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Abstract

Item Response Theory (IRT) models enable researchers to evaluate test or survey sub-
jects and questions simultaneously to more accurately judge the difficulty and quality of
the test as well as the strength of each subject. Most IRT analyses use parametric models,
often without satisfying the necessary assumptions of these models. The KernSmoothIRT
package uses kernel smoothing from Ramsay (1991) to estimate item and option charac-
teristic curves as well produce several test and subject based plots. This nonparametric
IRT analysis does not rely on the assumptions of the most common parametric methods.
This package aims to be intuitive and user friendly; its usefulness is shown with two real
examples, one multiple choice, and the other a scaled response.

Keywords: kernel smoothing, item response theory, principal component analysis, probability
simplex.

1. Introduction

In psychometrics and educational testing the analysis of the relation between latent continuous
variables and observed dichotomous/polytomous variables is known as Item Response Theory
(IRT). Observed variables arise from a test or a questionnaire composed by several items of
one of two types: multiple-choice items, in which only one option is designed to be correct, and
rating scale items, in which a different weight is attributed to each item’s option (polytomous
weighting). Multiple choice items may be viewed as scale items where one option receives a
weight of one and the others a weight of zero (dichotomous weighting). Naturally, a set of
items can be a mixture of these two types of items.

Our notation and framework can be summarized as follows. Consider the responses of a
n-dimensional set S = {S1, . . . , Si, . . . , Sn} of subjects to a k-dimensional sequence I =
{I1, . . . , Ij , . . . , Ik} of items. Let Oj =

{
Oj1, . . . , Ojl, . . . , Ojmj

}
be the mj-dimensional set of

http://www.jstatsoft.org/
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options conceived for Ij ∈ I, and let xjl be the weight attributed to Ojl. The actual response

of Si to Ij can be so represented as a selection vector yij =
(
yij1, . . . , yijmj

)′
, where yij is

an observation from the random variable Y ij and yijl = 1 if the option Ojl is selected, and 0
otherwise. From now on it will be assumed that, for each item Ij ∈ I, the subject selects one
and only one of the mj options in Oj ; omitted responses are permitted.

The central problem in polytomous IRT, with reference to a generic option Ojl of Ij , is the
specification of a mathematical model describing the probability of selecting Ojl as a function
of ϑ (the discussion is here restricted to models for items that measure one continuous latent
variable, i.e., unidimensional latent trait models). According to Ramsay (1991), this function,
or curve, will be referred to as Option Characteristic Curve (OCC), and it will be denoted
with

pjl (ϑ) = P (select Ojl |ϑ) = P (Yjl = 1 |ϑ) , (1)

j = 1, . . . , k, l = 1, . . . ,mj . For example, in the analysis of multiple-choice items, which
hastypically relied on numerical statistics such as the p values (proportion of subjects selecting
each option) and the point biserial correlation (quantifying item discrimination), it might
be more informative to take into account all of the OCCs (Lei, Dunbar, and Kolen 2004).
Moreover, the OCCs are the starting points for a wide range of IRT analyses (see, e.g., Baker
and Kim 2004).

With the aim to estimate the OCCs, in analogy with the classic statistical modelling, at least
two routes are possible. The first, and most common, is the parametric one (PIRT: Parametric
IRT), in which a parametric structure is assumed so that the estimation of an OCC is reduced
to the estimation of a vector parameter ξj , of dimension varying from model to model, for each
item in I (see, e.g., Thissen and Steinberg 1986; van der Linden and Hambleton 1997; Ostini
and Nering 2006; Nering and Ostini 2010, to have an idea of the existing PIRT models). This
vector is usually considered to be of direct interest and its estimate is often used as a summary
statistic to describe some aspects, such as difficulty and discrimination, of the corresponding
item Ij (see Lord 1980). The second route is the nonparametric one (NIRT: Nonparametric
IRT), in which estimation is made directly on yij , i = 1, . . . , n and j = 1, . . . , k, without
assuming any mathematical form for the OCCs, in order to obtain more flexible estimates
which, according to van der Linden and Hambleton (1997, p. 348), can be assumed to be
closer to the true OCCs than those provided by PIRT models. Accordingly, Ramsay (1997)
argues that NIRT might become the reference approach unless there are substantive reasons
for preferring a certain parametric model. Generally, the main advantage of NIRT models are
flexibility and computational convenience. Moreover, although nonparametric models are not
characterized by parameters of direct interest, they encourage the graphical display of results;
Ramsay (1997, p. 384), by personal experience, confirms the communication advantage of an
appropriate display over numerical summaries. These are only some of the motivations which
justify the growing in NIRT research in recent years; other considerations can be found in
Junker and Sijtsma (2001) who identify three broad motivations for the development and
continued interest in NIRT.

