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1. Introduction

In an experiment, the design is the basis of everything that comes after. Consideration of questions
like “what are the factors and levels of interest?” and “what comparisons address the objectives
of this study?” help identify the design that is best suited for the goals of the study. For different
circumstances, one experimental design can have advantages over competing designs. In some cases
there are restrictions that are placed on a design. For example, if not all of the experimental runs
can be done in a single day, then, by necessity, they must be run on multiple days. Or, it may be
that there is not enough raw material in a single bateh from a supplier to run the entire set of the
experimental treatments, Situations like these and others lead to a need for blocking. Blocking is
one way to deal with the variation in the data collected due to the differences between operators,

batches of raw material, or day to day conditions that are uncontrollable.

Separating the experimental runs into blocks has the potential to cause problems. If all of the
observations for one treatmeni, formed a single block, then the effect due to the treatment would
be indistinguishable from the effect of the block. This i$ easily avoided by a proper design taking
the effect of blocking into account. Tf, however, there are observations that are missing after the
experiment is completed, then we conld end up in a situation very similar to that of a poorly de-

signed experiment.

Missing data should always be avoided. If, however, there is a reason that observations are missing,
we may be missing information that is useful to our study. For example, an experiment on the
effects of a fertilizer may be affected by plants dying in the process. If the plants are growing so tall
that they break because they needed support, we would not be able measure the effects that the
fertilizer had on the yield of the plant. Or, maybe the plants on the boundary of the plot grow very
tall because they get plenty of sun and water while the plants on the interior do not get enough
sun to grow to maturity. Missing information like this is very case specific and not something that

can be addressed simply by looking at the design:

Not all missing data have an assignable cause. Sometimes observations are lost due to random
1
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chance. Some of the seeds in a batch may not germinate. An operator may drop a final product
before it's measured. A migS-galibrated instrument could give a bad reading in a destructive test.
These missing observations L'give either little or no information concerning the questions of interest,
and they are often discarded from the data analysis. They may, however, cause major problems in

the subsequent analysis of the experiment.

By removing these observations we are removing a row from the model matrix X correspond-
ing to our design. By removing this row, we may change the column rank leading to a change in
the set of functions having estimable parameters. If the functions that are now non-estimable were
never of interest, then we have lost little. In the case of a blocked design, it is common for pairwise
comparisons of treatment effects to become non-estimable which is problematic. Standard null
and alternative hypotheses regarding treatment effects ave frequently tested by multiple pairwise
comparison methods. If one or more pairwise comparison is no longer estimable, then we cannot

use this standard hypothesis testing approach.

Finding the rank reducing observation sets (RROSs) could help us decide which design to im-
plement. If one design has fewer RROSs, then that design would be less likely to have a problem
with a change in the estimability of functions vital to the study. It is also possible to examine the
resulting design’s estimable functions and be prepared for the analysis of the tesnlting design if

RROS accur.

2. Estimability

This paper will use the notation of Godolphin (2004). Let the equation

(1) | o ElQY] = pl, + X

define our linear model, where ¥ is an nx 1 vector of the observations of interest, @ is a permutation

matrix, 1, is an n length vector of ones, and r and g are vectors whose lengths correspond to the
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number of treatments, say v and «. In this situation, g is the overall mean for the model and X is
thé mean free model matrix with a rank of r < k, where k = u + v. Let the T vector correspond
to the different treatments and their corresponding levels, while the 3 vector corresponds to the

blocking effects and their levels,

When using a likelihood ratio test to determine significance of an effect (a common practice in

many analyses), the null hypothesis can be written as

2) A =m

where A is a matrix whose rows correspond to linearly estimable functions and m is a vector of null
values, often all zeroes. For example, if v consisted of only one treatment, ¢, one may wish to test

that all of the a; treatments have the same effect. The A matrix would then be of the form

1 -1 0
1 0 -1
1 0 0 -1 0

would correspond to linear combinations of the form

) — g my
Q) —ag g -
— - 0

o — Oy Tty

The problem with RROSs is that they can reduce the number of estimable pairwise comparisons.

