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1 Introduction

1.1 Motivation and Data Collection

Local breweries provide a relaxing atmosphere for friends, family, and colleagues to gather and share stories,
collaborations, and memories. It is in the interest of the local breweries to provide types of beer that appeal
to the community at all times of the year. To inform Bridger and Bozeman Breweries about which months
corresponded to higher sales in their seasonal products, I used Principal Component Analysis (PCA) and
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Cluster Analysis to see which groups of months had similar sales profiles and which months had higher
proportions of seasonal sales.

Bridger Brewery opened in March of 2013 and has steadily become a hangout spot for local residents and
college students alike. They serve many varieties of craft beer and pizza, either whole or by the slice. They
are also involved in the community and host Pints with Purpose, a fundraiser each week where the profits
go to a local non-profit agency. Bozeman Brewery opened in 2001 and is an established brewery in the local
community. They distribute products throughout Montana and serve seasonals and trademark products in
their tasting room. Bozeman Brewery also hosts a Sunday FUNDay, where a local non-profit in Montana
receives a portion of the sales from the pints sold.

I collected monthly data for 2013 from Bridger Brewery and Bozeman Brewery. The Bozeman Brewery
data set contained the sales for its Hefe, Porter, Amber, IPA products and, a final group of all other products
grouped into “Seasonal”. The Bridger Brewery data set contained sales on all the different kinds of beer they
sold since they opened in March of 2013. A number of these were excluded from the analysis. For example,
Abbey Ale is a mistake in the system they use to ring up sales, so this was excluded. Batch 8 was supposed
to be a strong, dark IPA that, due to equipment failure, never reached maturity, so it was excluded. In total,
22 beer products were retained for the analysis. I will also consider a subset of the Bridger Brewery data,
where all the products that are not sold year round (all but the Blonde, Brown, and IPA) are combined into
a Seasonal variable.

Looking at the total sales at Bridger Brewery in Figure 1 over the past year, June and July were the
slowest months (could be due to a drop in population on campus). The hours of operation for Bridger
Brewery remained the same throughout these slower months. Popularity seems to have increased this fall,
with higher beer sales associated with October through January.
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Figure 1: Time series plot of total sales(pints)

1.2 Graphical Methods

One of the primary issues using graphical methods in multivariate analysis is with displaying data that are
in at least four dimensions. There have been a number of plotting techniques that have been developed
to address this issue, such as Chernoff-faces, Andrew plots, and parallel coordinates plots (see Everitt and
Hothorn, 2011 and Hardle and Simar, 2012).

The graphical methods used to display the final results of the cluster analysis incorporate a time series
scatter plot of the total sales versus the months the data was collected, as well as the Parallel coordinates
plot, which re-scales all variables between 0 and 1, and then plots each observation as a line going across the
different variables. With only 11 months of observations for the Bridger Brewery and 12 for the Bozeman
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Brewery, this seems to be a reasonable display. With too many observations, these plots can seem very
messy and hard to extract the interesting information. These plots are also sensitive to the ordering of
the variables, so incorporating information from other analyses, such as Principal Component Analysis and
clustering algorithms, can enhance the information available from the plot.

2 PCA

2.1 PCA Introduction

The main idea of principal components analysis (or PCA) is to take q variables x1, . . . xq and define a new
set of variables x∗1, . . . x

∗
u with u ≤ q that are linear combinations of our original variables that explain most

of the variation observed in the original explanatory variables. Each of the new principal components will
be uncorrelated with the others. PCA can be useful in situations where our variables are correlated (which
is the case in our data, because we would expect months close together in time to be more correlated). In
the full Bridger data set, we have 11 months and 22 types of beer, so it is possible to get some significant
dimension reduction in the case where we are examining (clustering) months based on the types of beer sold
that month.

2.2 Calculating Principal Components

Since we are finding linear combinations of our original variables, the first principal components will be:

x∗1 = c11x1 + c12x2 + . . .+ c1qxq

where we choose the c1i’s to maximize the variation of x∗1 as well as satisfy the constraint
∑q
i=1 c

2
1i = 1. Using

lagrange multipliers and linear algebra results, this is achieved by finding the eigenvector of the correlation
matrix Σ associated with the largest eigenvalue (Everitt and Hothorn, 2011 and Hardle and Simar, 2012).
Likewise, the subsequent components are calculated from the eigenvectors associated with the decreasing
eigenvalues.

