7.6 Cluster Sampling with Unequal Cluster Sizes

- Suppose the \(N \) cluster sizes \(M_1, M_2, \ldots, M_N \) are not all equal and that a one-stage cluster sample of \(n \) primary sampling units (PSUs) is taken with the goal of estimating \(t \) or \(\bar{y}_U \).

- Let \(M_i \) and \(t_i \) (\(i = 1, 2, \ldots, n \)) be the sizes and totals of the \(n \) sampled PSUs. Let \(m = \sum_{i=1}^{n} M_i \) be the total number of secondary sampling units (SSUs) in the sample.

- We will review three methods of estimating \(\bar{y}_U \) and \(t \) given the unequal cluster sizes. These methods are based on two representations of the population mean \(\bar{y}_U \).

(i) \(\bar{y}_U \) as a population ratio:

\[
\bar{y}_U = \frac{\sum_{i=1}^{N} t_i}{\sum_{i=1}^{N} M_i} = \frac{\sum_{i=1}^{N} t_i}{M_0} \tag{89}
\]

expresses \(\bar{y}_U \) as the ratio of the total of the primary sampling unit values to the total number of secondary sampling units.

(ii) \(\bar{y}_U \) as a mean cluster total:

\[
\bar{y}_U = \left(\frac{N}{M_0} \right) \sum_{i=1}^{N} \frac{t_i}{N} \tag{90}
\]

expresses \(\bar{y}_U \) as a multiple of the mean of the cluster totals.

Method 1: The sample cluster ratio: Suppose a SRS of clusters is selected without replacement. Substitution of sample values into (89) provides the following ratio estimator for \(\bar{y}_U \):

\[
\hat{\bar{y}}_{Uc(1)} = \frac{\sum_{i=1}^{n} t_i}{\sum_{i=1}^{n} M_i} = \frac{\sum_{i=1}^{n} t_i}{m} = r_{clus}
\]

which is the ratio of the sum of the sampled cluster totals to the sum of the sampled cluster sizes. Thus, the ratio-based estimator for \(t \) is

\[
\hat{t}_{c(1)} = M_0 \hat{\bar{y}}_{Uc(1)} = M_0 r_{clus}
\]

- \(\hat{\bar{y}}_{Uc(1)} \) is a special case of the SRS ratio estimator presented in Section 5 of the course notes (with \(y_i = t_i \) and \(x_i = M_i \)). Thus, \(\hat{\bar{y}}_{Uc(1)} \) is biased with the bias \(\to 0 \) as \(n \) increases.

- There are no closed-forms for the true variances of \(\hat{\bar{y}}_{Uc(1)} \) and \(\hat{t}_{c(1)} \). However, approximations are given in Section 5 of the course notes.

- Estimators of the variances (\(\hat{V}(\hat{t}_{c(1)}) \) and \(\hat{V}(\hat{\bar{y}}_{Uc(1)}) \)) are in Section 5 of the course notes.

- If \(M_0 \) is not known, \(\hat{V}(\hat{\bar{y}}_{Uc(1)}) \) can be estimated by replacing \(M_0 \) with the estimate \(\hat{M}_0 \approx Nm/n \). Then dividing \(\hat{M}_0^2 \) (instead of \(M_0^2 \)) provides an estimate of \(\hat{V}(\hat{\bar{y}}_{Uc(1)}) \).

- Furthermore, when estimating \(t \), multiply \(\hat{\bar{y}}_{Uc(1)} \) by \(\hat{M}_0 \) and \(\hat{V}(\hat{\bar{y}}_{Uc(1)}) \) by \(\hat{M}_0^2 \).
Figure 10: Cluster Sampling with Unequal-Sized Cluster

The mean $\bar{y}_U = 33.385$. There are $M_0 = 400$ secondary sampling units and $N = 49$ primary sampling units (clusters). There are 9 clusters of size $M_i = 16$, 24 clusters of size $M_i = 8$, and 16 clusters of size $M_i = 4$. The boldfaced values represent the SSUs in the sample.