Among the NIRT models, kernel smoothing (Ramsay 1991) is a promising option, due to
conceptual simplicity and practical and theoretical properties. The computer software Test-
Graf (Ramsay 2000) performs kernel smoothing estimation of OCCs and allows for other
related graphical analyses based on them. In this paper we present the R (R Development
Core Team 2011) package KernSmoothIRT, available from CRAN (http://CRAN.R-project.
org/), which offers most of the TestGraf features and adds some related functionalities. Note

http://CRAN.R-project.org/
http://CRAN.R-project.org/
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that, although R is well-provided with PIRT techniques (see, among many others, the packages
eRm of Mair and Hatzinger 2007, ltm by Rizopoulos 2006, lme4 of Boeck, Bakker, Zwitser,
Nivard, Hofman, Tuerlinckx, and Partchev 2011, and plink by Weeks 2010), it does not offer
nonparametric analyses, of the kind described above, in IRT. Nonparametric smoothing tech-
niques of the kind found in KernSmoothIRT are commonly used and often cited exploratory
statistical tools; as evidence, consider the number of times in which classical statistical stud-
ies use the functions density and ksmooth, both in the stats package, for kernel smoothing
estimation of a density or regression function.

The paper is organized as follows. Section 2 discusses the problem of estimating abilities in
the nonparametric context. Then, starting from Ramsay (1991), Section 3 retraces kernel
smoothing estimation of the OCCs and Section 4 illustrates other useful IRT functions based
on these estimates. The relevance of the package is shown, via two real data sets, in Section 5,
and conclusions are finally given in Section 6.

2. Estimating abilities

Consider any strictly monotonic transformation τ = g (ϑ) of the ability continuum. Then

pjl (ϑ) = pjl

{
g−1 [g (ϑ)]

}
= pjl

[
g−1 (τ)

]
= p∗jl (τ) , (2)

where the function p∗jl = pjl ◦g−1 is the equivalent OCC relative to the new ability continuum
τ ; thus, the choice of scale becomes perfectly arbitrary (Bartholomew 1983). This lack of
identifiability, expressed more elegantly by Samejima (1981), implies that estimation of the
functions pjl (ϑ), are invariant with respect to monotone transformations of their domain. It
is interesting to note that this lack of identifiability is recognized in the marginal maximum
likelihood (MML; Bock and Lieberman 1970; Bock and Aitkin 1981) estimation procedures
for the item parameters of parametric models, where the choice of the prior density for ϑ is re-
garded as to some degree arbitrary. Consequently, only rank order considerations make sense
for the n ability estimates. Nevertheless, if monotone transformations of the rank ordering be-
long to a smooth family, and the assumption that probabilities do not change discontinuously
over the ability continuum is reasonable, then the analysis also yields topological information
in the sense that two points positioned close to each other will continue to be close under all
“reasonable” transformations.

Let Ti be a statistic associated to each subject’s response pattern. The total score

Ti =

k∑
j=1

mj∑
l=1

yijlxjl

is the most obvious choice. As suggested in Ramsay (1991, p. 615) and Ramsay (2000, pp. 25–
26), to determine the estimates ϑ̂i starting from the values of Ti, one could:

1. estimate the relative rank ri of Si by ranking the values Ti. Operationally, for shorter
tests and larger number of subjects, many ties in the values of the statistic T may
occur. To minimize possible biases due to the order in which tests results are recorded,
KernSmoothIRT randomizes the ordering of subjects with the same T . Thus, ri =
Ri/ (n+ 1), where Ri ∈ {1, . . . , n} represents the position of Si in the randomized
ordering;
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2. replace ri by the quantile ϑ̂i of some distribution function F that is seen to be ap-
propriate. The estimated ability value for Si so becomes ϑ̂i = F−1 (ri). In these
terms, the denominator n + 1 of ri avoids an infinity value for the biggest ϑ̂i when
limϑ→+∞ F (ϑ) = 1−.

The choice of F is equivalent to the choice of the ϑ-metric. Historically, the standard
Gaussian distribution F = Φ has been heavily used (see Bartholomew 1988, for general
arguments and some evidence supporting this choice); it is also one of the most com-
monly used in applications of the parametric models, to which the kernel model is often
compared. Logically, other continuous distributions are not excluded. For example,
users who think of ability as percentages may prefer a distribution on [0, 1] such as the
Beta – a Beta(2.5, 2.5) looks very much like a standard Gaussian (Ramsay 1991) – or
the uniform if the relative ranks ri have to be directly used. KernSmoothIRT permits
to the user to specify F by all the classical continuous distributions implemented in R.

Since latent ability estimates are rank-based, they are usually referred to as ordinal ability
estimates. Note that even a substantial amount of error in the ranks has only a small impact
on the estimated curve values. This can be demonstrated both by mathematical analysis and
through simulated data (see Ramsay 1991, 2000, and Douglas 1997 for further details).