If any of these pairwise comparisons were non-estimable then this ftest would not be viable.
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To be estimable, a function must be able to be written as a linear combination of the rows of X.
Another way {o.define an estimable function is that if ATA is an estimable function, then there
exists a linear unbiased estimator of ATS. That is, if E[Y] = X3, and there exist a vector a such

that
ElaTY) = a"X8 =278

then ATS is estimable. In such a case, A = XZa.

This relationship between X and A shows that if the rank of X decreases, then the ':Il\l.l'ﬁlbelf of

estimable functions would decrease. e

3. DEFINITION OF RANK REDUCING OBSERVATION SETS

Returning to our original iinear model, let us assume that it is fully connected (i.e., all pairwise
comparisons are estimable) in its current state. Suppose that running the experiment results in ¢
missing observations. Let Y be the (n — t) % 1 response vector of non-missing cbservations. All
corresponding matrices and vectors will be labeled similarly to reflect the changes in their rows or

columns that account for the missing observations. Our revised model can be expressed as

. T
(3) BlQeYs| = plo—t + Xy P = plat + K17 + Xogf8

If the changes in the X;, and X, matrices cause an overlap in the column space such that
C{X14) (1C{X24) is larger than it was in the original design, then there is a reduction in the rank
of X. Let the rank in the original X matrix be called . Then (Xz) < r, which means that the
tow space of Xy is less than that of X, i.e. R(Xg) C R{X). The set of observations that cause
this reduction in rank is referred to as a Type I RROS.

There are two other RROSs that are easily identified in an experiment that involves blocking. First,
if all of the observations that form a block are missing, then that block effect is no longer estimable.
This is called a Type Il RROS. This is not always a problem for the analysis. If there were no Type
I RROSs in the block that is missing, then the analysis should be fine. Next, if all of the replicates

N /F; £ ZL_—%{& ¢
Ai o

o diin
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of a single treatmeﬂt are missing, then the treatment effect is not estimable. Thig is called a Type
1IT RROS. Similar to a T}rpe H RROS, the loss of a single treatmeut can result in a design where
the resulting analysis can still be performed. There may be some practical reason for this type of
RROS to oceur. For example, Godolphin (2006) indicated that this could be the result of a lethal

dose being one of the experimental treatments.

The relationship between the design without missing observations and the design with missing
observations that determines if a set of observations is rank reducing is uncovered in a comparison
between the row spaces. If the row sphces are equal, then the set is obviously not rank reducing.

All of the A’s that were estimable before are still estimable. However, a set of £ observations is a
RROS of size £ and order s if

@) AmR(Xg) =1—s

where s is bounded by # (the maximal rank of X} and ¢ (the number of observations that are

missing).
4. Methods of Determining Rank Reducing Observation Sets

Two methods are presented in the papers by Godolphin {2004, 2006) for identifying RROSs. The
first method of Goﬂdlphin (2004) uses matrix P = X(XTX)~XT which is the perpendicular
projection operator of X and (XTX ) w]nch is the generahzed inverse of the crossproduct of X.
The method is simple and mvolves selectmg columns COrIE:SpOIldlIlg to the observations of interest
and then removing the rows. In Godolphm (2(}06), the author shows that the use of Theil’s Z
matrix to construet a matrix G whose rows are composed of a basis of the orthogonal complement

to the column space of X can also be used to find RROSs. G also has the special property that

(5) : . GX =G X+ GypXe =0
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where the rows of the matnces mth +s correspond to the missing observations and the rows of the

matrices with #'s correspond to the observatlons that are still in the design.

There is no definitive discussion on which of the methods is better, but the author does mention
that the &' matrix is easier to use for the identification of RROSs of small sizes because the Z
matrix is composed of integers, simple fractions or zeros. This is very useful for a quick comparison
between designs. The first method requires the specification of a sct of observations. This means
that you must check cach set individually to find all of the RROSs, Combining that with the need
to use the P matrix, which is not as simple as the 7 matrix, can make it cumbersome. Even so,
this method may be better suited to computer coding through some recursive algorithm to find

RROSs. For proofs of the methods, refer to Godolphin (2006) and Godolphin (2004).