<table>
<thead>
<tr>
<th>M_i</th>
<th>t_i</th>
<th>$\bar{y}_i = t_i/M_i$</th>
<th>M_i</th>
<th>t_i</th>
<th>$\bar{y}_i = t_i/M_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>401</td>
<td>25.0625</td>
<td>16</td>
<td>337</td>
<td>21.0625</td>
</tr>
<tr>
<td>8</td>
<td>279</td>
<td>34.8750</td>
<td>8</td>
<td>321</td>
<td>40.1250</td>
</tr>
<tr>
<td>8</td>
<td>280</td>
<td>35.0000</td>
<td>4</td>
<td>171</td>
<td>42.7500</td>
</tr>
<tr>
<td>4</td>
<td>187</td>
<td>46.7500</td>
<td>4</td>
<td>216</td>
<td>54.0000</td>
</tr>
</tbody>
</table>

$m = 68 \quad \sum t_i = 2192 \quad \bar{y} = 274 \quad \bar{y} = 37.453125$

Method 2: The cluster sample total: Suppose a SRS of clusters is selected without replacement. Substitution of sample values into (90) provides the following unbiased estimator for \bar{y}_U:

$$\hat{\bar{y}}_{U(c,2)} = \frac{N}{M_0} \sum_{i=1}^{n} t_i = \frac{N}{nM_0} \sum_{i=1}^{n} t_i$$

- The variance $V(\hat{\bar{y}}_{U(c,2)}) = \frac{(N-n)N}{n(N-1)M_0^2} \sum_{i=1}^{N} (t_i - \bar{t}_i)^2 = \frac{(N-n)N}{nM_0^2} S_t^2$

where S_t^2 is the population variance of the t_i values.

- An estimate of this variance is given by

$$\hat{V}(\hat{\bar{y}}_{U(c,2)}) = \frac{(N-n)N}{n(n-1)M_0^2} \sum_{i=1}^{n} (t_i - \bar{y})^2 = \frac{(N-n)N}{nM_0^2} s_t^2,$$

where s_t^2 is the sample variance of the sampled t_i values.
• To estimate \(t \), multiply \(\hat{y}_{Uc(2)} \) by \(M_0 \). For estimated variances, multiply \(\hat{V}(\hat{y}_{Uc(2)}) \) by \(M_0^2 \).

• If \(M_0 \) is not known, we can substitute \(\hat{M}_0 = Nm/n \) into (91) and get:

\[
\hat{V}(\hat{y}_{Uc(2)}) = \frac{(N-n)n}{(n-1)Nm^2} \sum_{i=1}^{n} (t_i - \bar{y})^2 = \frac{(N-n)n}{Nm^2} s^2_i.
\]

• For Methods 1 and 2, if a SRS of clusters is taken with replacement, then the estimator formulas for \(t \) and \(y_{Uc} \) remain unchanged, but the variance formulas need to be adjusted. Simply replace \(N(N-n) \) with \(N^2 \) in the numerators of the estimated variance formulas.

Confidence Intervals

• A confidence interval for \(y_{Uc} \) using either Method 1 (\(k = 1 \)) or Method 2 (\(k = 2 \)) is:

\[
\hat{y}_{Uc(k)} \pm t^* \sqrt{\hat{V}(\hat{y}_{Uc(k)})} \quad \text{for } k = a, b
\]

where \(t^* \) is the upper \(\alpha/2 \) critical value from the \(t(n-1) \) distribution.

Method 3: Primary sampling units selected with pps:

Suppose that the primary sampling units (PSUs) are selected with replacement with draw-by-draw selection probabilities (\(p_i \)) proportional to the sizes of the PSUs, \(p_i = M_i/M_0 \).

One way to select the PSUs when each of \(M_i \)'s (the sizes of the PSUs) is known is to

1. Generate \(N \) intervals \((0, M_1], (M_1, M_1 + M_2], (M_1 + M_2, M_1 + M_2 + M_3], \ldots (M_1 + \cdots + M_{N-1}, M_0] \).