3. Kernel smoothing of OCCs

Ramsay (1991, 1997) popularized nonparametric estimation of OCCs by proposing nonpara-
metric regression methods, based on kernel smoothing approaches, which are implemented
in the TestGraf program (Ramsay 2000). The basic idea of kernel smoothing is to obtain
a nonparametric estimate of the OCC by taking a (local) weighted average (Altman 1992;
Eubank 1988; Härdle 1990; Härdle 1992; Simonoff 1996) of the form

p̂jl (ϑ) =

n∑
i=1

wij (ϑ)Yijl, (3)

where the weights wij (ϑ) are defined so as to be maximal when ϑ = ϑi and to be smoothly
non-increasing as |ϑ− ϑi| increases. The need to keep p̂jl (ϑ) ∈ [0, 1], for each ϑ ∈ IR, requires
the additional constraints wij (ϑ) ≥ 0 and

∑n
i=1wij (ϑ) = 1; as a consequence, it is preferable

to use Nadaraya-Watson weights (Nadaraya 1964; Watson 1964) of the form

wij (ϑ) =

K

(
ϑ− ϑi
hj

)
n∑
r=1

K

(
ϑ− ϑr
hj

) , (4)

where hj > 0 is the smoothing parameter (also known as bandwidth) controlling the amount of
smoothness (in terms of bias-variance trade-off), while K is the kernel function, a nonnegative,
continuous (p̂jl inherits the continuity from K) and usually symmetric function that is non-
increasing as its argument moves further from zero.

Since the performance of (3) largely depends on the choice of hj , rather than on the kernel
function (the theoretical background of this observation can be found, e.g., in Marron and
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Nolan 1988), a simple Gaussian kernel K (u) = exp
(
−u2/2

)
is often preferred (this is the

only setting available in TestGraf). Nevertheless, KernSmoothIRT allows for other common
choices such as the uniform kernel, K (u) = I[−1,1] (u), and the quadratic kernel K (u) =(
1− u2

)
I[−1,1] (u), where IA (u) represents the indicator function assuming value 1 on A and

0 otherwise. The bandwidth hj , in contrast to both Ramsay (1991) and TestGraf, may vary
from item to item (as highlighted by its subscript). This is an important aspect, since different
items included in a test may not require the same amount of smoothing to obtain smooth
curves (see Lei et al. 2004, p. 8).

Unlike the standard kernel regression estimators, in (3) the dependent variable is a binary
variable Yjl and the independent one is the latent variable ϑ. Although ϑ cannot be directly
observed, kernel smoothing can still be used, but each ϑi in (3) must be replaced with a
reasonable estimate ϑ̂i (Ramsay 1991), resulting in an estimate of the form

p̂jl (ϑ) =
n∑
i=1

ŵi (ϑ)Yijl, (5)

where

ŵi (ϑ) =

K

(
ϑ− ϑ̂i
hj

)
n∑
r=1

K

(
ϑ− ϑ̂r
hj

) .
As underlined in Ramsay (1991), another thing should be noted. The denominator of equation
(5) is in effect (proportional to) a Rosenblatt-Parzen kernel estimator (see, e.g., Silverman
1986) of the ability density function f (ϑ). Although this density is already known, in the
sense of being determined by the choice of the quantile distribution F , and consequently could
be replaced by the actual density, this substitution is not recommended because it might result
in occasional values of p̂jl slightly outside of the natural interval [0, 1].

Regarding the statistical properties of this method, Douglas (1997) shows, for the dichotomous
case, that although any p̂j1 (ϑ) is an empirical regression estimate of Yj1 on a total score
transformation, it can consistently estimate the true pj1 (ϑ). The author argues that this
asymptotic result can easily be extended to the polytomous case. Moreover, Douglas (2001)
proves that, for long tests, there is only one correct IRT model for a given choice of F , and
nonparametric methods (including the kernel estimation approach) can consistently estimate
it. Thus, following the idea of Douglas and Cohen (2001), if nonparametric estimated curves
are meaningfully different from parametric ones, this parametric model – defined on the
particular scale determined by F – is an uncorrected model for the data. In order to make
this comparison valid, it is fundamental that the same F is used for both nonparametric and
parametric curves. For example, if MML (that typically assumes a Gaussian distribution for
ϑ) is selected to fit a parametric model, kernel estimates represented on this same distribution
F = Φ can be compared to it. Summarizing, in the choice of a parametric family, visual
inspections of the estimated kernel curves can be useful.

