
5 Introduction to the Theory of Order Statistics and Rank Statistics

• This section will contain a summary of important definitions and theorems that will be
useful for understanding the theory of order and rank statistics. In particular, results will
be presented for linear rank statistics.

• Many nonparametric tests are based on test statistics that are linear rank statistics.

– For one sample: The Wilcoxon-Signed Rank Test is based on a linear rank statistic.

– For two samples: The Mann-Whitney-Wilcoxon Test, the Median Test, the Ansari-
Bradley Test, and the Siegel-Tukey Test are based on linear rank statistics.

• Most of the information in this section can be found in Randles and Wolfe (1979).

5.1 Order Statistics

• Let X1, X2, . . . , Xn be a random sample of continuous random variables having cdf F (x)
and pdf f(x).

• Let X(i) be the ith smallest random variable (i = 1, 2, . . . , n).

• X(1), X(2), . . . , X(n) are referred to as the order statistics for X1, X2, . . . , Xn. By defini-
tion, X(1) < X(2) < · · · < X(n).

Theorem 5.1: Let X(1) < X(2) < · · · < X(n) be the order statistics for a random sample from
a distribution with cdf F (x) and pdf f(x). The joint density for the order statistics is

g(x(1), x(2), . . . , x(n)) = n!
n∏
i=1

f(x(i)) for −∞ < x(1) < x(2) < · · · < x(n) <∞ (16)

= 0 otherwise

Theorem 5.2: The marginal density for the jth order statistic X(j) (j = 1, 2, . . . , n) is

gj(t) =
n!

(j − 1)!(n− j)!
[F (t)]j−1 [1− F (t)]n−j f(t) −∞ < t <∞.

• For random variable X with cdf F (x), the inverse distribution F−1(·) is defined as

F−1(y) = inf{x : F (x) ≥ y} 0 < y < 1.

• If F (x) is strictly increasing between 0 and 1, then there is only one x such that F (x) = y.
In this case, F−1(y) = x.

Theorem 5.3 (Probability Integral Transformation): Let X be a continuous random
variable with distribution function F (x). The random variable Y = F (X) is uniformly dis-
tributed on (0, 1).

• Let X(1) < X(2) < · · · < X(n) be the order statistics for a random sample from a continuous
distribution. Application of Theorem 5.3, implies that F (X(1)) < F (X(2)) < · · · < F (X(n))
are distributed as the order statistics from a uniform distribution on (0, 1).
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• Let Vj = F (X(j) for j = 1, 2, . . . , n. Then, by Theorem 5.2, the marginal density for each
Vj has the form

gj(t) =
n!

(j − 1)!(n− j)!
tj−1 [1− t]n−j −∞ < t <∞

because F (t) = t and f(t) = 1 for a uniform distribution on (0, 1).

• Thus, Vj has a beta distribution with parameters α = j and β = n− j+ 1. Therefore, the
moments of Vj are

E(V r
j ) =

n! Γ(r + j)

(j − 1)! Γ(n+ r + 1)

where Γ(k) = (k − 1)!.

• Thus, when Vj is the jth order statistic from a uniform distribution,

E(Vj) =
j

n+ 1
V ar(Vj) =

j(n− j + 1)

(n+ 1)2(n+ 2)

Simulation to Demonstrate Theorem 5.3 (Probability Integral Transformation)

Case 1: N(0, 1) Distribution

1. Generate a random sample (x1, x2, . . . , x5000) of 5000 values from a normal N(0, 1) distri-
bution.

2. Determine the 5000 empirical cdf F̂ (xi) values.

3. Plot the histograms and empirical cdf of the original N(0, 1) sample. Note how they
represent a sample from a standard normal distribution.

4. Plot the histograms and empirical cdf of the F̂ (xi) values. Note the histograms and

empirical cdf of the F̂ (xi) values represent a sample from a uniform U(0, 1) distribution
(as supported by Theorem 5.3).

Case 2: Exp(4) Distribution

1. Generate a random sample (x1, x2, . . . , x5000) of 5000 values from an exponential Exp(4)
distribution.

2. Determine the 5000 empirical cdf F̂ (xi) values.

3. Plot the histograms and empirical cdf of the original Exp(4) sample. Note how they
represent a sample from an exponential Exp(4) distribution.