2. Generate a random number \(U \) between 0 and \(M_0 \). Pick the interval that contains \(U \). If this is the \(i^{th} \) interval, then select cluster \(i \).

3. Repeat this \(n \) times.

Another way to construct the sampling design if each of the \(M_0 \) secondary sampling units can be listed in a sampling frame:

1. Select \(n \) SSUs (say, \(u_1, u_2, \ldots, u_n \)) from the \(M_0 \) in the population using simple random sampling with replacement. That is, select \(n \) numbers with replacement from \(\{1, 2, \ldots, M_0 \} \). Let \(u_i \) (\(i = 1, 2, \ldots, n \)) be the corresponding \(n \) secondary sampling units.

2. Then for each \(u_i \) (\(i = 1, 2, \ldots, n \)), sample all SSUs in the cluster containing \(u_i \).

Thus, a PSU is selected every time any of its SSUs is selected.

• Now we can use either the Horvitz-Thompson estimator (Figure 11) or the Hansen-Hurwitz estimator (Figure 12), and their associated variance estimators discussed in Section 6 of the course notes.
The mean $\bar{y}_U = 33.385$. There are $M_0 = 400$ secondary sampling units and $M_0 = 49$ primary sampling units (clusters). There are 9 clusters with $M_i = 16$, 24 clusters with $M_i = 8$, and 16 clusters with $M_i = 4$. Five clusters were sampled with replacement. One cluster was sampled twice. The boldfaced values are in the sample.

\[
\begin{array}{cccc|cccc|cccc|cccc|cccc|cccc|cccc|cccc|cccc}
\hline
\text{Sampled} & \downarrow \text{twice} \downarrow & \text{i} & t_i & M_i & p_i = M_i/M_0 & \pi_i = 1 - (1 - p_i)^5 \\
\hline
1 & 344 & 16 & 16/400 = .04 & 1 - .96^5 = .184627302 \\
2 & 252 & 8 & 8/400 = .02 & 1 - .98^5 = .096079203 \\
3 & 278 & 8 & 8/400 = .02 & 1 - .98^5 = .096079203 \\
4 & 181 & 4 & 4/400 = .01 & 1 - .99^5 = .049009950 \\
\end{array}
\]

\[
\begin{align*}
\pi_{12} &= \pi_{13} = [1 - (.96^5)] + [1 - (.98^5)] - [1 - (.94^5)] = .0146105270 \\
\pi_{14} &= [1 - (.96^5)] + [1 - (.99^5)] - [1 - (.95^5)] = .00741819 \\
\pi_{24} &= [1 - (.98^5)] + [1 - (.99^5)] - [1 - (.97^5)] = .003823179 \\
\pi_{23} &= [1 - (.98^5)] + [1 - (.98^5)] - [1 - (.96^5)] = .007531104 \\
\end{align*}
\]
Figure 12: Hansen-Hurwitz Estimation with Selection Probabilities Proportional to Cluster Size

In Figure 11, the total abundance is $t = 13354$. There are $M_0 = 400$ secondary sampling units and $M_0 = 49$ primary sampling units (clusters). There are 9 clusters with $M_i = 16$, 24 clusters with $M_i = 8$, and 16 clusters with $M_i = 4$. The cluster totals t_i for the clusters in Figure 11 are summarized in the figure below. Also included is a cluster label (1 to 49). Eight clusters were sampled with replacement. The sampled units are 2, 6, 6, 16, 25, 30, 32, and 44. Note that cluster 6 was sampled twice. The boldfaced values are in the sample.