3.1. Operational aspects

Operationally, the kernel OCC is evaluated on a finite grid, ϑ1, . . . , ϑs, . . . , ϑq, of q equally-

spaced values spanning the range of the ϑ̂i’s, so that the distance between two consecutive
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points is δ. Thus, starting from the values of Yijl and ϑ̂i, by grouping we can define the two
sequences of q values

Ỹsjl =
n∑
i=1

I[ϑs−δ/2,ϑs+δ/2)
(
ϑ̂i

)
Yijl and Vs =

n∑
i=1

I[ϑs−δ/2,ϑs+δ/2)
(
ϑ̂i

)
.

Up to a scale factor, the sequence Ỹsjl is a grouped version of Yijl, while Vs is the corresponding
number of subjects in that group. It follows that

p̂jl (ϑ) ≈

q∑
s=1

K

(
ϑ− ϑs
hj

)
Ỹsjl

q∑
s=1

K

(
ϑ− ϑs
hj

)
Vs

, ϑ ∈
{
ϑ1, . . . , ϑs, . . . , ϑq

}
. (6)

The denominator remains an estimate of f (ϑ), except for the same scale factor that multiplies
Ỹsjl.

3.2. Cross-validation selection for the bandwidth

Two of the most frequently used methods of bandwidth selection are the plug-in method and
the cross-validation (for a more complete treatment of these methods see, e.g., Härdle 1992).

The former approach, widely diffuse in the context of kernel density estimation, often leads to
rules of thumb. In particular, for the Gaussian kernel density estimator, under the assumption
of normality for the true but unknown distribution, the common rule of thumb of Silverman
(1986, p. 45) may be formulated, in our context, as

h = 1.06σϑn
−1/5, (7)

where σϑ – that in the original framework is a sample estimate – simply represents the standard
deviation of ϑ, according to the “known” distribution F . Note that, in our context, this way of
proceeding leads to the use of the same bandwidth for all the items. In Härdle (1992, p. 187)
a conversion table of (7), for the other commonly used kernel functions, can also be found.
However, for nonparametric regression, such a choice is not natural; the theory, indeed, shows
that the optimal bandwidth depends on the curvature in the conditional mean, regardless of
the marginal density – f (ϑ) in our case – of the regressor(s) for which the rule of thumb is
designed. Nevertheless, motivated by the need to have fast automatically generated kernel
estimates, this rule represents the default value of the function ksIRT of KernSmoothIRT; in
these terms note that (7), with σϑ = 1, is the unique approach considered in TestGraf.

The second approach, cross-validation, although it requires a considerably higher computa-
tional effort, is nevertheless simple to understand and natural for nonparametric regression.
Ordinary cross-validation has been widely studied in the setting of nonparametric kernel re-
gression (see, e.g., Rice 1984; Wong 1983). Its description, in our context, is as follows. Let
yj =

(
y1j , . . . ,yij , . . . ,ynj

)
be the mj × n selection matrix referred to Ij . Moreover, let

p̂j (ϑ) =
(
p̂j1 (ϑ) , . . . , p̂jmj (ϑ)

)′
be the mj-dimensional vector of kernel-estimated probabilities, for Ij , at the evaluation point
ϑ. The probability kernel estimator evaluated in ϑ, for Ii, can thus be rewritten in the
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following form

p̂j (ϑ) =
n∑
i=1

ŵij (ϑ)yij = yjŵj (ϑ)

where ŵj (ϑ) =
(
ŵ1j (ϑ) , . . . , ŵij (ϑ) , . . . , ŵnj (ϑ)

)′
denotes the n-dimensional vector of weights.

In detail, cross-validation simultaneously fits and smooths the data contained in yj by remov-
ing one “data point” yij at a time, estimating the value of pj at the correspondent ordinal

ability estimate ϑ̂i, and then comparing the estimate to the omitted, observed value. So the
cross-validation statistic, CV (hj), is

CV (hj) =
1

n

n∑
i=1

(
yij − p̂

(−i)
j

(
ϑ̂i

))′(
yij − p̂

(−i)
j

(
ϑ̂i

))
, (8)

where

p̂
(−i)
j

(
ϑ̂i

)
=

n∑
r=1
r 6=i

K

(
ϑ̂i − ϑ̂r
hj

)
yrj

n∑
r=1
r 6=i

K

(
ϑ̂i − ϑ̂r
hj

)

is the estimated vector of probabilities at ϑ̂i computed by removing the observed selection
vector yij . The value of hj that minimizes CV (hj) is referred to as the cross-validation

smoothing parameter, hCVj , and it is possible to find it by systematically searching across a
suitable smoothing parameter region.

3.3. Pointwise confidence intervals

In visual inspection and graphical interpretation of the estimated kernel curves, pointwise
confidence intervals at the evaluation points ϑ ∈ IR provide relevant information, because they
indicate the extent to which the kernel OCCs are well defined across the range of ϑ considered.
Moreover, they are useful when nonparametric and parametric models are compared.