4.1. Perpendicular Projection Operator Method.

The first method is simple to apply. Construct a matrix consisting of the columns of P correspond-
ing to the m ohservations of interest ph, Pras -+ » Pt Remove the rows corresponding to all of
the observatlons of interest; i.e. Tows tl, tg, ... ,Em. If the rank of the fesujting matrix is not full,
Lhen it is & RROS. As prewously stated, this method is not easy to use in finding all RROSs of
a design. For example, in a demgn with 24 observations, this procedure would need to be applied
(2"") = 276 times to ﬁJld all the RRO3s of size 2. Thls method also includes sets of cbservations
that inelude a RROS. This means that if you find a RROS of size 2, then any sei including those
two observations will also be identified as rank reducing. The set is rank reducing, but it tends to

hide unique RROSs when using an automated method.

4.2. G Matrix Using Theil’s Z Matrix.

!
The G matrix of Godolphin (2006} is not unique. The only requirements for G is that it is composed
of rows that span the orthogonal complement of C{X). The author provides the following approach
to defining a sp.eciﬁc and convenient G matrix. Let the § matrix from (1) rearrange our X matrix

so that the first r rows of the X matrix are linearly independent. We can partition X as
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[z L)
. X1 Z

The Xy matrix is r x k, the X, is (r — r) x k, and

@  Z=XaX{ (XX )

The Z matrix leads to a convenient 7 matrix of the form

(®) =] hr]

It is readily apparent that this (f has full rank of {r — r) and its rows are a basis for the orthegonal
compliment of C(X ).

From (6) and (7) we get some useful results. A row of X can be written as a linear combination
of the columns of X3. Equation (6) tells us that X; = ZX;. The rows of this Z matrix can be
associated with the rows of the X matrix, while the columns of the Z matrix can be associated with
the rows of the Xp matrix. Godolphin concludes from this that *...there is a 1-1 correspondence
betsveen the columns of G and the rows of X. We say that the jth column of G corresponds to the
jth row of X and that the jth column of & corresponds to the jth element of Q¥ for 1 < 5 < n.*
{Godolphin (2006))

This is where we begin to identify the RROSs. If the loss of a single observation causes a decrease
in the rank of X, then the row must obviously be from the Xp. Looking back at (8) we can see
that because this row is in the Xp matrix, its corresponding column in G is part of the —Z ma-

trix. Theorem 1 from Godolphin {2006) states that if an observation set is rank reducing, then
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the corresponding columns of G must have a rank less than t, the number of missing observations.
Because this is a single misrsing observation, that means that its rank must be zero and that the

corresponding column is a vector of zeroes. This makes identifying rank reducing sets of one very

easy to spot.

Theorem 1 also tells us how to identify other RROSs. In the case where ¢t = 2, the two columns of
the ¢ matrix must be multiples of each other. For £ > 3, then one of the columns of ¢ must be a

linear combination of £ — 1 other columus in .

This theorem provides another interesting result. The ¢ matrix does not differentiate between the
different types of RROS. Therefore, a Type II or Type III RROS has the same properties as any
other type. If the design has two replicates of each treatment then, the Type III RROSs are of size
two. That means that the two columns of ¢ corresponding to the replicates are multiples of each
other. If one of these vectors is an ¢lement of a linearly dependent set, then replacing it with its

replicate will also produce a RROS. This concept is stated as Theorem 4 in Godolphin (20086).