4. Plot the histograms and empirical cdf of the F̂ (xi) values. Note the histograms and

empirical cdf of the F̂ (xi) values represent a sample from a uniform U(0, 1) distribution
(as supported by Theorem 5.3).
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R Code for Simulation of Theorem 5.3 (Probability Integral Transformation)

n = 5000 # size of random sample

# CASE 1: Random Samples from N(0,1) Distribution
x1 <- rnorm(n,0,1)
x1[1:10] # view first 10 values
Fx1 <- pnorm(x1)
Fx1[1:10]

windows()
par(mfrow=c(2,2))
hist(x1,main="Histogram of N(0,1) Sample")
hist(Fx1,main="Histogram of CDF of N(0,1) Sample)")
plot(ecdf(x1),main="ECDF of N(0,1) Sample")
plot(ecdf(Fx1),main="ECDF(ECDF of N(0,1) Sample)")

# CASE 2: Random Samples from Exponential(4) Distribution
x2 <- rexp(n,4)
x2[1:10] # view first 10 values
Fx2 <- pexp(x2,4)
Fx2[1:10]

windows()
par(mfrow=c(2,2))
hist(x2,main="Histogram of Exp(4) Sample")
hist(Fx2,main="Histogram of CDF of Exp(4) Sample)")
plot(ecdf(x2),main="ECDF of Exp(4) Sample")
plot(ecdf(Fx2),main="ECDF(ECDF of Exp(4) Sample)")

5.2 Equal-in-Distribution Results

• Two random variables S and T are equal in distribution if S and T have the same cdf.

To denote equal in distribution, we write S =d T .

Theorem 5.4 A random variable X has a distribution that is symmetric about some number
µ if and only if (X − µ) =d (µ−X).

Theorem 5.5 Let X1, X2, . . . , Xn be independent and identically distributed (i.i.d.) random
variables. Let (α1, α2, . . . , αn) denote any permutation of the integers (1, 2, . . . , n). Then
(X1, X2, . . . , Xn) =d (Xα1 , Xα2 , . . . , Xαn).

• A set of random variables X1, X2, . . . , Xn is exchangeable if for every permutation
(α1, α2, . . . , αn) of the integers 1, 2, . . . , n,

(X1, X2, . . . , Xn) =d (Xα1 , Xα2 , . . . , Xαn).

• If X1, X2, . . . , Xn are i.i.d random variables, then the set X1, X2, . . . , Xn is exchangeable.

• The statistic t(·) is

1. a translation statistic if t(x1 + k, x2 + k, . . . , xn + k) = t(x1, x2, . . . , xn) + k

2. a translation-invariant statistic if t(x1 +k, x2 +k, . . . , xn+k) = t(x1, x2, . . . , xn)

for every k and x1, x2, . . . , xn.
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5.3 Ranking Statistics

• Let Z1, Z2, . . . , Zn be a random sample from a continuous distribution with cdf F (z), and
let Z(1) < Z(2) < · · · < Z(n) be the corresponding order statistics.

• Zi has rank Ri among Z1, Z2, . . . , Zn if Zi = Z(Ri) assuming the Rth
i order statistic is

uniquely defined.

• By “uniquely defined” we are assuming that ties are not possible. That is, Z(i) 6= Z(j) for
all i 6= j.

• Let R = {r : r is a permutation of the integers (1, 2, . . . , n)}. That is, R is the set of all
permutations of the integers (1, 2, . . . , n).

Theorem 5.6 Let R = (R1, R2, . . . , Rn) be the vector of ranks where Ri is the rank of Zi
among Z1, Z2, . . . , Zn. Then R is uniformly distributed over R. That is, P (R = r) = 1/n! for
each permutation r.

Theorem 5.7 Let Z1, Z2, . . . , Zn be a random sample from a continuous distribution, and let
R be the corresponding vector of ranks where Ri is the rank of Zi for i = 1, 2, . . . , n. Then

P [Ri = r] = 1/n for r = 1, 2, . . . , n

= 0 otherwise

and, for i 6= j,

P [Ri = r , Rj = s] =
1

n(n− 1)
for r 6= s, r, s = 1, 2, . . . , n

= 0 otherwise

Corollary 5.8 Let R be the vector of ranks corresponding to a random sample from a
continuous distribution. Then

E[Ri] =
n+ 1

2
and V ar[Ri] =

(n+ 1)(n− 1)

12
for i = 1, 2, . . . , n

Cov[Ri, Rj] =
−(n+ 1)

12
for i 6= j.