Since p̂jl (ϑ) is a linear function of the data, as can be easily seen from (5), and being Yijl ∼
Ber

[
pjl

(
ϑ̂i

)]
,

Var [p̂jl (ϑ)] =

n∑
i=1

[ŵi (ϑ)]2 Var (Yijl)

=

n∑
i=1

[ŵi (ϑ)]2 pjl

(
ϑ̂i

) [
1− pjl

(
ϑ̂i

)]
.

The above formula holds if independence of the Yijls is assumed and possible error variation in

the arguments, ϑ̂i, are ignored (Ramsay 1991). Substituting pjl for p̂jl yields the (1− α)·100%
pointwise confidence intervals

p̂jl (ϑ)∓ z1−α
2

√√√√ n∑
i=1

[ŵi (ϑ)]2 p̂jl

(
ϑ̂i

) [
1− p̂jl

(
ϑ̂i

)]
, (9)
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where z1−α
2

is such that Φ
[
z1−α

2

]
= 1− α

2 .

4. Functions related to the OCCs

Once the kernel estimates of the OCCs are obtained, several other quantities can be computed
based on them. In what follows we will give a concise list of the most important ones. In
these terms, to facilitate the interpretation of the OCCs, as well as of other output-plots of
KernSmoothIRT, it may be preferred to use the expected total score

τ (ϑ) =
k∑
j=1

mj∑
l=1

p̂jl (ϑ)xjl, (10)

in substitution of ϑ, as display variable on the x-axis. This possibility is considered in KernS-
moothIRT through the option axistype of the function plot.ksIRT. Note that, although it
can happen that (10) fails to be completely increasing in ϑ, this event is rare and tends to
affect the plots only at extreme trait levels.

4.1. Item Characteristic Curve

In analogy with the dichotomous case, and starting from (1), in order to obtain a single
function for each item in I it is possible to define the expected value of the score Xj =∑mj

l=1 xjlYjl, conditional on a given value of ϑ (see, e.g., Chang and Mazzeo 1994), as follows

ej (ϑ) = E (Xj |ϑ) =

mj∑
l=1

xjlpjl (ϑ) , (11)

j = 1, . . . , k, that takes values in
[
min

{
xj1, . . . , xjmj

}
,max

{
xj1, . . . , xjmj

}]
. The function

ej (ϑ) is commonly known as Item Characteristic Curve (ICC) and can be viewed (Lord
1980) as a regression of the item score Xj onto the ϑ scale. Naturally, for dichotomous and
multiple-choice IRT models, the ICC coincides with the OCC referred to the correct option.

Starting from (11), it is straightforward to define the kernel ICC estimator as follows

êj (ϑ) =

mj∑
l=1

xjlp̂jl (ϑ) =

mj∑
l=1

xjl

n∑
i=1

ŵij (ϑ)Yijl =

n∑
i=1

ŵij (ϑ)

mj∑
l=1

xjlYijl. (12)

For the ICC, in analogy with Section 3.3, the (1− α) · 100% pointwise confidence interval is
given by

êj (ϑ)∓ z1−α
2

√
̂Var [êj (ϑ)], (13)
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where, since YijlYijt ≡ 0 for l 6= t, one has

Var [êj (ϑ)] =
n∑
i=1

[ŵij (ϑ)]2 Var

(mj∑
l=1

xjlYijl

)

=
n∑
i=1

[ŵij (ϑ)]2

mj∑
l=1

x2jlVar (Yijl) +

mj∑
l=1

∑
t6=l

xjlxjtCov (Yijl, Yijt)


=

n∑
i=1

[ŵij (ϑ)]2

mj∑
l=1

x2jlVar (Yijl)−
mj∑
l=1

∑
t6=l

xjlxjtE (Yijl)E (Yijt)

 (14)

=
n∑
i=1

[ŵij (ϑ)]2


mj∑
l=1

x2jlpjl

(
ϑ̂i

) [
1− pjl

(
ϑ̂i

)]
−

mj∑
l=1

∑
t6=l

xjlxjtpjl

(
ϑ̂i

)
pjt

(
ϑ̂i

) .

Substituting pjl with p̂jl in Var [êi (ϑ)], one obtains ̂Var [êi (ϑ)], quantity that has to be inserted
in (13).

Really, intervals in (9) and (13) are, respectively, intervals for E [p̂jl (ϑ)] and E [êj (ϑ)], rather
than for pjl (ϑ) and ej (ϑ); thus, they share the bias present in p̂jl and êj , respectively (for
the OCC case, see Ramsay 1991, p. 619).

