4.8 Alternate Analysis as a One-way ANOVA

- Suppose we have data from a two-factor factorial design. The following method can be used to perform a multiple comparison test to compare treatment means as well as Levene’s Test to check the homogeneity of variance assumption.

- The main idea is to create a single factor having \(a \times b \) levels and analyze the data as if you had a one-way ANOVA with \(a \times b \) treatments.

Multiple Comparison Procedures

Suppose the researcher is interested in comparing the cell means from a two-factor factorial design. The following method can be used to perform a multiple comparison procedure (MCP):

1. Create a single factor having \(a \times b \) levels. For the \(2 \times 2 \) design example, create a single factor having four levels from the two levels of time (\(T = 12, 18 \)) and the two levels of medium (\(M = 1, 2 \)). In the SAS code, I called these levels 12_1, 12_2, 18_1, and 18_2.

2. Run Bonferroni’s MCP (or any other MCP) on this single factor. For the \(2 \times 2 \) design, we reject all \(H_0: \mu_{ij} = \mu_{ij'} \) except for \(\mu_{12_2} = \mu_{12_1} \).

Levene’s Test of the HOV Assumption

- In a two-way ANOVA, the HOV assumption implies that all \(a \times b \) variances are equal. That is, we assume \(\sigma^2_{11} = \sigma^2_{12} = \ldots = \sigma^2_{ab} \) where \(\sigma^2_{ij} \) is the variance associated with the errors for treatment combination \((i,j) \) based on the two design factors.

- Suppose the researcher is interested in testing the HOV assumption that all of the \(a \times b \) variances are equal in a two-factor factorial design.

- The following method can be used to perform Levene’s HOV Test:

 1. Create a single factor having \(a \times b \) treatment levels. For the \(2 \times 2 \) design example, create a single factor having four levels from the two levels of time (12,18) and the two levels of medium (1,2). In the SAS code, I called these levels 12_1, 12_2, 18_1, and 18_2.

 2. Run Levene’s HOV Test on this single factor. For the \(2 \times 2 \) design example, we fail to reject the HOV assumption (\(p \)-value = .1793).

Dependent Variable: growth

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>3</td>
<td>691.4583333</td>
<td>230.4861111</td>
<td>45.12</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>20</td>
<td>102.1666667</td>
<td>5.1083333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>23</td>
<td>793.6250000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R-Square</th>
<th>Coeff Var</th>
<th>Root MSE</th>
<th>growth Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.871266</td>
<td>7.629240</td>
<td>2.260162</td>
<td>29.62500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>time_med</td>
<td>3</td>
<td>691.4583333</td>
<td>230.4861111</td>
<td>45.12</td>
<td><.0001</td>
</tr>
</tbody>
</table>
Levene's Test for Homogeneity of growth Variance
ANOVA of Absolute Deviations from Group Means

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>time_med</td>
<td>3</td>
<td>6.3472</td>
<td>2.1157</td>
<td>1.80</td>
<td>0.1793</td>
</tr>
<tr>
<td>Error</td>
<td>20</td>
<td>23.4815</td>
<td>1.1741</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 5.108333

Critical Value of t 2.92712

Minimum Significant Difference 3.8196

Means with the same letter are not significantly different.

<table>
<thead>
<tr>
<th>Bon Grouping</th>
<th>Mean</th>
<th>N</th>
<th>time_med</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>37.167</td>
<td>6</td>
<td>18_1</td>
</tr>
<tr>
<td>B</td>
<td>32.000</td>
<td>6</td>
<td>18_2</td>
</tr>
<tr>
<td>C</td>
<td>26.000</td>
<td>6</td>
<td>12_2</td>
</tr>
<tr>
<td>C</td>
<td>23.333</td>
<td>6</td>
<td>12_1</td>
</tr>
</tbody>
</table>
DATA in;
 DO time_med = '12_1', '12_2', '18_1', '18_2';
 DO rep = 1 to 6;
 INPUT growth @@; OUTPUT;
 END; END;
CARDS;
21 23 20 22 28 26 25 24 29 26 25 27
37 38 35 39 38 36 31 29 30 34 33 35;
PROC GLM DATA=in;
 CLASS time_med;
 MODEL growth = time_med / SS3;
 MEANS time_med / BON HOVTEST=LEVENE(TYPE=ABS);
TITLE 'ALTERNATE ANOVA AND HOV TEST';
RUN;