It can also be shown that the proportion of the variance explained in the data by the jth principal
component is simply the eigenvalue associated with that component divided by the sum of all the eigenvalues
of Σ.

2.3 Using the prcomp function

The singular value decomposition (SVD) in matrix theory (see Meyer 2000) can be used to calculate the
principal components. In the situation where a matrix X is symmetric and square, the singular value
decomposition is analogous to solving the eigenvalue problem (see Wall et al. 2003). Therefore, the SVD for
a covariance matrix Σ is

Σ = UΛUT

where Λ has the eigenvalues of Σ, in order from largest to smallest (traditionally) on the diagonal, and
zeros on the off diagonal. The matrix U contains eigenvectors in its columns that are associated with the
eigenvalues in Λ. The R function that I used to perform PCA is prcomp, which uses a singular value
decomposition of the covariance matrix Σ to calculate the principal components.

2.4 The Scree Plot and the Principal Components Biplot

Choosing the number of principal components to retain for interpretation and future analysis is a non-trivial
task. There are a number of rules that have been developed in an attempt to answer this question (see
Everitt and Hothorn 2011 and Raiche et al. 2006). One of the earliest developed is the scree plot, which is
simply a plot of the eigenvalues of the PC’s versus the number of the component. Since these eigenvalues
represent the proportion of the variation that is explained by that PC, we can consider looking for the PC
where the slope to the subsequent eigenvalue becomes “shallow” instead of “steep”. Another term for this
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is looking for the “elbow” of the scree plot. A scree plot of the PCA for the Bridger data is shown in Figure
2. At the 5th component, we see that the steepness of the lines connecting components starts to become
slightly “less steep”. These 5 components also account for approximately 84% of the variation in the original
variables.

A plot that can be used to display the observations and the variables in two dimensions is the principal
components biplot (see Venables and Ripley 2002.). I will focus on the interpretation of this plot in the
context of the problem. Details of how this plot is constructed will be left to the reader.
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## Importance of components:

## PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11

## Standard deviation 2.554 2.078 1.828 1.643 1.2516 1.0961 0.9969 0.8858 0.628 0.42096 5.36e-16

## Proportion of Variance 0.297 0.196 0.152 0.123 0.0712 0.0546 0.0452 0.0357 0.018 0.00805 0.00e+00

## Cumulative Proportion 0.297 0.493 0.645 0.767 0.8386 0.8932 0.9383 0.9740 0.992 1.00000 1.00e+00

Figure 2: The principal components biplot (left) and the scree plot (right) is shown.

Further discussion of the following “rules” for interpreting these plots can be found in Venables and Ripley
(2002), Everitt and Hothorn (2011), and Gabriel (1971). The direction of the vectors for each variable in
the biplot shows the contribution of the variable to the principal components. The length of the vectors
represent the standard deviation of that variable with longer vectors being associated with variables with
more variation in the observations. The cosine of the angle θ between two vectors represents the correlation
between the two variables (cos (θ) ≈ ρ), so small angles represent strong positive linear associations and
angles close to 1800 reflect strong negative linear associations. From this plot, we see that the sales of
Erd (strawberry Hefe), dunkel, summer, and hefe were highly linearly associated in the first 11 months of
operation at Bridger. If we think about running a line from an observation to the vector of a variable that
is perpendicular to that vector, we can approximate the value of that variable for the observation relative
to the other observations in the data. Therefore, we can see that the months of September, October, and
November had the highest sales of erd, dunkel, summer and hefe products.

The euclidean distance between the observations in the biplot is an approximation of the distance between
them in the multivariate space, giving us a representation of how far apart the observations are in multivariate
space. We see three distinct groups of points coming out of the biplot. August, September, and October are
very close to one another on the plot. Similarly, we see groups of points in the upper left (March through
July) and in the left side (November through January). Although this has been an exploratory method thus
far, it has allowed us to begin to examine the structure of the data and some possible relationships between
the products sold and the time of the year.
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2.5 Interpreting Principal Components

When interpreting the principal components, a cutoff of |0.3| was used for the loadings of each variable to
aid in interpretation. The first principal component (PC1) had relatively large absolute loadings for malt
liquor (0.35) and mctavish scotch ale (0.33). This can be thought of as a weighted average between malt
liquor and mctavish ale and large values of these products correspond to a large PC1. The second principal
component (PC2) had relatively large absolute loadings for hefe (-0.39), dunkel (-0.32) summer ale (-0.37),
and porter (0.3). This can be thought of as a weighted contrast between hefe, dunkel, and summer ale versus
porter and low sales of the hefe, dunkel, and summer ale and high sales of porter correspond to small values
of PC2.