4.2. Relative Credibility Curve

For a generic subject Si ∈ S, we can compute the relative likelihood

Li (ϑ) =

k∏
j=1

mj∏
l=1

[p̂jl (ϑ)]yijl

max
ϑ


k∏
j=1

mj∏
l=1

[p̂jl (ϑ)]yijl


(15)

of the various values of ϑ given his pattern of responses on the test and given the kernel-
estimated OCCs. The function in (15) is also known as Relative Credibility Curve (RCC;
see, e.g, Lindsey 1973). The ϑ-value, say ϑ̂ML, such that Li (ϑ) = 1, is called the maximum
likelihood (ML) estimate of the ability for Sj (see also Kutylowski 1997). It is interesting to

note that, for tests with multiple-choice items, ϑ̂ML is based not only on how many items were
answered correctly, but also on whether the items answered correctly were difficult or easy,
whether the items answered incorrectly were difficult or easy, whether the correctly answered
items were of high quality or not, and whether the options chosen for incorrectly answered
items were typical of stronger or weaker examinees. Thus, ϑ̂ML makes use of much more
information than the conventional total number of correct answers T , and will tend to be a
more accurate estimate of ability. When there is a substantial difference between ϑ̂ML and T ,
it is possible that the pattern of option choices for incorrectly-answered items gave important
additional information about ability.

The relative likelihood Li (ϑ) is generally a curve with only one maximum in ϑ̂ML, with
concentration around ϑ̂ML being an indication of its precision. Occasionally, the shape of
(15) can have two maxima, and this indicates a response pattern giving a mixed message: the
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subject passed some difficult items, indicating high ability, and at the same time failed some
easy items, suggesting lower ability. This can happen when the subject knows some part of
the material well and another part poorly. The curve rightly reflects the resulting ambiguity
about the subject’s true ability.

Finally, as Kutylowski (1997) and Ramsay (2000) do, the obtained values of ϑ̂ML may be
used as a basis for a second step of a kernel smoothing estimation of the OCCs. This iterative
process, consisting in cycling back the values of ϑ̂ML into estimation, can clearly be repeated
any number of times with the hope that each step refines or improves the estimates of ϑ.
However, as the same Ramsay (2000) declares, for the vast majority of applications, no
iterative refinement is really necessary, and the use of ϑ̂i or ϑ̂ML

i for ranking examinees works
fine. This is the reason why we have not consider the iterative process in the package.

4.3. Probability Simplex

With reference to a generic item Ij ∈ I, the vector of probabilities p̂j (ϑ) can be seen as
a point in the probability simplex Smj , defined as the (mj − 1)-dimensional subset of the
mj-dimensional space containing vectors with nonnegative coordinates summing to one. As
ϑ varies, since the assumptions of both smoothness and unidimenionality in the latent trait,
p̂j (ϑ) moves along a curve; the item analysis problem is to locate the curve properly within
the simplex. On the other hand, the estimation problem for Si is the location of its position
along this curve.

A convenient way of displaying points in S3 is represented by the reference triangle in Fig-
ure 1(a), an equilateral triangle, with vertices 1, 2, 3, having unit altitude (see Aitchison 2003,
pp. 5–6). For any point p in the triangle 123 the perpendiculars p1, p2, p3 from p to the sides

(a) Triangle (b) Tetrahedron

Figure 1: Convenient way of displaying a point in the probability simplex Smj when mj = 3
(on the left) and mj = 4 (on the right).
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opposite to the vertices 1, 2, 3 satisfy

pl ≥ 0, l = 1, 2, 3, and p1 + p2 + p3 = 1. (16)

Since there is a unique point in triangle 123 with perpendicular values p1, p2, p3, there is a
one-to-one correspondence between S3 and points in triangle 123, and so we have a simple
means of representing the vector of probabilities p̂j (ϑ) when mj = 3. In such a representation
we may note that the three inequalities in (16) are strict if and only if the point lies in the
interior of triangle 123. Also, the larger a component pl is, the further the point is away from
the side opposite the vertex l. Moreover, vectors (p1, p2, p3) with two components, say p2 and
p3, in constant ratio are represented by points on a straight line through the complementary
vertex 1. For 4-dimensional vectors of probabilities we have to move into the 3-dimensional
space to obtain a picture of S4 via a regular tetrahedron 1234 of unit altitude (see Aitchison
2003, pp. 8–9) taking the place of the reference triangle. In Figure 1(b) the probabilities pl
corresponds to the perpendicular from the point p to the triangular face opposite the vertex
l. Note that for items with more than four options there is no satisfactory way of obtaining a
visual representation of the corresponding probability simplex; nevertheless, we can perform
a partial analysis which focus attention on some options for that item.

Finally note that, as discussed in Section 2, in practice only the values of the functions p̂j
are determined from the data while, by contrast, only the rank order of their arguments are
known. Thus, one would like a display of the variation in the probability values p̂j across
subjects that tends to hide the role of the argument or domain variable ϑ. This is precisely
the purpose of the probability simplex.

5. Package KernSmoothIRT in use

What follows is an illustration of the capabilities of the KernSmoothIRT package. The exam-
ples will highlight some of the more important functions, options and diagnostic plots. The
examples are meant to be illustrative, not exhaustive.