4.9 Other Multiple Comparison Procedures

- You can also perform a MCP using the LSMEANS statement in Proc GLM in SAS. E.g., to perform a Bonferroni MCP:
 1. Include a LSMEANS A*B statement with option / ADJUST=BON for factors A and B.
 2. Reject $H_0: \mu_{ij} = \mu_{i'j'}$ if the adjusted p-value in the matrix of p-values is $\leq \alpha$. This is equivalent to taking the p-value $\leq \alpha^*$ where $\alpha^* = \alpha/C$ and C is the number of comparisons made. In essence, we are just multiplying the individual test p-values by the number of comparisons, and then checking if the adjusted p-value is $< \alpha$.

- In SAS, it is possible to perform a test of the equality of cell means (i) across the levels of factor A for a specified level j of factor B and (ii) across the levels of factor B for a specified level i of factor A. These are called tests of effects slices.

- Tests of effects slices can be performed using the LSMEANS statement in Proc GLM in SAS.
 1. Include a statement of the form LSMEANS A*B / SLICE = A ADJUST = BON for a MCP of cell means across the levels of factor B for each level of factor A. The hypotheses tested for level i of factor A are

 $H_0: \mu_{ij} = \mu_{i'j'}$
 $H_1: \mu_{ij} \neq \mu_{i'j'}$
 2. Include a statement of the form LSMEANS A*B / SLICE = B ADJUST = BON for a MCP of cell means across the levels of factor A for each level of factor B. The hypotheses tested for level b of factor B are

 $H_0: \mu_{ij} = \mu_{ij'}$
 $H_1: \mu_{ij} \neq \mu_{ij'}$

- For a different MCP, just change BON to TUKEY, SIDAK, or SCHEFFE. If you do not include the ADJUST option, you will get Fisher’s LSD test by default.
4.10 ANOVA for a 2 × 3 Factorial Design Example

- An experiment was run to investigate how the type of glass and the type of phosphorescent coating affects the brightness of a light bulb. The response variable is the current (in microamps) to obtain a specified brightness. The data are

<table>
<thead>
<tr>
<th>Phosphor Type</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Glass Type</td>
<td>278</td>
<td>291</td>
<td>285</td>
</tr>
<tr>
<td>2 Glass Type</td>
<td>229</td>
<td>235</td>
<td>241</td>
</tr>
</tbody>
</table>

- Look at the difference in glass means across the levels of phosphor:

\[
\bar{y}_{2,A} - \bar{y}_{1,A} = -49.7 \quad \bar{y}_{2,B} - \bar{y}_{1,B} = -49.3 \quad \bar{y}_{2,C} - \bar{y}_{1,C} = -52.3
\]

The variability in these three differences (\(MS_{\text{glass} \times \text{phosphor}} = 4.05\)) is small relative to the \(MS_E = 44.2\), so we fail to reject the null hypothesis that the interaction effects are equal.

- The Glass*Phosphor interaction is not significant (\(p\)-value = .9130). This is also obvious from the strong parallelism in the interaction plots.

- The Bonferroni MCT results are summarized below:

<table>
<thead>
<tr>
<th>Glass/Phosphor</th>
<th>2 C</th>
<th>2 A</th>
<th>2 B</th>
<th>1 C</th>
<th>1 A</th>
<th>1 B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>229.3</td>
<td>235.0</td>
<td>249.7</td>
<td>281.7</td>
<td>284.7</td>
<td>299.0</td>
</tr>
</tbody>
</table>