The third principal component (PC3) had relatively large absolute loadings for coffee stout (-0.43) and
love ale (-0.32). This represents a weighted average between coffee stout and love ale. The fourth principal
component (PC4) had relatively large absolute loadings for stout (-0.32), amber (-0.39), pale ale (-0.31), and
60 schilling (0.44). Likewise, PC4 corresponds to a weighted contrast stout, amber, and pale ale versus 60
schilling. The fifth component (PC5) had relatively large absolute loadings for red ale (-0.42) and ryeipa
(0.63). PC5 represents a weighted contrast between red ale versus rye ipa. Although exact interpretations
of these PCs may be difficult, we can use the variables with large loadings to possibly distinguish differences
in the sales profile across the months to look for similarities.

3 Distance and Multidimensional Scaling (MDS)

Multidimensional scaling (MDS) is a method of projecting information in three or more dimensions in a lower
dimensional representation. The goal is to preserve the multidimensional distances, or dissimilarities, in the
multivariate observations and construct a new, often two-dimensional map, to display. Multidimensional
scaling starts with a distance, or “dissimilarity”, metric between the observations. Choosing a distance
measure is no small task. There are many that can be used such as the Minkowski distance metric to
metrics that can incorporate missing data. We will be using Euclidean distance to define our distance
between observations. There are two types of MDS considered in this paper, metric MDS (also known
as classical MDS) and non-metric MDS (specifically Kruskal’s non-metric MDS). For more information on
these, see Everitt and Hothorn (2011) and Cox and Cox (2008). Since we are working with Euclidean
distance, metric MDS will produce the same map of new coordinates as seen in the principal components
biplot (Hardle and Simar 2012, page 404), while non-metric MDS assumes a less rigid relationship between
observed dissimilarities and distances between coordinates in the new mapping and can sometimes reproduce
differences in higher dimensions better in two-dimensions than classical MDS.

3.1 Metric MDS

Metric Multidimensional scaling is concerned with finding a mapping in q dimensions from the original
observations in n dimensions, preferably with q < n, such that the distance between the mapped observations
are close to the original distance matrix. To perform this, we take our matrix of observations X, perform a
spectral decomposition of the outer product matrix XXT , resulting in

XXT = V ΛV T

where Λ is a matrix with eigenvalues on the diagonal and V being the matrix of corresponding eigenvectors.
In fact, since we are working with Euclidean distance, these are the same eigenvalues and eigenvectors seen
in the principal components analysis. The new coordinates are computed as X = V Λ0.5. Similar to PCA,
we can compute the variation of the original variables explained in a subset of the dimension m < q by

computing

∑
m<q

λm∑
n
λn

. However, the metric MDS is restrictive in the assumption of the direct relationship

between dissimilarities and constructed distances (Everitt and Hothorn, 2011 p. 406). Non-metric MDS was
developed in order to assess this issue.
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3.2 Non-Metric MDS

In Non-metric MDS, the rank order of the dissimilarities is the focus. This assumes a rank order of the
original dissimilarities as

δi1j1 < . . . < δinjn

for i 6= j where δi1j1 corresponds to the pair of observations with the smallest dissimilarity and δinjn
corresponds to the pair with the largest dissimilarity. The idea of non-metric MDS is to map the observations
into new coordinates to where the distances between the new coordinates match the rank order of the original
dissimilarities

di1j1 < . . . < dinjn

where dij represents the distance between observations i and j in the new coordinate system. In order to to
achieve this monotonic requirement, we model the distances as:

dij = d̂ij + εij

where d̂ij are called the disparities. This is achieved with isotonic regression, which was originally used by
Kruskal. In isotonic regression, we first need an initial configuration of dij , which can be achieved using
metric MDS. We then compare the rank order of the dissimilarities with these distances. At each step of the
algorithm, we partition the dissimilarities into blocks and average over the partitions where our montotinicity
is violated. This process is repeated until we have achieved a set of disparities that does not violate the
monotonicity. (See Cox and Cox, 2008)