5.1. Data Input

The first tutorial will walk-through an analysis of a set of multiple-choice items while the
second will walk-through a set of rating scale items. For either data type, the ksIRT function
will perform the kernel smoothing. This function requires responses as well as a specification
of the items type using the scale argument. Basic weighting of the items is governed by the
key option while more complicated structures can be obtained via the weights argument. In
particular, the responses argument must be a (n× k)-matrix, with a row for each subject
in S and a column for each item in I, containing the selected option numbers. The scale

argument indicates whether the items are multiple-choice, scale or a mixture of the two. The
key argument must be a vector containing the correct response to each of the items in the
case of multiple-choice, or the highest scale-level option in the case of rating scale items.
When key is provided, a multiple choice response is scored correct or incorrect while a rating
scale option is scored according to its corresponding number. For more complicated scoring
schemes, such as partial credit, the user can input a list of weights for each item using the
weights argument (see the help for details).
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The user can also select the q evaluation points of Section 3.1, the ranking distribution F of
Section 2, the type of kernel function K and the kernel bandwidth to input into the ksIRT

function, though it will choose defaults if unspecified. In particular, by specifying theta

or nval options, the user can respectively select the points, or their number q, at which to
evaluate the OCCs. The default is data dependent, but can be overridden if the user would
like more points or different limits for consistent comparisons across tests. Regarding F ,
altering the enumerate option will allow for different distributions. The selection of a kernel
function and kernel bandwidth are important choices as well. The kernel option allows for
a Gaussian, uniform or quadratic kernel (Gaussian is chosen by default). The bandwidth

option by default is specified according to the rule of thumb in equation (7). The user may
input a numerical vector of bandwidths for each item to experiment with different levels of
smoothing, or the user may input bandwidth="CV" to obtain cross-validation estimation of
hj , j = 1, . . . , k, as described in Section 3.2.

Another consideration for the user is how to treat missing values. The option miss, of the
function ksIRT, governs this aspect. The default, miss="category", treats missing values
as an option value themselves with zero weight. In this case, the OCC of the missing value
will be added, and plotted, for the corresponding item. Also, it is possible to treat missing
values as a category, but specify a non-zero weight with the NAweight option. Other choices
impute the missing values according to some discrete probability distributions taking values
on {1, . . . ,mj}, j = 1, . . . , k. In particular, by specifying miss="random.unif", each missing
value for the generic item Ij ∈ I is substituted with a value randomly generated from a
discrete uniform distribution while, with miss="random.multinom", each missing value for
Ij is substituted with a number randomly generated from a multinomial distribution with
probabilities equal to the frequencies amongst the non-missing responses to that item. Finally,
the option miss="omit" will delete from the data set all the subjects with at least an omitted
answer. The tools described in this section are not meant to be exhaustive or representative
of all the capabilities of the KernSmoothIRT package. For further examples and descriptions
of other analytical plots available, as well as other kernel smoothing options available, consult
the ksIRT help page within the package.

5.2. Psych 101

The first tutorial uses the Psych 101 dataset included in the KernSmoothIRT package. This
dataset contains the responses of n = 379 students, in an introductory psychology course, to
k = 100 multiple choice items, each with mj = 4 options as well as a key. These data were
also analyzed in Ramsay and Abrahamowicz (1989) and in Ramsay (1991).

To begin the analysis, create a ksIRT object. This step performs the kernel smoothing and
prepares the object for analysis using the many types of plots available.

R> data(Psych101)

R> Psych1 <- ksIRT(responses=Psychresponses,key=Psychkey,scale="nominal")

R> Psych1

Item Correlation

1 1 0.23092838

2 2 0.09951663

3 3 0.19214764

. . .
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. . .

. . .

99 99 0.01578162

100 100 0.24602614

The command data(Psych101) loads both Psychresponses and Psychkey. The function
ksIRT produces kernel smoothing estimates using, by default, a Gaussian distribution F
(enumerate=list("norm",0,1)), a Gaussian kernel function K (kernel="gaussian"), and
the rule of thumb (7) for the bandwidths. The last command, Psych1, prints the point-
polyserial correlations, traditional descriptive measures of items performance given by the
correlation between each dichotomous/polythomous item and the total score (see Olsson,
Drasgow, and Dorans 1982, for details).

Once the ksIRT object Psych1 is created, plots become available to analyze each item, subject
and the overall test. There are sixteen plots available to evaluate the test through the plot

function by altering the plottype option.