SAS Code and Output

DM 'LOG; CLEAR; OUT; CLEAR;';
ODS GRAPHICS ON;
ODS PRINTER PDF file='C:\COURSES\ST541\TWOWAY2.PDF';
OPTIONS NODATE NONUMBER;
***************************************;
*** 2-FACTOR FACTORIAL (2x3) DESIGN ***;
***************************************;
DATA in; INPUT glass phosphor $ light @@; CARDS;
 1 A 278 1 A 291 1 A 285 1 B 297 1 B 304 1 B 296
 1 C 273 1 C 284 1 C 288 2 A 229 2 A 235 2 A 241
 2 B 259 2 B 249 2 B 241 2 C 225 2 C 228 2 C 235
; PROC GLM DATA=in ;
 CLASS glass phosphor;
 MODEL light = glass|phosphor / SS3 SOLUTION;
 MEANS glass|phosphor / BON;
 LSMEANS glass*phosphor / SLICE=glass SLICE=phosphor ADJUST=BON;;
 ESTIMATE 'mu' intercept 1;
 ESTIMATE 'glass=1' glass 1 -1 / divisor = 2 ;
 ESTIMATE 'glass=2' glass -1 1 / divisor = 2 ;
 ESTIMATE 'phosphor=A' phosphor 2 -1 -1 / divisor = 3 ;
 ESTIMATE 'phosphor=B' phosphor -1 2 -1 / divisor = 3 ;
 ESTIMATE 'phosphor=C' phosphor -1 -1 2 / divisor = 3 ;
ESTIMATE 'glass=1 phos=A' glass*phosphor 2 -1 -1 -2 1 1 / divisor = 6 ;
ESTIMATE 'glass=1 phos=B' glass*phosphor -1 2 -1 1 -2 1 / divisor = 6 ;
ESTIMATE 'glass=1 phos=C' glass*phosphor -1 -1 2 1 1 -2 / divisor = 6 ;
ESTIMATE 'glass=2 phos=A' glass*phosphor -2 1 1 2 -1 -1 / divisor = 6 ;
ESTIMATE 'glass=2 phos=B' glass*phosphor 1 -2 1 -1 2 -1 / divisor = 6 ;
ESTIMATE 'glass=2 phos=C' glass*phosphor 1 1 -2 -1 1 2 / divisor = 6 ;

TITLE '(2 x 3) TWO FACTOR ANALYSIS OF VARIANCE';
RUN;

(2 x 3) TWO FACTOR ANALYSIS OF VARIANCE

The GLM Procedure

Variable: light

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>5</td>
<td>12626.44444</td>
<td>2525.28889</td>
<td>57.10</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td>530.66667</td>
<td>44.22222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>17</td>
<td>13157.11111</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-Square Coeff Var Root MSE light Mean
0.959667 2.526375 6.649979 263.2222

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>glass</td>
<td>1</td>
<td>11450.88889</td>
<td>11450.88889</td>
<td>258.94</td>
<td><.0001</td>
</tr>
<tr>
<td>phosphor</td>
<td>2</td>
<td>1167.44444</td>
<td>583.72222</td>
<td>13.20</td>
<td>0.0009</td>
</tr>
<tr>
<td>glass*phosphor</td>
<td>2</td>
<td>8.11111</td>
<td>4.05556</td>
<td>0.09</td>
<td>0.9130</td>
</tr>
</tbody>
</table>

| Parameter | Estimate | Standard Error | t Value | Pr > |t| |
|---------------|------------|----------------|---------|-------|
| Intercept | 229.333333 | B 3.83936723 | 59.73 | <.0001|
| glass 1 | 52.333333 | B 5.42968521 | 9.64 | <.0001|
| glass 2 | 0.0000000 | B | . | . |
| phosphor A | 5.6666667 | B 5.42968521 | 1.04 | 0.3172|
| phosphor B | 20.3333333 | B 5.42968521 | 3.74 | 0.0028|
| phosphor C | 0.0000000 | B | . | . |
| glass*phosphor 1 A | -2.6666667 | B 7.67873446 | -0.35 | 0.7344|
| glass*phosphor 1 B | -3.0000000 | B 7.67873446 | -0.39 | 0.7029|
| glass*phosphor 1 C | 0.0000000 | B | . | . |
| glass*phosphor 2 A | 0.0000000 | B | . | . |
| glass*phosphor 2 B | 0.0000000 | B | . | . |
| glass*phosphor 2 C | 0.0000000 | B | . | . |
| Parameter | Estimate | Standard Error | t Value | Pr > |t| |
|-----------|----------|----------------|---------|------|---|
| mu | 263.222222 | 1.56741511 | 167.93 | <.0001 | |
| glass=1 | 25.222222 | 1.56741511 | 16.09 | <.0001 | |
| glass=2 | -25.222222 | 1.56741511 | -16.09 | <.0001 | |
| phosphor=A| -3.388889 | 2.21665970 | -1.53 | 0.1522 | |
| phosphor=B| 11.111111 | 2.21665970 | 5.01 | 0.0003 | |
| phosphor=C| -7.722222 | 2.21665970 | -3.48 | 0.0045 | |
| glass=1 phos=A | -0.388889 | 2.21665970 | -0.18 | 0.8637 | |
| glass=1 phos=B | -0.555556 | 2.21665970 | -0.25 | 0.8063 | |
| glass=1 phos=C | 0.944444 | 2.21665970 | 0.43 | 0.6776 | |
| glass=2 phos=A | 0.388889 | 2.21665970 | 0.18 | 0.8637 | |
| glass=2 phos=B | 0.555556 | 2.21665970 | 0.25 | 0.8063 | |
| glass=2 phos=C | -0.944444 | 2.21665970 | -0.43 | 0.6776 | |
ANOVA Results