Non-metric MDS then looks to minimize the “stress” between two variables, which in essence is a measure
of agreement between disparities and distances (dissimilarities). The stress is defined as:

STRESS
(
d, d̂

)
=

∑
i<j

(
d̂ij − dij

)2
∑
i<j d

2
ij

.

isoMDS is an R function from the MASS package (Venables and Ripley 2002) that uses istonic regression
in its algorithm to perform non-metric MDS. The basic structure of the algorithm is:

1. Rank order the initial dissimilarities.

2. Compute the set of distances between the points in an initial configuration using classic MDS.

3. Use the isotonic regression algorithm described above to compute disparities. Compute the initial value
of the stress.

4. Use an iterative gradient search to find a configuration of new distances dij to decrease the stress
measure.

5. Repeat steps 3 and 4 until the minimum stress value is found between the observations.

The results from the Non-Metric MDS is shown in the section below alongside the classical MDS solution.

3.3 Minimum Spanning Trees

Another method that can enhance MDS is a minimum spanning tree. A spanning tree is a set of line segments
connecting all the points in (potentially) multiple dimensions that uses the following rules:

• Straight lines connect the points.

• Every point is visited once.

• There are no closed loops, i.e., there exists a unique path between any two points in the tree.
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The minimum spanning tree is the spanning tree that has the minimum total segment length. A minimum
spanning tree can be used to find possible distortions in the original dissimilarity matrix for a 2D MDS
representation. In Figure 3, the metric MDS and non-metric MDS solution is given with a minimum spanning
tree. The mst function in the ape package (Paradis et al. 2004) was used to produce the minimum spanning
tree and the cmdscale function was used to perform the metric MDS. For the non-metric MDS, although
we can see that April is very close to June and May in this representation, the tree runs from April to July
and April to March. This indicates that the distance between April and July in this representation may not
adequately portray the dissimilarity in the original distance metric. In the metric MDS, we see the distance
between the April and July is relatively close to the distance between April, at least more so than in the
non-metric MDS. This, while not a perfect portrayal of the dissimilarities between the months, gives us a
map to examine the observations and eventually compare the solutions from our cluster analysis (See Everitt
and Hothorn, 2011).
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Figure 3: Classical MDS with Minimum Spanning Tree

4 Cluster Analysis

Cluster analysis is an exploratory technique to group observations that are similar and separate observations
that are different (in some sense). Sometimes cluster analysis can be an useful method when groups are
suspected in the data but are not identifiable by a single variable. For example, we may be interested in
grouping potential voters for an election based on a number of characteristics without having access to their
voting results.

Recently, a study used cluster analysis in forming different groups among college students dependent on
there alcohol, tobacco, and drug use at different universities in the US (Primack et al., 2012). Sometimes these
methods can be criticized because they impose groups even if none exist. The usefulness and interpretation
of the cluster solution can be the ultimate judgment (Everitt and Hothorn, 2011). Two forms of cluster
analysis were used in the following analysis. The first examined is Hierarchical Agglomerative Clustering,
which creates partitions of the data starting with each item as its own cluster and running to a single cluster
of all observations. This is a simple clustering method which allows us to see group membership for different
number of total clusters on the same plot (see section 4.1.1). The second we will examine is a divisive
method called Partitioning Around Medoids. This method has an objective function that is maximized for
a pre-specified number of clusters and gives an actual observation as a representative for each cluster.

The clustering algorithms discussed are all based on a distance, or dissimilarity matrix between the
observations. To help ensure that our cluster solution is not solely based on the increase in total sales, I
converted the observations to a proportion of the monthly sales attributed to that product.

4.1 Hierarchical Agglomerative Clustering

The basic Hierarchical clustering algorithm begins with a dissimilarity matrix D and using the algorithm:
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1. Start with every item as a cluster (N clusters).

2. Find the pair of clusters, A and B, nearest to one another using a measure of distance between clusters
dAB .

3. Merge clusters A and B and update your distance matrix.

4. Repeat 2 and 3 until only one cluster is left.

How we define our distance dAB can have profound impacts on the cluster solutions. Some common
linkage methods that are used are single, complete, average, and Wards. For single linkage we use d (A,B) =
min (dij) for observations i ∈ A and j ∈ B. These dij are the measurements from the original distance
matrix. Similarly, the complete linkage method uses d (A,B) = min (dij) for observations i ∈ A and j ∈ B.
The average linkage method incorporates more information; summing over all the distances between clusters
A and B and dividing by the product of the sample sizes for each cluster.