5. Examples

To help demonstrate the G matrix, an example from Godelphin (2006) using a John-Eccleston row-
column a-design will be presented. After examining that case, the G matrix for several different
Balanced Incomplete Black D;e*signs (BIBDs) will be examined. The notation for this section differs
from the original. :

5.1. John-Eccleston row-cohmn a-design.

The design considered by Godolphin (2006) involved 12 treatments replicated twice with two block-
ing variables. Call the column blocking variable 8; and the row blocking variable ~y;. Here is a table

of the design.
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IR

Bi B2 Bz Ba Bs Ps
m|l 1 5 9 4 8 12
wl2 610 1 5 9
“¥a | 3 7 11 6 10 2
“f 4 8§ 12 11 3 6

Godolphin describes a method for finding the Xy matrix using the degrees of freedom for the residual (QO ,42 ?//& /(
. . — e

variance, n — 1. Maple 11 was used to perform all of the following matrix calculations including ™

finding all the linearly independent rows of the matrix. The Xy, X; and & matrices are the same.

Let the ¢} matrix reorder the observations in the following manner. Counting down each column
of the design for the observation number, Xy contains observations 1 - 17, 19, 21, and 24 while X;

consists of observations 18, 20, 22, and 23. This yields the following G matrix.

d 60 0 0|1 -100-1 0 0 01C0

0 0-1-10 0

0 01 0-1(-1 010 0-1 £-1010T¢0
1
0

0-1 1 0 -1
0 0-1 00
-1 01 0 0

¢4-10 90 1({1-100 0 0-1 0DOO
-1 01 -1 0{-1 0011 1 -1 0-100

2 -
= o e O

We can reduce this matrix because each treatment is replicated twice. We only need one column

relating to each treatment, so we tan just use the first half of G because it contains all of the

different treatments. ' R

1 60 -1 -1 0
0 0--1 1 0 -X
1 0.0-1 0 0
0 -1 ¢ 1 0 0

G>

I

= =
=
I
[
—_ = -
=
—
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A quick examination of the new (G matrix shows that' there are no RROS of size 1. There are,
however, several RROS of size 2: the observation sets corresponding to treatment pairs of {2,11},
{3,6}, and {7,10} are all rank reducing. Because any combinations of the wo treatments with the
corresponding two observations is rank reducing, this means that we have four RROSs from each
pair. Along with the Type II RROSs that we identified previously, the total number of RROSs of
size 2 is 12 + 3(4) = 24. The number of possible observation sets of size 2 is (224) = 276 meaning
that there are 252 observation sets that are not rank reducing. Godolphin uses a staircase partition
diagram, which was discussed in Godolphin and Godolphin (2001), to show that these RROS cause
15 to 18 of the 66 pairwise comparisons to be non-estimable, while only a few of the remaining
pairwise comparisons are possible without confounding blocking variables. The loss of one of these

observation sets causes serious problems in the resulting analysis.

5.2. Balanced Incomplete Block Design (BIBD).
BIBDs are a class of commonly-used designs. A BIBD is very useful when all of the treatments

cannot be ohserved in a single block. First, we will consider the following randomized complete

black dcsign' (RCBD) witﬁ five treatments that are re;iljcated across five blocks:

Br B2 Ba By Bs

H U QW >
I £
e
4
Y
¥

where A, B, C, D, and E are the treatments while the ’s are the block effects. The experimenter
would randomize the run order, but the design would remain the same. From this we can see that
there would be five ‘Type II and Type III RROSs of size 5 corresponging to the replicates of the

treatments and the number of observations in a block. The G matrix of this design is
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-1 -1 000-1 0 ¢ 0100 0 0 O0O0UOO 9 0 0 DO0ODDTO0OTO0 D0
191001 0 ¢ 0010 00000 O 0 O0ODODODO O O
100-10-1 0 0 0001 00 O0O0O0 O0CO0TUD0O0O0CO0 0 0
10¢0-1-1 0 ¢ 0000 1 0 O0O0UOG O O0O0DDODO OO0 O
1 -1 o6 0oo0-1 90 0DODOC 0O 1 0 0 0 0 0 0 0D O O O
1 -+ 000-1 0. 0D0D0GCO0 O0O0O1 D0 0CO©® 0 O0O0ODOTO0O DO
1 0-100-1 0 0000 00 O0C 1 ¢ G 000G OO0 0
1 0o0o-190-1 00000 00001 0 0O0O0OO0CO0O 0 O