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha</td>
<td>0.05</td>
</tr>
<tr>
<td>Error Degrees of Freedom</td>
<td>12</td>
</tr>
<tr>
<td>Error Mean Square</td>
<td>44.22222</td>
</tr>
<tr>
<td>Critical Value of t</td>
<td>2.17881</td>
</tr>
<tr>
<td>Minimum Significant Difference</td>
<td>6.8302</td>
</tr>
</tbody>
</table>

Means with the Same Letter Are Not Significantly Different

<table>
<thead>
<tr>
<th>Bon Grouping</th>
<th>Mean</th>
<th>N</th>
<th>phosphor</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>288.444</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>238.000</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>259.833</td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>255.500</td>
<td>6</td>
<td>C</td>
</tr>
</tbody>
</table>

Distribution of Light

Distribution Table

<table>
<thead>
<tr>
<th>Level of glass</th>
<th>Level of phosphor</th>
<th>N</th>
<th>light</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>3</td>
<td>284.666667</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>3</td>
<td>299.000000</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>3</td>
<td>281.666667</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>3</td>
<td>235.000000</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>3</td>
<td>249.666667</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>3</td>
<td>229.333333</td>
</tr>
</tbody>
</table>
The GLM Procedure

Least Squares Means

Adjustment for Multiple Comparisons: Bonferroni

<table>
<thead>
<tr>
<th>glass</th>
<th>phosphor</th>
<th>light LSMEAN</th>
<th>LSMEAN Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>284.666667</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>299.000000</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>281.666667</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>235.000000</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>249.666667</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>229.333333</td>
<td>6</td>
</tr>
</tbody>
</table>

Least Squares Means for effect glass*phosphor

Pr > |t| for H0: LSMean(i)=LSMean(j)

<table>
<thead>
<tr>
<th>i/j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3237</td>
<td>1.0000</td>
<td><.0001</td>
<td>0.0005</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.3237</td>
<td>0.1161</td>
<td><.0001</td>
<td><.0001</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.0000</td>
<td>0.1161</td>
<td><.0001</td>
<td>0.0011</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><.0001</td>
<td><.0001</td>
<td><.0001</td>
<td>0.2890</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.0005</td>
<td><.0001</td>
<td>0.0011</td>
<td>0.2890</td>
<td>0.0420</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><.0001</td>
<td><.0001</td>
<td><.0001</td>
<td>1.0000</td>
<td>0.0420</td>
<td></td>
</tr>
</tbody>
</table>

The GLM Procedure

Least Squares Means

glass*phosphor Effect Sliced by glass for light

<table>
<thead>
<tr>
<th>glass</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>514.8888889</td>
<td>257.4444444</td>
<td>5.82</td>
<td>0.0171</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>660.666667</td>
<td>330.333333</td>
<td>7.47</td>
<td>0.0078</td>
</tr>
</tbody>
</table>

The GLM Procedure

Least Squares Means

glass*phosphor Effect Sliced by phosphor for light

<table>
<thead>
<tr>
<th>phosphor</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>3700.166667</td>
<td>3700.166667</td>
<td>83.67</td>
<td><.0001</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>3650.666667</td>
<td>3650.666667</td>
<td>82.55</td>
<td><.0001</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>4108.166667</td>
<td>4108.166667</td>
<td>92.90</td>
<td><.0001</td>
</tr>
</tbody>
</table>
4.11 Example: Sample size determination and power estimation

Determine N given a nominal power level (Case 1) and determine power given N (Case 2) for a specified pattern of means or effects

- Suppose there are 6 treatments resulting from a 2×3 factorial design having n replicates, and based on a prior study we have estimates of the treatment means: $\mu_{11} = 35.1$, $\mu_{12} = 33.7$, $\mu_{13} = 30.2$, $\mu_{21} = 23.0$, $\mu_{22} = 25.9$, $\mu_{23} = 30.4$.