<table>
<thead>
<tr>
<th>Unit</th>
<th>t_i</th>
<th>p_i</th>
<th>t_i/p_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>344</td>
<td>.04</td>
<td>8600</td>
</tr>
<tr>
<td>6</td>
<td>467</td>
<td>.04</td>
<td>11675</td>
</tr>
<tr>
<td>6</td>
<td>467</td>
<td>.04</td>
<td>11675</td>
</tr>
<tr>
<td>16</td>
<td>279</td>
<td>.02</td>
<td>13950</td>
</tr>
<tr>
<td>25</td>
<td>293</td>
<td>.02</td>
<td>14650</td>
</tr>
<tr>
<td>30</td>
<td>278</td>
<td>.02</td>
<td>13900</td>
</tr>
<tr>
<td>32</td>
<td>322</td>
<td>.02</td>
<td>16100</td>
</tr>
<tr>
<td>44</td>
<td>193</td>
<td>.01</td>
<td>19300</td>
</tr>
</tbody>
</table>

109850
7.6.1 Using R and SAS for estimation with unequal cluster sizes

R code for analysis of Figure 10 data: Methods 1 and 2

```r
library(survey)
source("c:/courses/st446/rcode/confintt.r")

# Cluster sample with unequal-size clusters (Figure 10)
M0 = 400
N = 49
n = 8
y <- c(401,337,279,321,280,171,187,216)
clusterid <- c(1,2,3,4,5,6,7,8)

# Method 1: SRS of clusters using cluster ratios
fpc1 <- c(rep(N,n))
Mvec <- c(16,16,8,8,8,4,4,4)
ratio_ttl <- M0*y
ratio_mn <- y

Fig10 <- data.frame(cbind(fpc1,ratio_ttl,ratio_mn,Mvec))
Fig10

dsgn10 <- svydesign(data=Fig10,id=~1,fpc=~fpc1)

# Method 1: Estimation of the population mean
estmean1 <- svyratio(~ratio_mn,~Mvec,design=dsgn10)
confint.t(estmean1,tdf=n-1,level=.95)

# Method 1: Estimation of the population total
esttotal1 <- svyratio(~ratio_ttl,~Mvec,design=dsgn10)
confint.t(esttotal1,tdf=n-1,level=.95)

# Method 2: SRS of clusters using cluster totals
fpc2 <- c(rep(N,8))
wgt2a <- c(rep(N/n,n))
wgt2b <- wgt2a/M0
#wgt2b <- c(rep(N/(n*M0),n))

Fig10a <- data.frame(cbind(clusterid,y,wgt2a,wgt2b,fpc2))
Fig10a
dsgn10a <-svydesign(ids=~clusterid,weights=~wgt2a,fpc=~fpc2,data=Fig10a)
dsgn10b <-svydesign(ids=~clusterid,weights=~wgt2b,fpc=~fpc2,data=Fig10a)

# Method 2: Estimation of population total
esttotal2 <- svytotal(~y,design=dsgn10a)
print(esttotal2,digits=15)
confint.t(esttotal2,level=.95,tdf=n-1)

# Method 2: Estimation of population mean
estmean2 <- svytotal(~y,design=dsgn10b)
print(estmean2,digits=15)
confint.t(estmean2,level=.95,tdf=n-1)
```
R output for analysis of Figure 10 data: Methods 1 and 2

Method 1: SRS of clusters using cluster ratios

 fpc1 ratio_ttl ratio_mn Mvec
1 49 160400 401 16
2 49 134800 337 16
3 49 111600 279 8
4 49 128400 321 8
5 49 112000 280 8
6 49 68400 171 4
7 49 74800 187 4
8 49 86400 216 4

> # Method 1: Estimation of the population mean

mean(ratio_mn/Mvec) = 32.23529
SE(ratio_mn/Mvec) = 3.60282

Two-Tailed CI for ratio_mn/Mvec where alpha = 0.05 with 7 df
2.5 % 97.5 %
23.71598 40.75460

> # Method 1: Estimation of the population total

mean(ratio_ttl/Mvec) = 12894.11765
SE(ratio_ttl/Mvec) = 1441.12717

Two-Tailed CI for ratio_ttl/Mvec where alpha = 0.05 with 7 df
2.5 % 97.5 %
9486.39340 16301.84189

Method 2: SRS of clusters using cluster totals

 clusterid y wgt2a wgt2b fpc2
1 1 401 6.125 0.0153125 49
2 2 337 6.125 0.0153125 49
3 3 279 6.125 0.0153125 49
4 4 321 6.125 0.0153125 49
5 5 280 6.125 0.0153125 49
6 6 171 6.125 0.0153125 49
7 7 187 6.125 0.0153125 49
8 8 216 6.125 0.0153125 49