• Let V1, V2, . . . , Vn be random variables with joint distribution function D, where D is a
member of some collection A of possible joint distributions. Let T (V1, V2, . . . , Vn) be a
statistic based on V1, V2, . . . , Vn.

• The statistic T is distribution-free over A if the distribution of T is the same for every
joint distribution in A.

Corollary 5.9 Let Z1, Z2, . . . , Zn be a random sample from a continuous distribution, and let
R be the corresponding vector of ranks. If V (R) is a statistic based only on R, then V (R) is
distribution-free over the class A of joint distributions of n i.i.d. continuous random variables.

• A statistic (such as V (R)) that is a function of Z1, Z2, . . . , Zn only through the rank vector
R is called a rank statistic.
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Example of a distribution-free statistic: Let X1, X2, . . . , Xn and Y1, Y2, . . . , Ym be inde-
pendent random samples from continuous distributions with cdfs F (x) and G(x) = F (x −∆),
respectively (−∞ < ∆ <∞). That is, ∆ is a shift parameter.

– Combine the X and Y samples. Let Ri (i = 1, 2, . . . , n) and Qj (j = 1, 2, . . . ,m) be the
ranks of the n X-values and the m Y -values in the combined sample. Thus, Ri and Qj

take on values 1, 2, . . . , (m+ n).

– Thus, the rank vector R = (R1, R2, . . . , Rn, Q1, Q2, . . . , Qm) is simply a permutation of
the integers (1, 2, . . . , (m+ n)) which satisfy the constraint

n∑
i=1

Ri +
m∑
j=1

Qj =
m+n∑
k=1

k =
(m+ n)(m+ n+ 1)

2
.

– To construct a test for H0 : ∆ = 0 vs H1 : ∆ > 0 based on the ranks in rank vector R,
we compare the X-ranks (R1, R2, . . . , Rn) to the Y -ranks (Q1, Q2, . . . , Qm).

– If we know the X-ranks (R1, R2, . . . , Rn), then we also know the Y -ranks. Thus, it will be
sufficient to consider a statistic based only on the X-ranks, say W (R1, R2, . . . , Rn).

– The test statistic proposed by Wilcoxon is W =
n∑
i=1

Ri. That is, W is the sum of the

X-ranks. W is known as a ranksum statistic.

– Note that the statistic W is a function of the data only through the rank vector R =
(R1, R2, . . . , Rn, Q1, Q2, . . . , Qm). That is, once we have R, we no longer need (X1, X2, . . . , Xn,
Y1, Y2, . . . , Ym) to calculate W .

– If H0 : ∆ = 0 is true, then the data X1, X2, . . . , Xn, Y1, Y2, . . . , Ym are i.i.d. continuous
random variables. Applying Corollary 5.9, the rank statistic W is distribution-free over
the class A of all continuous distributions. That is, for any continuous cdf F ∈ A, the
distribution of W does not depend on the choice of F .

Theorem 5.10: Let W be the rank sum statistic when X1, X2, . . . , Xn and Y1, Y2, . . . , Ym are
independent random samples from F (x) and G(y) = F (y − ∆), respectively. If H0 : ∆ = 0 is
true, then the discrete distribution of W is given by

P0[W = w] =
tm,n(w)(
m+n
n

) for w =
n(n+ 1)

2
,
n(n+ 1)

2
+ 1, . . . ,

n(2m+ n+ 1)

2

= 0 otherwise

where tm,n(w) is the number of subsets of n integers selected without replacement from (1, 2, . . . , (m+
n)) such that their sum = w.

• Thus, to calculate P0[W = w] for a given m and n, we need to (i) generate all
(
m+n
n

)
possible assignments of (m + n) ranks to the X and Y observations, (ii) calculate W for
each assignment, and (iii) count the number of cases where W = w.