Wards method utilizes a reducing sum-of-squares approach in combining clusters. The sum-of-squares
for each cluster is the sum of the squared deviations from the centroid of the cluster. At the beginning,
each observation is its own cluster and the total sum-of-squares is 0. Each step combines the clusters that
produce the smallest increase in the total sum-of-squares. See Everitt and Hothorn (2011) and Hardle and
Simar (2012) for more details.

4.1.1 Displaying Results with a Dendrogram

Then we can display these results using a dendrogram (Figure 4) to assist in deciding on the number of
clusters to keep. We can cut the dendrogram at a particular height in order to get each group membership.
For example, a four cluster solution was found for each of the linkage methods. An informal way of picking
the number of clusters is to cut the dendrogram at where there is an appropriate difference in the height
(Everitt and Hothorn, 2011). This is more of a subjective choice and it may be more beneficial to cut where
it will create a number of groups that is believed to be present in the data. For example, the data were
collected over four seasons, indicating that it may be appropriate to cut the dendrogram to achieve a 4
cluster solution. The cluster solution presented in the results section used a different clustering algorithm,
which is described in the next section.
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Figure 4: Dendrograms of 4 cluster solutions using single (upper left), complete (upper right), average (lower
left), and Wards (lower right) linkage methods

4.2 Partitioning Around Medoids (PAM)

Partitioning around Medoids, or PAM, is a divisive clustering algorithm used for clustering observations
into a pre-specified number of clusters k. This implies that we are looking for ways to split the data based
on the overall dissimilarities in the observations. For PAM, the clustering algorithm is based on centering
the observations around observations in the data that are representative of the clusters, called medoids
by Kaufman and Rousseeuw (1990). These representatives can be more robust measures of center than
centroids.

The pamk function in the fpc package (Hennig 2014) performs this clustering algorithm, which has two
steps. The first is the BUILD PHASE, which chooses the medoid (representatives) for a pre-specified number
of clusters. The first object picked is the observation where the sum of the dissimilarities to all other objects
is as small as possible. For each new representative, the following algorithm is used:

• Consider an observation i that has not been selected.

• For each j, compute the dissimilarity between j and the previous representative that j is most similar
to. Call this d∗j .

• Compute the dissimilarity between i and j. Call this dij .

• Compute Dij = max
(
d∗j − dij , 0

)
.

• Do this for every non-selected object j and compute
∑
j Dij .

• Choose the observation i that has the maximum
∑
j Dij .

The second phase is called the SWAP PHASE, where observations are grouped into the clusters that
minimize the sum of the distance (or dissimilarity between) between observations and the representative of
the group. Details of this algorithm can be found in Kaufman and Rousseeuw (1990).

9



4.2.1 Average Silhouette Width

Since k has to be specified in advance to employ PAM, it is useful to have diagnostics to aid the decision
making process regarding how many clusters to use. A method suggested to measure the fit of a cluster
solution is called the average silhouette width. Let’s assume that observation i is an element of cluster A. Let
a (i) be the average dissimilarity between i and all other observations in cluster A. For every other cluster B
compute the average distance between observation i and observations in cluster B. The minimum of these
distances we will call b (i). The silhouette width for each observation is defined as

s (i) =
b (i)− a (i)

max (a (i) , b (i))
.

If the s (i) are close to 1 indicates that the observation is well classified in its cluster. If s (i) is close to 0,
then it is not clear which cluster the observation belongs to. If s (i) is close to -1, than observation i would
be better classified in the neighbor cluster rather than the current cluster. Kaufman and Rousseeuw suggest
using the overall average of these silhouettes can be used to determine the optimal number of clusters.