- Our prior estimate of σ is 1.4, and the significance level is set to $\alpha = .05$ for tests.

- For Case 1, determine the total sample size $N = 6n$ setting the power for the ANOVA F-tests for main effects and the interaction at levels $1 - \beta = .50$, .80, .90, and .95. Also, determine N for several contrasts.

- For Case 2, determine the power $1 - \beta$ for the ANOVA F-tests for the main effects and the interaction when the total sample size $N = 18$, 24, 30, and 36. Also, determine power for the tests of several contrasts.

SAS code for Case 1: Determine N for a nominal power level

data twoway;
 input levelA $ levelB $ meanest;
datalines;
A1 B1 35.1 A1 B2 33.7 A1 B3 30.2 A2 B1 23.0 A2 B2 25.9 A2 B3 30.4
;
proc glmpower data=twoway;
 class levelA levelB;
 model meanest = levelA|levelB;
 contrast 'A1-A2' levelA 1 -1 ;
 contrast 'B1-B2' levelB 1 -1 0;
 contrast 'B1-B3' levelB 1 0 -1;
 contrast 'B2-B3' levelB 0 1 -1;
 contrast 'A11-A12' levelA 1 -1 0 levelA*levelB 1 -1 0 0 0 0;
 contrast 'A12-A23' levelA 1 -1 levelB 0 1 -1 levelA*levelB 0 1 0 0 0 -1;
 power
 stddev = 1.4
 alpha = 0.05
 ntotal = .
 power = .5 .8 .9 .95 ;
title 'Determining design size for given power and mean estimates';
title2 'for a twoway (2 x 3) ANOVA';
proc glmpower data=twoway;
 class levelA levelB;
 model meanest = levelA|levelB;
 contrast 'A1-A2' levelA 1 -1 ;
 contrast 'B1-B2' levelB 1 -1 0;
 contrast 'B1-B3' levelB 1 0 -1;
 contrast 'B2-B3' levelB 0 1 -1;
 contrast 'A11-A12' levelA 1 -1 0 levelA*levelB 1 -1 0 0 0 0;
 contrast 'A12-A23' levelA 1 -1 levelB 0 1 -1 levelA*levelB 0 1 0 0 0 -1;
 power
 stddev = 1.4
 alpha = 0.05
 ntotal = 18 24 30 36
 power = . ;
title 'Determining power for a given design size and mean estimates';
title2 'for a twoway (2 x 3) ANOVA';
run;
SAS output for Case 1: Determine N for a nominal power level

The GLMPOWER Procedure

Fixed Scenario Elements

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>meanest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha</td>
<td>0.05</td>
</tr>
<tr>
<td>Error Standard Deviation</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Computed N Total