• For example consider the case with n = 2 and m = 4. There are
(
6
2

)
= 15. Thus, there

will be two X-ranks (R1, R2) from the six possible ranks (1, 2, 3, 4, 5, 6). W = R1 + R2 is
then calculated for all possible assignments of the 6 ranks.
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• The following table shows the 15 assignments of the 6 ranks and the corresponding W
statistic values.

X-ranks Y -ranks X-ranks Y -ranks
R1, R2 Q1, Q2, Q3, Q4 W = R1 +R2 R1, R2 Q1, Q2, Q3, Q4 W = R1 +R2

5,6 1,2,3,4 11 2,4 1,3,5,6 6
4,6 1,2,3,5 10 2,3 1,4,5,6 5
4,5 1,2,3,6 9 1,6 2,3,4,5 7
3,6 1,2,4,5 9 1,5 2,3,4,6 6
3,5 1,2,4,6 8 1,4 2,3,5,6 5
3,4 1,2,5,6 7 1,3 2,4,5,6 4
2,6 1,3,4,5 8 1,2 3,4,5,6 3
2,5 1,3,4,6 7

For each of the 15 unordered assignments of ranks within samples, there are 4!× 2! = 48
ordered assignments yielding the same W value. Thus, overall there are 6! = 720 =
(15)(48) ordered assignments of the 6 ranks.

• The distribution of W is

w 3 4 5 6 7 8 9 10 11
P0[W = w] 1/15 1/15 2/15 2/15 3/15 2/15 2/15 1/15 1/15

• Suppose that W = 9. Then for the test of H0 : ∆ = 0 vs H1 : ∆ > 0 :

p− value = the probability of getting a test statistic W that is at least 9

= 2/15 + 1/15 + 1/15 = 4/15 ≈ .27.

Note that w ∈ {3, 4, . . . , 11} =

{
n(n+ 1)

2
,
n(n+ 1)

2
+ 1, . . . ,

n(2m+ n+ 1)

2

}
as

stated in Theorem 5.10.

Theorem 5.11 Let W =
n∑
j=1

be the ranksum statistic. If H0 : ∆ = 0 is true (i.e. F = G),

then the distribution of W is symmetric about the value µ = n(m+ n+ 1)/2 and

E0[W ] = µ V ar[W ] =
mn(m+ n+ 1)

12
.

5.3.1 Statistics Based on Counting and Ranking

• Let X1, X2, . . . , Xn be a random sample from a continuous distribution that is symmetric
about value µ.

• Let Z1, Z2, . . . , Zn = (X1−µ,X2−µ, . . . , Xn−µ). Then Z1, Z2, . . . , Zn is a random sample
that is symmetric about 0.

• Define Ψi = Ψ(Zi) to be an indicator variable where

Ψ(t) = 1 if t > 0 and Ψ(t) = 0 if t ≤ 0
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Lemma 5.12 Let Z be a random variable that is symmetrically distributed about 0. Then
the random variables |Z| and Ψ = Ψ(Z) are stochastically independent. That is,

P (Ψ = 1, |Z| ≤ t) = P (Ψ = 1)P (|Z| ≤ t) and P (Ψ = 0, |Z| ≤ t) = P (Ψ = 0)P (|Z| ≤ t).

• For random variables Z1, Z2, . . . , Zn, the absolute rank of Zi, denoted R+
i , is the rank of

|Zi| among |Z1|, |Z2|, . . . , |Zn|.

• The signed rank of Zi is ΨiR
+
i . Thus, (i) Ψi = |Zi| if Zi > 0 and (ii) Ψi = 0 if Zi ≤ 0.

• A signed rank statistic is a statistic that is a function of Ψ1R
+
1 , Ψ2R

+
2 , . . . , ΨnR

+
r .

• The following theorem establishes properties of the joint distribution of Ψ = (Ψ1,Ψ2, . . . ,Ψn)
and R+ = (R+

1 , R
+
2 , . . . , R

+
n ).

Theorem 5.13 Let Z1, Z2, . . . , Zn be a random sample from a continuous distribution that is
symmetric about 0. Then Ψ1,Ψ2, . . . ,Ψn,R

+ are mutually independent. Moreover, each Ψi is
a Bernoulli random variable with p = 1/2, and R+ is uniformly distributed over R (the set of
all permutations of the integers (1, 2, . . . , n)).