G=|1-1 0000 ©-1 00060 00 0O 06 1000 O0GO0 0 O
i 0-10¢0 0-1 0000 0 O0CO0CO0O0O0T1l 0 00 000
i1 00-10¢ 0-1 0000 O0 O0C O 0 00 01 00 0 0 0
l ooo-1¢ 0-1 0000DO0OO0CO OO0 O0CO0O0OCTI1IO0O0TU0 O
1-1 00040 0 O0-12000D0 ¢ 0 ¢ 0 0 0D O G 1 0 0 D
1 0-100000-1000000Ca0O0O0O0CO0CO0T1TDDO
1 00-1 000010000 00000 D0 O0OCO0O0OO0OT1 D0
1 000-100O0-1000 0000000000001
_1 2 3 4 5 611 16 21 7 8 9 10 12 13 14 15 17 18 19 20 22 23 24 25

The last row of the matrix s the corresponding observations numbered in the same fashion as
before, by counting down the columns of the design. The smallest RROSs are the Type II and

Type III that were noted previously. This design is robust to missing observations. Any missing

11

abservation set of size ¢ < 7 would at most cause a single block or treatment to be non-estimable in

pairwise comparisons. ‘A missing set of size seven would mean that you are missing over a quarter

of your data. This could happen if the treatment {or application of the treatment) causes all of the

ohservations o be lost or if all of the observations in a block were missing, There are some RROSs

of size eight that are Type I. These involve removing all of the all of the treatments but, one inside

of a block and remeving that treatment from all other blocks.

Consider the same situation except that only four observations can be made in a single block.

Keeping with the idea of a BIBD, the design would look like the following.
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B B2 Bs Ba Bs
Al x X x X
Bl x x X x
Cl|l x x =x X
Dl x x x x
E X X X X

There are now only 20 observations and each of the treatments has four replicates and appears in
four of the blocks. Similarly to the RCBD, there are four Type II and Type III RROSs of size 4.

It’s (¢ matrix is

(0 11 01 00 0 010 000000 GO0 6 0]
61 011000 001 00 00 D00 D0 & 0
1 0-1000-10 0001 00000 00 0
1 00-100-100000T1TU0GD0TD0GU0 0 0 0
11 60 1-1-10 00000 100 0 6 0 0
G |11 00000- 00000010000 0
1 00-1000-1 0000 0 00 1 0 00 0
11060 1-10-1 00060000 GGT1O0TL0 0
1.1 00 0 0 0100 0 0 0 06 0 0 1 0 0
1 0-1 0 0 0 0-100 0 0 0D O 0 0 0 1 0
1100 1-100-100200 00 0 00 0 1
|12 38 4 5 8 91317 67 10 11 12 14 15 16 18 19 20

The results of this design are similar to the RCBD with the smallest RROSs being the Type II and
Type III. The slight difference for this design is that instead of needing to remove eight observations
to isolate a treatment, block combination (three more than a Type 1l or Type III RROS), you only
need to remove six observations (two more than a Type Il or Type III). Following from this, a
missing observation set of less than six observations could at most remove a single treatment or
block from the set of estimable pairwise comparisons. These sets would at most represent a quarter
of the observations. The Type I RROSs for this design are of size six and following the same pattern
as for the RCBD,
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Reducing the number of treatments per block we get the following design and & matrix:

B B2 Bz Ba Bs
Al x X X
By x x X
O]l x x x
D X X X
‘B X X X

0 1 1 -1 0 0 o0 610 0 0 0 0]
0 -1 1 1 -1 -1 o0 001 0 0 0 0
11 0 1-1 00 -1 000 1 0 ¢ 0
G=]1 0-1 0 0 1 -1 -1 00@& 0 1 0 0
1 -1 00 0 0D & 106 0 0 1 0
1 0-1 00 1-1 9 100 0 0 0 1
1 2 3 4°6 7 9 10 13 58 11 12 14 15 |

Again, the smallest Type II and III RROSs for this design are of a size of 3. The minimal Type I
RROSs are size 4 for this model.