For the full Bridger Brewery data, the left panel of Figure 5 displays the plot of average silhouette width
versus number of clusters k, constructed for k = 2, . . . ,8 on the x-axis and the average silhouette width of
all observations sk on the y-axis. We can see that the maximum occurs when the number of clusters equals
3. We can also see the individual silhouettes for each observation in the silhouette plot (right panel). This
3-cluster solution for the Bridger Brewery data is discussed below in Results and Discussion section.
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Figure 5: Average silhouette width versus cluster size (left) and silhouette plot for 3-cluster solution (right).
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5 Results and Discussion

5.1 Bridger Brewery

5.1.1 Full Data

PCP using PAM Results

Min

Max

ip
a

bl
on

de

br
ow

n

pi
ls

ne
r

re
d

am
be

r

ry
ei

pa

po
rt

er

x6
0s

ch
ill

pa
le

er
d

he
fe

du
nk

el

su
m

m
er

lo
ve

m
al

t

sa
is

on

B
lk

IP
A

m
ct

av

ba
rle

y

co
ffe

e

Opening/Spring

ip
a

bl
on

de

br
ow

n

pi
ls

ne
r

re
d

am
be

r

ry
ei

pa

po
rt

er

x6
0s

ch
ill

pa
le

er
d

he
fe

du
nk

el

su
m

m
er

lo
ve

m
al

t

sa
is

on

B
lk

IP
A

m
ct

av

ba
rle

y

co
ffe

e

Summer/Fall

ip
a

bl
on

de

br
ow

n

pi
ls

ne
r

re
d

am
be

r

ry
ei

pa

po
rt

er

x6
0s

ch
ill

pa
le

er
d

he
fe

du
nk

el

su
m

m
er

lo
ve

m
al

t

sa
is

on

B
lk

IP
A

m
ct

av

ba
rle

y

co
ffe

e

Winter

Figure 6: Cluster Analysis Solution Displayed with a PCP

Using the PAM results, we display the data with a PCP, separating each cluster with a different panel
(Figure 6). Initially, this was a very messy plot that was hard to digest. However, using the information
from the principal component analysis, I was able to sort the variables in a way that a pattern between the
clusters started to emerge.

The “Opening and Spring” cluster that encompasses March through June are associated with pilsners,
ambers, and red ale, rye ipa, and porters. This was a period when the brewery was first opening and were
trying to get a foot in the door with customers in the community. Many of these products are no longer
available.

The “Summer and Fall” cluster that encompasses July through October seems to be associated with
higher sales of summer ale, hefe, pale ales, and dunkels. This was also the period where Erd was available,
which is a strawberry wheat beer that is traditionally German brewed. This specific product was the creation
of the owner. These are lighter, less bitter beers that one might associate with warmer, sunnier weather.
This is also around the time that the new head brewer, Daniel Pollard, began working at the brewery.

The “Winter” cluster corresponding to November, December, and January is associated with higher sales
in the Mctavish scotch ales, coffee stout, stout, malt liquor, barley wine, and black IPA. These are darker,
stronger beers with higher bitterness and alcohol content. These are traditionally beers you would associate
with colder temperatures and times with less daylight.

We can also see that the sales of the three year-round products (blonde, brown, and ipa), increase through
the clusters, staring smaller in the opening months and increasing all the way up to winter. We also see that
the total sales increase over time, after a small dip in June and July. This seems to be a good indication for
business. Word of mouth advertisement seems to be helping the brewery and, hopefully, is an indication of
increasing future sales.

Figure 7 shows the time series plot of total pint sales with colors corresponding to the clusters. It will
be interesting to see if the total sales slow down in the months of June and July this upcoming summer.
Eventually it will be possible to estimate these seasonality effects when the brewery has been open long
enough and enough information is available. These cluster solutions give a sense of what products were
offered at what times in the year. Now, using the reduced data set, we can attempt to address which months
had higher sales of seasonals compared to year-round products.
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Figure 7: Time series plot of Bridger Brewery total pint sales with colors corresponding to 3-cluster solution

5.1.2 Reduced Data
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Figure 8: Average silhouette width versus cluster size (left) and silhouette plot for full data 2-cluster solution
(right).