> # Method 2: Estimation of population total

mean(y) = 13426.00000
SE(y) = 1255.09810

Two-Tailed CI for y where alpha = 0.05 with 7 df
2.5 % 97.5 %
10458.16459 16393.83541

> # Method 2: Estimation of population mean

mean(y) = 33.56500
SE(y) = 3.13775

Two-Tailed CI for y where alpha = 0.05 with 7 df
2.5 % 97.5 %
26.14541 40.98459

176
SAS code for analysis of Figure 10 data (Supplemental)

data in;
 NN = 49;
 M0 = 400;
 n = 8;
input _cluster Mi y @@;
 t = M0*y;
datalines;
1 16 401 2 16 337 3 8 279 4 8 321
5 8 280 6 4 171 7 4 187 8 4 216
;
TITLE 'SRS of clusters with replacement-- Figure 10';
PROC SURVEYMEANS DATA=in TOTAL=49 ;
 VAR y;
 RATIO y/Mi;
 RATIO t/mi;
TITLE2 'The sample cluster ratio method: Method 1';
DATA in; SET in;
ytotal = y*NN;
ymean = ytotal/M0;
wgt = 1/M0;
PROC SURVEYMEANS DATA=in TOTAL=49 ;
 WEIGHT wgt;
 VAR ytotal ymean;
TITLE2 'The cluster sample total method: Method 2';
run;

SAS output for analysis of Figure 10 data

SRS of clusters with replacement-- Figure 10
The sample cluster ratio method: Method 1

The SURVEYMEANS Procedure
Data Summary
Number of Observations 8

Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>Std Error of Mean</th>
<th>95% CL for Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>8</td>
<td>274.000000</td>
<td>25.614247</td>
<td>213.4319</td>
</tr>
<tr>
<td>Mi</td>
<td>8</td>
<td>8.500000</td>
<td>1.612406</td>
<td>4.6873</td>
</tr>
<tr>
<td>t</td>
<td>8</td>
<td>109600</td>
<td>10246</td>
<td>85372.7721</td>
</tr>
</tbody>
</table>

Ratio Analysis

<table>
<thead>
<tr>
<th>Numerator Denominator</th>
<th>N</th>
<th>Ratio</th>
<th>Std Err</th>
</tr>
</thead>
<tbody>
<tr>
<td>y Mi</td>
<td>8</td>
<td>32.235294</td>
<td>3.602818</td>
</tr>
</tbody>
</table>

Numerator Denominator 95% CL for Ratio

| y Mi | 23.7159835 | 40.7546047 |

Ratio Analysis

<table>
<thead>
<tr>
<th>Numerator Denominator</th>
<th>N</th>
<th>Ratio</th>
<th>Std Err</th>
</tr>
</thead>
<tbody>
<tr>
<td>t Mi</td>
<td>8</td>
<td>12894</td>
<td>1441.127165</td>
</tr>
</tbody>
</table>

Numerator Denominator 95% CL for Ratio

| t Mi | 9486.39340 | 16301.8419 |

177
SRS of clusters with replacement-- Figure 10
The cluster sample total method: Method 2

The SURVEYMEANS Procedure
Data Summary
Number of Observations 8
Sum of Weights 0.02

Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>Std Error of Mean</th>
<th>95% CL for Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>ytotal</td>
<td>8</td>
<td>13426</td>
<td>1255.098104</td>
<td>10458.1646</td>
</tr>
<tr>
<td>ymean</td>
<td>8</td>
<td>33.565000</td>
<td>3.137745</td>
<td>26.1454</td>
</tr>
</tbody>
</table>

Using R and SAS for Hansen-Hurwitz Estimation (Method 3) for Figure 12 data

R code for Hansen-Hurwitz Estimation for Figure 12 data

library(survey)
source("c:/courses/st446/rcode/confintt.r")

