), which is only possible if \(y_{n_1} = 0 \) and \(z_{n_1} = 0 \). Thus \(f^{n_1}(p) = q_{n_1} + x_{n_1} \); i.e., \(A^{n_1} v_0 = w + x_{n_1} \) for some \(w \in \Gamma \) (with \(q_{n_1} = w \) (mod \(\mathbb{Z}^d \))). To summarize, \(v_0 \in A^{-n_1} \Gamma + E^s = A^{-n_1} L_{k_0}^* + E^s \subset Q^d + E^s \). \(\square \)

Remark 1 (addendum to Lemma 2) Under the hypotheses of Lemma 2,

\[
\{ v \in \mathbb{R}^d : \langle A^n v | k_0 \rangle \to 0 \text{ (mod 1)} \} = \bigcup_{n \geq 0} A^{-n} L_{k_0}^* + E^s \quad (9)
\]

where \(L_{k_0} \) is the smallest lattice in \(\mathbb{Z}^d \) containing \((A^T)^n k_0 \) for all \(n \geq 0 \).
Proof of Remark 1: The “⊂” inclusion is demonstrated in the proof of Lemma 2. To see “⊃”, it suffices to note that, if \(v \in L_{k_0}^* + E^s \), then \(v = w + x \) where \(w \pmod{Z^d} \in G_\infty \) and \(x \in E^s \). Thus \(\langle A^n v | k_0 \rangle \) becomes exponentially close to \(\langle A^n w | k_0 \rangle \in \mathbb{Z} \) as \(n \to \infty \). □

Proof of Theorem 2: The plan is to explicitly compute the objects involved in the preceding arguments for \(A \) that is the companion matrix of the polynomial \(p \) of \(\lambda \),

\[
p(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_0, \quad a_i \in \mathbb{Z}.
\]

The eigenvectors \(\omega \) and \(\omega^* \) with \(A\omega = \lambda \omega \), \(A^T\omega^* = \lambda \omega^* \) can be found as

\[
\omega^* := \frac{1}{p'(\lambda)} \cdot (a_1 + a_2\lambda + \cdots + \lambda^{d-1}, a_{d-1} + \lambda, 1)
\]
\[
\omega := (1, \lambda, \lambda^2, \ldots, \lambda^{d-1}).
\]

These are normalized so that \(\langle \omega | \omega^* \rangle = 1 \), which ensures that the projection onto \(\text{lin}_\mathbb{R}(\omega) \) along \(E^s = (\omega^*)^\perp \) is given by \(\text{pr}^u(y) = \langle y | \omega^* \rangle \omega \), \(y \in \mathbb{R}^d \). Note that the components of \(\omega^* \) generate \(\frac{1}{p'(\lambda)} \mathbb{Z}[\lambda] \), \(\{ \langle u | \omega^* \rangle : u \in \mathbb{Z}^d \} = \frac{1}{p'(\lambda)} \mathbb{Z}[\lambda] \).

Denote by \(e_1, \ldots, e_d \) the standard basis in \(\mathbb{R}^d \), and set \(k_0 := e_1 \). Since \(e_i = (A^T)^{-1}(e_1) \) for \(i = 1, \ldots, d \), we have \(L_{k_0} = \mathbb{Z}^d \). Hence, \(L_{k_0}^* = \mathbb{Z}^d \).

If we write \(x = \langle v_0 | k_0 \rangle \) for \(v_0 \in \text{lin}_\mathbb{R}(\omega) \) — as in (4) in the proof of Theorem 1 — then \(\lambda^nx \to 0 \pmod{1} \) iff \(\langle A^n v_0 | k_0 \rangle \to 0 \pmod{1} \) iff \(A^{n_1}v_0 \in L_{k_0}^* + E^s = \mathbb{Z}^d + E^s \) for some \(n_1 \geq 0 \), where the last equivalence hinges on Remark 1. Thus \(x \in X_\lambda \) are of the form

\[
x = \lambda^{-n_1} \langle A^{n_1}v_0 | k_0 \rangle = \lambda^{-n_1} \langle \text{pr}^u(u) | k_0 \rangle = \lambda^{-n_1} \langle u | \omega^* \rangle \langle \omega | k_0 \rangle = \lambda^{-n_1} \langle u | \omega^* \rangle \cdot 1 \quad (10)
\]

where \(u \in \mathbb{Z}^d \) and \(n_1 \geq 0 \). That is \(X_\lambda = \bigcup_{n_1 \geq 0} \lambda^{-n_1} \frac{1}{p'(\lambda)} \mathbb{Z}[\lambda] \), as desired. □

The readers accustomed to a more traditional framework will no doubt notice that, in our setting, the scalar product \(\langle \cdot | \cdot \rangle \) on \(\mathbb{R}^d \times \mathbb{R}^d \) serves as the completion of the trace form on \(\mathbb{Q}(\lambda) \times \mathbb{Q}(\lambda) \), the two being related by \(\langle x | y \rangle = \text{trace}(\langle x | \omega^* \rangle \cdot \langle \omega | y \rangle) \) for \(x, y \in \mathbb{Q}^d \). This explains our remark about the nature of \(\mathbb{Z}[\lambda]^* \) from the beginning of this note.

References