Proof of Theorem 5.13

- Z1, Z2, . . . , Zn are are independent because they are a random sample. Lemma 5.12 implies
that Ψ1, |Z1|,Ψ2, |Z2|, . . . ,Ψn, |Zn| are 2n mutually independent random variables.

- Each Ψi is a Bernoulli random variable with parameter p = P [Zi > 0] = 1/2 because Zi
is continuous and symmetrically distributed about 0.

- The R+ is independent of Ψ1,Ψ2, . . . ,Ψn because it is a function only of |Z1|, |Z2|, . . . , |Zn|.
That is, R+ does not depend on any Ψi.

- Because R+ is a rank vector of n i.i.d. continuous random variables, application of The-
orem 5.6 shows that R+ is uniformly distributed over R (the set of permutations of the
integers (1, 2, . . . , n).

Let A0 be the set of joint distributions of n i.i.d. continuous random variables that are sym-
metrically distributed about 0.

Corollary 5.14 Let S(Ψ,R+) be a statistic that depends on Z1, Z2, . . . , Zn only through
Ψ = Ψ1,Ψ2, . . . ,Ψn and R+ = (R+

1 , R
+
2 , . . . , R

+
n ). Then the statistic S(·) is distribution-free

over A0.

Proof of Corollary 5.14 This result follows from Theorem 5.13 because Ψ and R+ have the
same joint distribution for every joint distribution F0(Z1, Z2, . . . , Zn) ∈ A0. That is, the joint
distribution of Ψ and R+ does not depend on the choice of F0(Z1, Z2, . . . , Zn) ∈ A0.

• We will often be interested in functions of Ψ and R+ that are symmetric functions of the
signed ranks Ψ1R

+
1 ,Ψ2R

+
2 , . . . ,ΨnR

+
n . If this is the case, then the following theorem can

help establish the distribution of such a statistic.
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Theorem 5.15 Let Z1, Z2, . . . , Zn be a random sample from a continuous distribution that is
symmetric about 0. Let Q be the number of positive Zs. For Q = q, let S1 < S2 < · · · < Sq
denote the ordered absolute ranks of those Zs that are positive (i.e., S1 < S2 < · · · < Sq are the
positive signed ranks in numerical order). Then

P [Q = q, S1 = s1, S2 = s2, . . . , Sq = sq] = (1/2)n for q = 0, 1, . . . , n and each of

the q − tuples (s1, s2, . . . , sq) such that

si is an integer and 1 ≤ s1 < s2 < · · · < sq ≤ n

= 0 otherwise

• Recall: Suppose X1, X2, . . . , Xn be a random sample from a continuous distribution that
is symmetric about µ. Then Z1, Z2, . . . , Zn = (X1 − µ,X2 − µ, . . . , Xn − µ) is a random
sample that is symmetric about 0.

• Thus, all of the preceding results also apply to the (Xi−µ) random variables. That is, we
can generalize the results to Aµ = the class of continuous distributions that are symmetric
about µ for any −∞ < µ <∞.

Example:

• Suppose we have a random sample X1, X2, . . . , Xn from a distribution in Aµ.

• The Wilcoxon signed rank statistic W+ is defined as

W+ =
n∑
i=1

ΨiR
+
i .

That is, W+ is the sum of the signed ranks.

• To test H0 : µ = µ0 vs H1 : µ > µ0, we would reject H0 if W+ is “too large”. That is, we
would reject H0 if the p-value is small (e.g., p-value < .05). So how do we calculate the
p-value?

Corollary 5.16 Let W+ be the Wilcoxon signed rank statistic for testing H0 : θ = θ0. For a
random sample of size n, the distribution of W+ assuming H0 is true is

P0[W
+ = k] =

cn(k)

2n
for k = 0, 1, . . . ,

n(n+ 1)

2
= 0 otherwise

where cn(k) = the number of subsets of integers {1, 2, . . . , n} for which W+ is equal to k.

• Suppose n = 4. The following table list the 24 combinations of signed ranks and the
corresponding W+ values.