Cluster sample with unequal-size clusters (Figure 12)
M0 = 400
N = 49
n = 8
y <- c(344,467,467,279,293,278,322,193)
Mvec <- c(16,16,16,8,8,8,8,4)

Method 3: Sampling proportional to size with replacement
p <- Mvec/M0
t <- y/p
t2 <- t/M0

Fig10c <- data.frame(t,t2)
Fig10c
dsgn10c <-svydesign(ids=~1,data=Fig10c)

Method 3: Estimation of population total
esttotal3 <- svymean(~t,design=dsgn10c)
print(esttotal3,digits=15)
confint.t(esttotal3,level=.95,tdf=n-1)

Method 3: Estimation of population mean
estmean3 <- svymean(~t2,design=dsgn10c)
print(estmean3,digits=15)
confint.t(estmean3,level=.95,tdf=n-1)
R output for Hansen-Hurwitz Estimation for Figure 12 data

> # Cluster sample with unequal-size clusters (Figure 12)

> # Method 3: Sampling proportional to size with replacement

<table>
<thead>
<tr>
<th></th>
<th>t</th>
<th>t2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8600</td>
<td>21.5000</td>
</tr>
<tr>
<td>2</td>
<td>11675</td>
<td>29.1875</td>
</tr>
<tr>
<td>3</td>
<td>11675</td>
<td>29.1875</td>
</tr>
<tr>
<td>4</td>
<td>13950</td>
<td>34.8750</td>
</tr>
<tr>
<td>5</td>
<td>14650</td>
<td>36.6250</td>
</tr>
<tr>
<td>6</td>
<td>13900</td>
<td>34.7500</td>
</tr>
<tr>
<td>7</td>
<td>16100</td>
<td>40.2500</td>
</tr>
<tr>
<td>8</td>
<td>19300</td>
<td>48.2500</td>
</tr>
</tbody>
</table>

> # Method 3: Estimation of population total

\[
\text{mean}(t) = 13731.25000 \\
\text{SE}(t) = 1136.47668 \\
\text{Two-Tailed CI for } t \text{ where alpha = 0.05 with 7 df} \\
\begin{array}{c|c}
2.5 \% & 97.5 \% \\
\hline
11043.90968 & 16418.59032 \\
\end{array}
\]

> # Method 3: Estimation of population mean

\[
\text{mean}(t2) = 34.32812 \\
\text{SE}(t2) = 2.84119 \\
\text{Two-Tailed CI for } t2 \text{ where alpha = 0.05 with 7 df} \\
\begin{array}{c|c|c|c}
2.5 \% & 97.5 \% & 27.60977 & 41.04648 \\
\end{array}
\]

SAS code for Hansen-Hurwitz Estimation for Figure 12 data (supplemental)

data in;
M0 = 400;
input _cluster Mi y @@;
p = Mi/M0; t = y/p; ymean = t/M0;
datalines;
1 16 344 2 16 467 3 16 467 4 8 279 5 8 293 6 8 278 7 8 322 8 4 193 ;
PROC SURVEYMEANS DATA=in MEAN CLM ;
VAR t ymean;
TITLE 'PPS sampling of clusters with replacement-- Figure 12 -- Method 3';
run;

SAS output for Hansen-Hurwitz Estimation for Figure 12 data (supplemental)

PPS sampling of clusters with replacement-- Figure 12 -- Method 3

The SURVEYMEANS Procedure
Data Summary
Number of Observations 8

Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std Error of Mean</th>
<th>95% CL for Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>13731</td>
<td>1136.476679</td>
<td>11043.9097 16418.5903</td>
</tr>
<tr>
<td>ymean</td>
<td>34.328125</td>
<td>2.841192</td>
<td>27.6098 41.0465</td>
</tr>
</tbody>
</table>

179
7.7 Attribute Proportion Estimation using Cluster Sampling

- Instead of studying a quantitative measure associated with sampling units, we often are interested in an attribute (a qualitative characteristic). Statistically, the goal is to estimate a proportion. The population proportion \(p \) is the proportion of population units having that attribute.