<table>
<thead>
<tr>
<th>Index</th>
<th>Type</th>
<th>Source</th>
<th>Nominal Power</th>
<th>Test DF</th>
<th>Error DF</th>
<th>Actual Power</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Effect</td>
<td>levelA</td>
<td>0.50</td>
<td>1</td>
<td>6</td>
<td>>.999</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>Effect</td>
<td>levelA</td>
<td>0.80</td>
<td>1</td>
<td>6</td>
<td>>.999</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Effect</td>
<td>levelA</td>
<td>0.90</td>
<td>1</td>
<td>6</td>
<td>>.999</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>Effect</td>
<td>levelA</td>
<td>0.95</td>
<td>1</td>
<td>6</td>
<td>>.999</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>Effect</td>
<td>levelB</td>
<td>0.50</td>
<td>2</td>
<td>36</td>
<td>0.520</td>
<td>42</td>
</tr>
<tr>
<td>6</td>
<td>Effect</td>
<td>levelB</td>
<td>0.80</td>
<td>2</td>
<td>72</td>
<td>0.818</td>
<td>78</td>
</tr>
<tr>
<td>7</td>
<td>Effect</td>
<td>levelB</td>
<td>0.90</td>
<td>2</td>
<td>96</td>
<td>0.915</td>
<td>102</td>
</tr>
<tr>
<td>8</td>
<td>Effect</td>
<td>levelB</td>
<td>0.95</td>
<td>2</td>
<td>114</td>
<td>0.954</td>
<td>120</td>
</tr>
<tr>
<td>9</td>
<td>Effect</td>
<td>levelA*levelB</td>
<td>0.50</td>
<td>2</td>
<td>6</td>
<td>0.992</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>Effect</td>
<td>levelA*levelB</td>
<td>0.80</td>
<td>2</td>
<td>6</td>
<td>0.992</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>Effect</td>
<td>levelA*levelB</td>
<td>0.90</td>
<td>2</td>
<td>6</td>
<td>0.992</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>Effect</td>
<td>levelA*levelB</td>
<td>0.95</td>
<td>2</td>
<td>6</td>
<td>0.992</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>Contrast</td>
<td>A1-A2</td>
<td>0.50</td>
<td>1</td>
<td>6</td>
<td>>.999</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>Contrast</td>
<td>A1-A2</td>
<td>0.80</td>
<td>1</td>
<td>6</td>
<td>>.999</td>
<td>12</td>
</tr>
<tr>
<td>15</td>
<td>Contrast</td>
<td>A1-A2</td>
<td>0.90</td>
<td>1</td>
<td>6</td>
<td>>.999</td>
<td>12</td>
</tr>
<tr>
<td>16</td>
<td>Contrast</td>
<td>A1-A2</td>
<td>0.95</td>
<td>1</td>
<td>6</td>
<td>>.999</td>
<td>12</td>
</tr>
<tr>
<td>17</td>
<td>Contrast</td>
<td>B1-B2</td>
<td>0.50</td>
<td>1</td>
<td>78</td>
<td>0.508</td>
<td>84</td>
</tr>
<tr>
<td>18</td>
<td>Contrast</td>