Subset of {1, 2, 3, 4} W+ Subset of {1, 2, 3, 4} W+

∅ 0 {2,3 } 5
{1} 1 {2,4} 6
{2} 2 {3,4} 7
{3} 3 {1,2,3} 6
{4} 4 {1,2,4} 7
{1,2} 3 {1,3,4} 8
{1,3} 4 {2,3,4} 9
{1,4} 5 {1,2,3,4} 10
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Thus, the distribution of W+ is

k 0 1 2 3 4 5 6 7 8 9 10
P [W+ = k] 1

16
1
16

1
16

2
16

2
16

2
16

2
16

2
16

1
16

1
16

1
16

– Suppose the data are (X1, X2, X3, X4) = (24.6, 25.1, 25.6, 25.7), and we want to test H0 :
µ = 25 vs H1 : µ > 25.

– Next calculate the deviations from µ0 = 25. That is, (Z1, Z2, Z3, Z4) = (−.4, .1, .6, .7).

and the vector of absolute values is (|Z1|, |Z2|, |Z3|, |Z4|) = (.4, .1, .6, .7).

– The absolute rank vector R+ = (R+
1 , R

+
2 , R

+
3 , R

+
4 ) = (2, 1, 3, 4).

– Ψi = 1 if Zi > 0 (or equivalently, if Xi > 25)), and is 0 otherwise. Thus, (Ψ1,Ψ2,Ψ3,Ψ4) =
(0, 1, 1, 1).

– Therefore the signed rank statistic W+ =
n∑
i=1

ΨiR
+
i is

W+ = (0)(2) + (1)(1) + (1)(3) + (1)(4) = 8.

• The p-value is the probability of getting a W+ value that is at least 8.

Therefore, the p-value = P [W+ = 8, 9, or 10] = (1 + 1 + 1)/16 = 3/16 = .1875.

Theorem 5.17 The distribution of the Wilcoxon signed rank statistic W+ is symmetric about
its mean µW+ = [n(n+ 1)/4] if H0 : µ = µ0 is true.

5.4 Linear Rank Statistics

• Earlier we studied the ranksum statistic W =
n∑
i=1

Ri where Ri is the rank of Xi among a

combined sample X1, X2, . . . , Xn, Y1, Y2, . . . , Ym.

• If H0 : ∆ = 0 is true, then the random variables X1, X2, . . . , Xn, Y1, Y2, . . . , Ym are i.i.d,
and by Corollary 5.9, W is distribution-free over the class of continuous distributions A.

• The test statistic W has two important properties:

1. W maintains the desired α-level over a very broad class of distributions (A).

2. The power of W is excellent for detecting a shift for many distributions, especially
for a medium-tailed distribution (such as the normal or logistic).

• We now consider a general class of rank statistics (which includes W ).

• Let R = (R1, R2, . . . , RN) be a vector of ranks. Let a(1), a(2), . . . , a(N) and c(1), c(2), . . . , c(N)
be two sets of n constants. A statistic of the form

S =
N∑
i=1

c(i) a(Ri)

is called a linear rank statistic. The constants a(1), a(2), . . . , a(n) are called the scores,
and c(1), c(2), . . . , c(n) are called the regression constants.

• The choice of c(1), c(2), . . . , c(n) will depend on the specific testing problem of interest.
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Case I:

• In two-sample problems R is the rank vector of X1, X2, . . . , Xn, Y1, Y2, . . . , Ym. In general,
let R1, R2, . . . , Rn be the ranks of X1, X2, . . . , Xn and Rn+1, Rn+2, . . . , Rm+n be the ranks
of Y1, Y2, . . . , Ym. If

c(i) = 1 for i = 1, 2, . . . , n (17)

= 0 for i = n+ 1, n+ 2, . . . ,m+ n

then S =
m+n∑
i=1

c(i) a(Ri) =
n∑
i=1

a(Ri) which is the sum of the scores associated with

the ranks of X1, X2, . . . , Xn.

• The constants c(i) in (17) are called two-sample regression constants.

Case II:

• For Case I, if we also let a(i) = i for i = 1, 2, . . . ,m + n, then S =
n∑
i=1

Ri which is

the ranksum statistic W . The scores a(i) = i are called the Wilcoxon scores.

Case III:

• It is clear that a different choice of a(1), a(2), . . . , a(N) scores for the two-sample problem
will yield a test statistic with different properties.