- Examples: the proportion of females (or males) in an animal population, the proportion of consumers who own motorcycles, the proportion of married couples with at least 1 child...

- If a one-stage cluster sample is taken, then how do we estimate \(p \)?

7.7.1 Estimating \(p \) with Equal Cluster Sizes

- Statistically, we use an indicator function that assigns a \(y_{ij} \) value to secondary sampling unit \(j \) in primary sampling unit (cluster) \(i \) as follows:

\[
y_{ij} = 1 \quad \text{if unit } j \text{ in cluster } i \text{ possesses the attribute}
\]
\[
y_{ij} = 0 \quad \text{otherwise}
\]

Then \(t = \sum_{i=1}^{N} \sum_{j=1}^{M} y_{ij} \) = the total number of SSUs in the population that possess the attribute. By definition, the population proportion \(p \) is

\[
p = \frac{t}{MN} = \frac{t}{M_0}
\]

where \(M_i = M \) for each cluster, and the proportion for cluster \(i \) is

\[
p_i = \frac{1}{M} \sum_{j=1}^{M} y_{ij}.
\]

- By taking a one-stage cluster sample of \(n \) equal-sized clusters, we can estimate \(p \) as the weighted average of the sampled cluster proportions:

\[
\hat{p}_c = \frac{\sum_{i=1}^{n} p_i}{n}.
\]

- \(\hat{p}_c \) is an unbiased estimator of \(p \), and the variance of \(\hat{p}_c \) is

\[
V(\hat{p}_c) = \left(\frac{N-n}{nN} \right) \sum_{i=1}^{N} \frac{(p_i - p)^2}{N-1} = \left(\frac{1-f}{n} \right) \sum_{i=1}^{N} \frac{(p_i - p)^2}{N-1} \quad (94)
\]

where \(f = n/N \) = the proportion of clusters sampled.

- Because \(p \) is unknown, we use \(\hat{p}_c \) as an estimate of \(p \) to get the unbiased estimator of \(V(\hat{p}_c) \):

\[
\hat{V}(\hat{p}_c) = \left(\frac{N-n}{nN} \right) \sum_{i=1}^{n} \frac{(p_i - \hat{p}_c)^2}{n-1} = \left(\frac{1-f}{n} \right) \sum_{i=1}^{n} \frac{(p_i - \hat{p}_c)^2}{n-1} \quad (95)
\]
7.7.2 Estimating \(p \) with Unequal Cluster Sizes

- Suppose the cluster sizes are not all equal. Let \(M_i \) be the number of secondary sampling units (SSUs) in cluster \(i \) and \(t_i = \sum_{j=1}^{M_i} y_{ij} \) = the cluster \(i \) total.

- By taking a one-stage cluster sample of \(n \) clusters from a population with unequal-sized clusters, we estimate \(p \) as the proportion of sampled SSUs that possess the attribute:

\[
\hat{p}_c = \frac{\sum_{i=1}^{n} t_i}{\sum_{i=1}^{n} M_i}.
\]

- Note that \(\hat{p}_c \) is a ratio estimator. Therefore, it is a biased estimator. The bias, however, tends to be small for large \(\sum_{i=1}^{n} M_i \).

- The variance \(V(\hat{p}_c) \) is approximated by:

\[
V(\hat{p}_c) \approx \left(1 - \frac{f}{n\bar{M}_0^2}\right)\frac{\sum_{i=1}^{N}(t_i - pM_i)^2}{N - 1}
\]

 where \(\bar{M}_0 = \sum_{i=1}^{N} M_i/N = \) the average number of elements per cluster in the population.

- Because \(p \) is unknown, we use \(\hat{p}_c \) as an estimate to get the unbiased estimator of \(V(\hat{p}_c) \):

\[
\hat{V}(\hat{p}_c) \approx \left(1 - \frac{f}{nm^2}\right)\frac{\sum_{i=1}^{n}(t_i - \hat{p}_c M_i)^2}{n - 1}
=
\left(1 - \frac{f}{nm^2}\right)\frac{\sum_{i=1}^{n} t_i^2 - 2\hat{p}_c \sum_{i=1}^{n} t_i M_i + \hat{p}_c^2 \sum_{i=1}^{n} M_i^2}{n - 1}
\]

 where \(m = \sum_{i=1}^{n} M_i/n = \) the average number of elements per cluster in the sample.