<td>B1-B2</td>
<td>0.80</td>
<td>1</td>
<td>162</td>
<td>0.805</td>
<td>168</td>
</tr>
<tr>
<td>19</td>
<td>Contrast</td>
<td>B1-B2</td>
<td>0.90</td>
<td>1</td>
<td>216</td>
<td>0.900</td>
<td>222</td>
</tr>
<tr>
<td>20</td>
<td>Contrast</td>
<td>B1-B2</td>
<td>0.95</td>
<td>1</td>
<td>270</td>
<td>0.952</td>
<td>276</td>
</tr>
<tr>
<td>21</td>
<td>Contrast</td>
<td>B1-B3</td>
<td>0.50</td>
<td>1</td>
<td>30</td>
<td>0.562</td>
<td>36</td>
</tr>
<tr>
<td>22</td>
<td>Contrast</td>
<td>B1-B3</td>
<td>0.80</td>
<td>1</td>
<td>60</td>
<td>0.830</td>
<td>66</td>
</tr>
<tr>
<td>23</td>
<td>Contrast</td>
<td>B1-B3</td>
<td>0.90</td>
<td>1</td>
<td>78</td>
<td>0.910</td>
<td>84</td>
</tr>
<tr>
<td>24</td>
<td>Contrast</td>
<td>B1-B3</td>
<td>0.95</td>
<td>1</td>
<td>96</td>
<td>0.954</td>
<td>102</td>
</tr>
<tr>
<td>25</td>
<td>Contrast</td>
<td>B2-B3</td>
<td>0.50</td>
<td>1</td>
<td>180</td>
<td>0.507</td>
<td>186</td>
</tr>
<tr>
<td>26</td>
<td>Contrast</td>
<td>B2-B3</td>
<td>0.80</td>
<td>1</td>
<td>366</td>
<td>0.801</td>
<td>372</td>
</tr>
<tr>
<td>27</td>
<td>Contrast</td>
<td>B2-B3</td>
<td>0.90</td>
<td>1</td>
<td>492</td>
<td>0.901</td>
<td>498</td>
</tr>
<tr>
<td>28</td>
<td>Contrast</td>
<td>B2-B3</td>
<td>0.95</td>
<td>1</td>
<td>612</td>
<td>0.951</td>
<td>618</td>
</tr>
<tr>
<td>29</td>
<td>Contrast</td>
<td>A11-A12</td>
<td>0.50</td>
<td>1</td>
<td>48</td>
<td>0.547</td>
<td>54</td>
</tr>
<tr>
<td>30</td>
<td>Contrast</td>
<td>A11-A12</td>
<td>0.80</td>
<td>1</td>
<td>96</td>
<td>0.823</td>
<td>102</td>
</tr>
<tr>
<td>31</td>
<td>Contrast</td>
<td>A11-A12</td>
<td>0.90</td>
<td>1</td>
<td>126</td>
<td>0.908</td>
<td>132</td>
</tr>
<tr>
<td>32</td>
<td>Contrast</td>
<td>A11-A12</td>
<td>0.95</td>
<td>1</td>
<td>156</td>
<td>0.955</td>
<td>162</td>
</tr>
<tr>
<td>33</td>
<td>Contrast</td>
<td>A12-A23</td>
<td>0.50</td>
<td>1</td>
<td>6</td>
<td>0.507</td>
<td>12</td>
</tr>
<tr>
<td>34</td>
<td>Contrast</td>
<td>A12-A23</td>
<td>0.80</td>
<td>1</td>
<td>18</td>
<td>0.883</td>
<td>24</td>
</tr>
<tr>
<td>35</td>
<td>Contrast</td>
<td>A12-A23</td>
<td>0.90</td>
<td>1</td>
<td>24</td>
<td>0.947</td>
<td>30</td>
</tr>
<tr>
<td>36</td>
<td>Contrast</td>
<td>A12-A23</td>
<td>0.95</td>
<td>1</td>
<td>30</td>
<td>0.977</td>
<td>36</td>
</tr>
</tbody>
</table>
SAS output for Case 2: Determine power for a given N