• Let M̂ = the median of the combined sample X1, X2, . . . , Xn, Y1, Y2, . . . , Ym, and define

a(i) = 0 if i ≤ m+ n+ 1

2
(18)

= 1 if i >
m+ n+ 1

2

Consider S with these a(i) scores and the two-sample regression constants in Case I:

S =
n∑
i=1

a(Ri)

= the number of Xi values larger than the sample median M̂

• This S is the linear rank statistic for the two-sample median test, and the scores in
(18) are called the median scores.

5.4.1 Linear Rank Statistics under H0

• In this section, general properties of linear rank statistics will be studied under the null
hypothesis where “null hypothesis” refers to any set of assumptions that will result in the
rank vector R being uniformly distributed over R (the set of permutations of the integers
1, 2, . . . , N).

• In future sections, we will study the null hypothesis for specific testing problems.
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Lemma 5.18 Let a(1), a(2), . . . , a(N) be a set of N constants. Then, if R is uniformly
distributed over permutation set R,

E[a(Ri)] =
1

N

N∑
i=1

a(i) = a for i = 1, 2, . . . , N

V ar[a(Ri)] =
1

N

N∑
k=1

(a(i)− a)2

Cov[a(Ri), a(Rj)] =
−1

N(N − 1)

N∑
k=1

(a(i)− a)2 =
1

N − 1
V ar[a(Ri)] for i 6= j

• The proof of Lemma 5.18 involves using Theorem 5.7 and the definitions of E(·), V ar(·),
and Cov(·, ·).

• Lemma 5.18 is used to establish the mean and variance of a linear rank statistic under the
null hypothesis.

Theorem 5.19 Let S be a linear rank statistic with regression constants c(1), c(2), . . . , c(N)
and scores a(1), a(2), . . . , a(N). If R is uniformly distributed over R, then

E[S] = Nca and

V ar[S] =
1

N − 1

[
N∑
i=1

(c(i)− c)2
][

N∑
k=1

(a(k)− a)2

]

where a = (1/N)
N∑
i=1

a(i) and c = (1/N)
N∑
i=1

c(i).

5.5 Asymptotic Normality of Rank Statistics (Supplemental)

• The regression constants c(1), c(2), . . . , c(N) are determined by the problem of interest.
Thus, we will only place a weak restriction on these constants.

• The restriction essentially requires that asymptotically no individual ci value is much larger
than the other constants. Specifically, the restriction is∑N

i=1(c(i)− c)2

max1≤i≤n(c(i)− c)2
→ ∞ as N →∞ (19)

where (1/N)
N∑
i=1

ci.

This is known as Noether’s condition.

• Let φ be a real-valued function defined on (0, 1) that (i) does not depend on N , (ii) can
be written as the difference φ = φi− φ2 of two non-decreasing functions, and (iii) satisfies

0 <

∫ 1

0

[
φ(u)− φ

]2
du < ∞ with φ =

∫ 1

0

φ(u)du.

A function φ(·) with these properties is called a square integrable score function.
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• For a square integrable function,

∫ 1

0

[
φ(u)− φ

]2
du =

∫ 1

0

φ2(u)du − [(φ)]2.

• Let φ be a square integrable score function and a(1), a(2), . . . , a(N) be scores that satisfy
any of the following three conditions:

(A1) a(i) = φ

(
i

N + 1

)
.

(A2) a(i) = N

∫ i/N

(i−i)/N
φ(u)du for i = 1, 2, . . . , N .

(A3) a(i) = E[φ(U(i))] where U(i) is the ith order statistic from a random sample of size
N from a uniform (0, 1) distribution.

Let S =
N∑
i=1

c(i) a(Ri).

Let S+ =
N∑
i=1

c(i) Ψ(i) a(Ri).

Theorem 5.20 (Asymptotic Normality of Linear Rank Statistics): Under H0 for a
linear rank statistic S, and assuming Noether’s condition and condition A1, A2 or A3, then

S − E(S)√
V ar(S)

→d N(0, 1) as N →∞

Theorem 5.21 (Asymptotic Normality of Signed Rank Statistics): Under H0 for a
linear rank statistic S+, and assuming Noether’s condition and condition A1, A2 or A3, then

S+ − E(S+)√
V ar(S+)

→d N(0, 1) as N →∞

• The linear rank statistics and signed rank statistics discussed in this course all all have
asymptotic N(0, 1) distributions after standardizing.
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