The first principal component in the reduced Bridger data was represented as a weighted contrast between
IPA, Brown, and Blonde versus Seasonals. Figure 8 displays the average silhouette width by number of
clusters (left) and the silhouette plot for the 2-cluster solution (right). The PAM cluster solution that
yielded the largest average silhouette width was the two cluster solution. Cluster 1, which I called “High
Seasonal Sales” encompassed March, April, June, and July. Cluster 2, which I refer to as “Low Seasonal
Sales” encompasses May, and August through January. As the PCP shows, the proportion of monthly sales
that seasonals account for are higher in High Seasonal Sales and lower in Low seasonal Sales. In the lower
seasonal sales cluster, the products that are in stock year round (IPA, Bobcat Brown, and Bridger Blonde)
all have a higher proportion of the months total sales. This information is displayed in a PCP with different
panels for the separate clusters (Figure 9).

Many of the products that were available during the periods of higher seasonal proportion of monthly
sales are no longer available. It will be interesting to see if the same pattern emerges in the upcoming
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months, or if this was a chance phenomenon that we observed. Regardless of which months sell a higher
proportion of seasonals, the total sales seem to be on the rise, and this may not be a concern to the brewery.
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Figure 9: Cluster Solution for reduced data with PCP

5.2 Bozeman Brewery
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Figure 10: Average silhouette width versus cluster size (left) and silhouette plot for Bozeman Brewery
2-cluster solution (right).

For the Bozeman Brewery data, the total volume of sales was used instead of the proportion of the monthly
sales. The reason for this was interpret ability, none of the cluster solutions using the proportion of sales
data found noticeable differences between the clusters. The PAM cluster solution that yielded the largest
average silhouette width was the two cluster solution. The 2-cluster solution is displayed using a PCP in
Figure 10. Cluster 1, which I called “Low Sales” encompassed all the months except for June, July, and
August. Cluster 2, which I refer to as “High Sales” encompasses June, July, and August. The PCP did not
provide any useful information other than that the three months in the “High Sales” cluster have increased
total sales. This is seen in the time series plot of the total pints sold (Figure 11). The clusters have limited
information about differences in the months, other than total sales. Further data collection, particularly
regarding the seasonals sold, might allow more information to be gained from cluster analysis.
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Figure 11: Bozeman total pints sales versus month with colors corresponding to 2-cluster solution

6 Improvements and Future Work

The previous analyses treat the months as the subjects and the sales of the different product varieties as
the responses, generating a high dimensional, low sample size setting. It would also be interesting to think
about the data set in reverse and treat it as a time series where the observations are the types of beers and
months, or time, are the explanatory variable. This would allow for grouping different products according
to sales over time as well as estimating the trends over time as more data become available.

Initially my plan was to perform a seasonal trend analysis to see which types of beer products were more
popular during different times of the year. The problem I encountered was that I only observed each season
(even each month) only one time for both of the breweries. When Bridger has been open long enough, I will
set up time series models for different “styles” of beer. A model that could be incorporated to simultaneously
estimate probabilities that a product is offered each month as well as the estimated sales given that it is
offered is a hurdle model. This uses a zero-inflated binomial probability to estimate the probability that an
observation is 0 and, conditional on the observation not being 0, another distribution is used to estimate
the average response. It would also be beneficial for Bozeman Brewery to perform a cluster analysis of
sales throughout counties in Montana. This could examine differences in volumes of sales as well as taste
preference for their customers throughout the state.

There are also model-based clustering methods based on finite mixture distributions of multivariate nor-
mals (developed by Banfield). When more observations are collected it could be beneficial to: 1) understand
the mathematics behind estimating clusters based on actual probability models and 2) see how different
clustering methods and algorithms change the interpretation and estimation of clusters.

Finally, I would be very excited to use factor analysis, a method of examining latent factors from the
manifest explanatory variables, to construct a mechanism for measuring taste preferences in beer drinkers.
Similar mechanisms have been constructed to measure food consumption factors (Ryman et al 2013), ecolog-
ical characteristics (Batalha and Carvalho 2013), and in many other applications. If an instrument exists for
this, collecting information from patrons could help Bridger Brewery tailor product varieties to customers
seasonal taste preferences.

Although many of the methods used in this paper are exploratory in nature, they can be effectively
used to gain knowledge about the association between products and different periods of the year without
using traditional time series methods. These data are limited, the brewery sales is a new process that will
be undergoing many changes over this initial start up period. Even so, these methods can still be used to
gain an understanding about the increase in the sales over recent months, identify sales profiles that were

14



evident in the first year, and see how the proportion of monthly sales in each product change according to
the season. As more data become available, we can use these techniques as a starting point in understanding
the variables we are working with and their associated patterns across time.
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