Reducing the maximum mumnber of treatments per block again brings the design to the smallest it

can be while still remaining connected.

| B B B3 Ba Bs
Al x x
Bl x =x
C X x

- D X X
E X X
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This G matrix does not look good. There are no RROSs of size one because none of the “columns”
are zero, but any set of observations larger than one is rank reducing. Interestingly enough, the
best RROSs in this design are the Type II and IIT because they would only make one treatment
effect or one block effect nonestimable. A Type I RROS would make both a trealment effect and

a block effect nonestimable.

An experimenter would hope to not end up using a design like this, but the choice of how many
ohservations can be put in a single block is often not something that can be controlled. Obviously,
the RCBD design thal was looked at firsl would have been the best of these designs in terms of
RROQO3s. It has other advantages because it has more replication. However, there could be reasons
that a design like that woild not be possible. Maybe there is not enough money to collect 25
observations., It could also be that there are physical limitations such that only two observations
could be put in a block. If the main limitation was that only two obserwations could be put in a

block, then the following design could be used.

B B2 Bz Bs Bs Bs Br Bz Bo buo
Alx x x x
B x X X x
C x x X x
D X X X x
E X X X X

This design has 20 observa_tigns__ and each treatment is observed four times. It also falls under
Godolphin’s Theorem 4 because it has Type Il RROSs of size 2. This means that we can use the

following reduced Gz matrix instead of the full G matrix.
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G = 0 -1 10 0 0 0-1 0o ¢

By inspecting the G; matrix, it becomes apparent that other than the Type II RROSs, there are
no RROSs smaller than size 4. The Type I RROSs are possibly the most acceptable, especially if
the A's are just a nuisance variable. This design is much more robust to RROSs, but it does have

twice as many observations as the other BIBD that had only two observations per block.

6. Conclusion

In any field, sucessful experiments are not trivial. The time spent planning and implementing an
experiment, along with any costs ineurred in the process, can be substantial. Businesses invest
considerable amounts of rescoures ir; experiments. The man hours and money spent in a study are
an investment. It is expected that they will net a profit from the venture. Grants are not something

to be wasted and a failed experiment does just that.

Steps are always taken to prevent experiments from failing to be useful. The loss of an observation
is one step towards a failed experirnenf;.__ An experiment is always limited in someway and a missing
observation could be looked upon as a further limitation. A missing observation may just reduce

the degrees of freedom for an analysis, but as this paper has shown, it could also cause a major
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disrruption in estimability. This disconnectedness may damage or even ruin a study. Gaurding

against disconnectedness is important to énsuring that a study will be useful.

The example of the John-Eccleston row-column «a-design showed that the loss of just two obser-
vations can cause serious damage to an experiment. There are other examples of designs where a
RROS can cause all of the pairwise comparisons to become non-estimable. The BBIDs that were
examples in this paper become more vulnerable to RROSs as the number of observations per block
is reduced. The number of observations needed to go missing in order for a RROS to occur de-

creased by two everytime there was a reduction in the block size.

It is easy to anticipate the effects of 2 Type I or Type 111 RROSs, and studies that end up with a
missing block or set of treatments can still be useful. The occurance and effects of a Type I RROSs
are not as obvious. The use of these methods developed by Godolphin can help. Identifying obser-
vations that may lead to lead to a disconnected design can help an experimenter decide between to
different designs. The identifcation can be used in a physical sense in that once an observation is

flagged ss influential, specigl precautions could be taken to prevent it from going missing.

The use of RROSs i3 one of many tools that can be used to select an experimental design. Along
with considerations of efficiency, power, and other design criterion, RROSs can help make a design

robust and more likely to be successful,
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