Additional References

Example of cluster sampling of attributes with unequal size clusters:

A simple random sample of \(n = 30 \) households (clusters) was drawn from a health district in Baltimore (USA) that contains \(N = 15,000 \) households. Using the following data, estimate the proportion \(p \) of people in this health district that visited a doctor last year.

<table>
<thead>
<tr>
<th>Household Number</th>
<th>Household Size ((M_i))</th>
<th>Number who visited doctor last year ((t_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Household Number</th>
<th>Household Size ((M_i))</th>
<th>Number who visited doctor last year ((t_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>23</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>24</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>26</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>29</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

| Totals | 104 | 30 |

7.7.3 Using R and SAS for proportion estimation with unequal-sized clusters

R code for proportion estimation with unequal-sized clusters

```r
library(survey)
source("c:/courses/st446/rcode/confintt.r")

# Cluster sample with unequal-size clusters - proportion estimation)

N = 15000
n = 30

Mvec <- c(5,6,3,3,2,3,3,4,4,3,2,7,4,3,5,4,4,3,3,3,1,2,4,3,4,2,4)
y <- c(5,0,2,3,0,0,0,0,0,0,0,0,4,1,2,0,0,1,3,2,0,0,0,2,2,0,2,0,1)
fpc <- c(rep(N,n))

proest <- data.frame(cbind(fpc,y,Mvec))

# Create the sampling design
dsgn <- svydesign(data=proest,id=1,fpc=fpc)

estmean1 <- svyratio(~y,~Mvec,design=dsgn)
confint.t(estmean1,tdf=n-1,level=.95)
```

182
R output for proportion estimation with unequal-sized clusters

mean(y/Mvec) = 0.28846
SE(y/Mvec) = 0.07208
Two-Tailed CI for y/Mvec where alpha = 0.05 with 29 df
 2.5% 97.5%
 0.14105 0.43587

SAS code for proportion estimation with unequal-sized clusters (supplemental)

data in;
 n = 30;
 NN = 15000;
 m = 104;
 input _cluster Mi y @@;
datalines;
 1 5 5 2 6 0 3 3 2 4 3 3 5 2 0 6 3 0
 7 3 0 8 3 0 9 4 0 10 4 0 11 3 0 12 2 0
 13 7 0 14 4 4 15 3 1 16 5 2 17 4 0 18 4 0
 19 3 1 20 3 3 21 4 2 22 3 0 23 3 0 24 1 0
 25 2 2 26 4 2 27 3 0 28 4 2 29 2 0 30 4 1
;
PROC SURVEYMEANS DATA=in TOTAL = 15000 MEAN CLM ;
 VAR y;
 RATIO y/Mi;
TITLE 'SRS of clusters without replacement-- Estimating p for household data';
run;

SAS output for proportion estimation with unequal-sized clusters (supplemental)

SRS of clusters without replacement-- Estimating p for household data

The SURVEYMEANS Procedure

Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std Error of Mean</th>
<th>95% CL for Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1.000000</td>
<td>0.253454</td>
<td>0.48162776 1.51837224</td>
</tr>
<tr>
<td>Mi</td>
<td>3.466667</td>
<td>0.223297</td>
<td>3.00997205 3.92336128</td>
</tr>
</tbody>
</table>

Ratio Analysis

<table>
<thead>
<tr>
<th>Numerator</th>
<th>Denominator</th>
<th>Ratio</th>
<th>Std Err</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>Mi</td>
<td>0.288462</td>
<td>0.072076</td>
</tr>
</tbody>
</table>

95% CL for Ratio

<table>
<thead>
<tr>
<th>Numerator</th>
<th>Denominator</th>
<th>95% CL for Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>Mi</td>
<td>0.14104945 0.43587362</td>
</tr>
</tbody>
</table>