The GLMPOWER Procedure

Fixed Scenario Elements

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Alpha</th>
<th>Error Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>meanest</td>
<td>0.05</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Computed Power

<table>
<thead>
<tr>
<th>Index</th>
<th>Type</th>
<th>Source</th>
<th>N</th>
<th>Test DF</th>
<th>Error DF</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Effect</td>
<td>levelA</td>
<td>18</td>
<td>1</td>
<td>12</td>
<td>>.999</td>
</tr>
<tr>
<td>2</td>
<td>Effect</td>
<td>levelA</td>
<td>24</td>
<td>1</td>
<td>18</td>
<td>>.999</td>
</tr>
<tr>
<td>3</td>
<td>Effect</td>
<td>levelA</td>
<td>30</td>
<td>1</td>
<td>24</td>
<td>>.999</td>
</tr>
<tr>
<td>4</td>
<td>Effect</td>
<td>levelA</td>
<td>36</td>
<td>1</td>
<td>30</td>
<td>>.999</td>
</tr>
<tr>
<td>5</td>
<td>Effect</td>
<td>levelB</td>
<td>18</td>
<td>2</td>
<td>12</td>
<td>0.215</td>
</tr>
<tr>
<td>6</td>
<td>Effect</td>
<td>levelB</td>
<td>24</td>
<td>2</td>
<td>18</td>
<td>0.296</td>
</tr>
<tr>
<td>7</td>
<td>Effect</td>
<td>levelB</td>
<td>30</td>
<td>2</td>
<td>24</td>
<td>0.375</td>
</tr>
<tr>
<td>8</td>
<td>Effect</td>
<td>levelB</td>
<td>36</td>
<td>2</td>
<td>30</td>
<td>0.450</td>
</tr>
<tr>
<td>9</td>
<td>Effect</td>
<td>levelA*levelB</td>
<td>18</td>
<td>2</td>
<td>12</td>
<td>>.999</td>
</tr>
<tr>
<td>10</td>
<td>Effect</td>
<td>levelA*levelB</td>
<td>24</td>
<td>2</td>
<td>18</td>
<td>>.999</td>
</tr>
<tr>
<td>11</td>
<td>Effect</td>
<td>levelA*levelB</td>
<td>30</td>
<td>2</td>
<td>24</td>
<td>>.999</td>
</tr>
<tr>
<td>12</td>
<td>Effect</td>
<td>levelA*levelB</td>
<td>36</td>
<td>2</td>
<td>30</td>
<td>>.999</td>
</tr>
<tr>
<td>13</td>
<td>Contrast</td>
<td>A1-A2</td>
<td>18</td>
<td>1</td>
<td>12</td>
<td>>.999</td>
</tr>
<tr>
<td>14</td>
<td>Contrast</td>
<td>A1-A2</td>
<td>24</td>
<td>1</td>
<td>18</td>
<td>>.999</td>
</tr>
<tr>
<td>15</td>
<td>Contrast</td>
<td>A1-A2</td>
<td>30</td>
<td>1</td>
<td>24</td>
<td>>.999</td>
</tr>
<tr>
<td>16</td>
<td>Contrast</td>
<td>A1-A2</td>
<td>36</td>
<td>1</td>
<td>30</td>
<td>>.999</td>
</tr>
<tr>
<td>17</td>
<td>Contrast</td>
<td>B1-B2</td>
<td>18</td>
<td>1</td>
<td>12</td>
<td>0.137</td>
</tr>
<tr>
<td>18</td>
<td>Contrast</td>
<td>B1-B2</td>
<td>24</td>
<td>1</td>
<td>18</td>
<td>0.174</td>
</tr>
<tr>
<td>19</td>
<td>Contrast</td>
<td>B1-B2</td>
<td>30</td>
<td>1</td>
<td>24</td>
<td>0.210</td>
</tr>
<tr>
<td>20</td>
<td>Contrast</td>
<td>B1-B2</td>
<td>36</td>
<td>1</td>
<td>30</td>
<td>0.246</td>
</tr>
<tr>
<td>21</td>
<td>Contrast</td>
<td>B1-B3</td>
<td>18</td>
<td>1</td>
<td>12</td>
<td>0.296</td>
</tr>
<tr>
<td>22</td>
<td>Contrast</td>
<td>B1-B3</td>
<td>24</td>
<td>1</td>
<td>18</td>
<td>0.394</td>
</tr>
<tr>
<td>23</td>
<td>Contrast</td>
<td>B1-B3</td>
<td>30</td>
<td>1</td>
<td>24</td>
<td>0.483</td>
</tr>
<tr>
<td>24</td>
<td>Contrast</td>
<td>B1-B3</td>
<td>36</td>
<td>1</td>
<td>30</td>
<td>0.562</td>
</tr>
<tr>
<td>25</td>
<td>Contrast</td>
<td>B2-B3</td>
<td>18</td>
<td>1</td>
<td>12</td>
<td>0.088</td>
</tr>
<tr>
<td>26</td>
<td>Contrast</td>
<td>B2-B3</td>
<td>24</td>
<td>1</td>
<td>18</td>
<td>0.104</td>
</tr>
<tr>
<td>27</td>
<td>Contrast</td>
<td>B2-B3</td>
<td>30</td>
<td>1</td>
<td>24</td>
<td>0.120</td>
</tr>
<tr>
<td>28</td>
<td>Contrast</td>
<td>B2-B3</td>
<td>36</td>
<td>1</td>
<td>30</td>
<td>0.135</td>
</tr>
<tr>
<td>29</td>
<td>Contrast</td>
<td>A11-A12</td>
<td>18</td>
<td>1</td>
<td>12</td>
<td>0.204</td>
</tr>
<tr>
<td>30</td>
<td>Contrast</td>
<td>A11-A12</td>
<td>24</td>
<td>1</td>
<td>18</td>
<td>0.268</td>
</tr>
<tr>
<td>31</td>
<td>Contrast</td>
<td>A11-A12</td>
<td>30</td>
<td>1</td>
<td>24</td>
<td>0.330</td>
</tr>
<tr>
<td>32</td>
<td>Contrast</td>
<td>A11-A12</td>
<td>36</td>
<td>1</td>
<td>30</td>
<td>0.389</td>
</tr>
<tr>
<td>33</td>
<td>Contrast</td>
<td>A12-A23</td>
<td>18</td>
<td>1</td>
<td>12</td>
<td>0.755</td>
</tr>
<tr>
<td>34</td>
<td>Contrast</td>
<td>A12-A23</td>
<td>24</td>
<td>1</td>
<td>18</td>
<td>0.883</td>
</tr>
<tr>
<td>35</td>
<td>Contrast</td>
<td>A12-A23</td>
<td>30</td>
<td>1</td>
<td>24</td>
<td>0.947</td>
</tr>
<tr>
<td>36</td>
<td>Contrast</td>
<td>A12-A23</td>
<td>36</td>
<td>1</td>
<td>30</td>
<td>0.977</td>
</tr>
</tbody>
</table>