Option Characteristic Curves

The code

R> plot(Psych1,plottype="OCC",item=c(24,25,92,96))

produces the OCCs for items 24, 25, 92, and 96 displayed in Figure 2. The correct options,
for multiple-choice items like these, are displayed in green and the incorrect options in red.
The specification axistype="scores" uses the expected total score (10) as display variable
on the x-axis; the expected score is a transormation of the trait level to the number of items
that a subject of that trait level would, on average, answer correctly. The vertical dashed lines
indicate the scores (or quantiles if axistype="distribution") below which 5%, 25%, 50%,
75% and 95% of subjects fall. Since the argument miss has not been specified, by default the
“missing category” is plotted as an additional OCC (miss="category"), as we can see from
Figure 2(b) and Figure 2(d) which refer to items with 2 and 1 nonresponses, on 379 cases.

The OCC plots in Figure 2 show four very different items. Globally, apart from item 96 in
Figure 2(d), the other items appear to be monotone enough. Item 96 is problematic for the
Psych 101 instructor as subjects with lower trait levels are more likely to select the correct
option than higher trait level examinees. In fact, examinees with expected scores of 90 are
the least likely to select the correct option. Perhaps the question is misworded or it is testing
the wrong concept. On the contrary, items 24, 25, and 92, do a good job in differentiating
between subjects with low and high trait levels. In particular item 24, in Figure 2(a), displays
an high discriminating power for subjects with expected scores near 40, and a lower one for
examinees with expected scores greater than 50 that have the same probability of selecting
the correct option regardless of their expected score. Item 25 in Figure 2(b) is also a good
item, only the top students are able to recongize option 3 as incorrect; option 3 was selected
by about 30.9% of the test takers, or about 72.7% of those who answered incorrectly. Note
also that, for subjects with expected scores below about 58, option 3 constitutes the most
probable choice. Finally, item 92 in Figure 2(c), aside from being monotone, is also easy since
a subject with expected score of about 30 already has a 70% chance of selecting the correct
option; only a few examinees are consequently interested to the incorrect options 1, 3, and 4.
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(d) Item 96

Figure 2: Option Characteristic Curves for items 24, 25, 92, and 96 of the Introductory
Psychology Exam.

Item Characteristic Curves

Through the code

R> plot(Psych1,plottype="ICC",item=c(24,25,92,96))

we obtain, for the same set of items, the ICCs displayed in Figure 3. As said before, due to
the 0/1 weighting scheme, in the case of multiple choice items, the ICC is the same as the
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(d) Item 96

Figure 3: Item Characteristic Curves, and corresponding 95% pointwise confidence intervals
(dashed red lines), for items 24, 25, 92, and 96 of the Introductory Psychology Exam. Grouped
subject scores are displayed as points.

OCC (shown in green in Figure 2) for the correct option. ICCs by default show the 95%
pointwise confidence intervals (dashed red lines) illustred in Section 3.3. Via the argument
alpha, confidence intervals can be removed entirely (alpha=FALSE) or changed by specifying
a different value. In this example, relatively wide confidence intervals, for expected total
scores at extremely high or low levels, are obtained. This is due to the fact that there are less
data for estimating the curve in these regions and thus there is less precision in the estimates.
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Finally, the points on the ICC plots show the grouped subject scores illustrated in Section 3.1.

Probability Simplex Plots

To complement the OCCs, the package includes triangle and tetrahedron (simplex) plots
that, as illustrated in Section 4.3, synthesize the OCCs. When these plots are used on
items with more than 3 or 4 options (including the missing value category), only the options
corresponding to the 3 or 4 highest probabilities will be shown; naturally, these probabilities
are normalized in order to allow the simplex representation. This seldom loses any real
information since experience tends to show that in a very wide range of situations people
tend to eliminate all but a few options.

The tetrahedron is the natural choice for the items 24 and 92, characterized by four options
and without “observed” missing responses; for these items the code

R> plot(Psych1, plottype="tetrahedron", items=c(24,92))

generates the tetrahedron plots displayed in Figure 2. These plots may be manipulated with
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(a) Item 24

Item :  92

1

4

2

3

(b) Item 92

Figure 4: Probability tetrahedrons for two items of the Introductory Psychology Exam. Low
trait levels are plotted in red, medium in black and high in blue.

the mouse or keyboard as any other plot created with the package rgl. Inside the tetrahedron
there is a curve constructed from a number of points. As said before, each point corresponds
to a trait level. In particular, low, medium and high trait levels are identified by red, green
and blue points, respectively. Considering this ordering in the trait level, it is possible to
make some considerations.

• A basic requirement of a reasonable test item is that the sequence of points terminates
at or near the correct answer. In these terms, as can be noted in Figure 4(a) and
Figure 4(b), items 24 and 92 satisfy this requirement since the sequence of points moves
toward the correct option, which is O2 for both the items.
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• The length of the curve is very important. The individuals with the lowest trait levels
should be far from those with the highest. Item 24, in Figure 4(a), is a fairly good
example. By contrast, very easy test items, such as item 92 in Figure 4(b), have very
short curves concentrated close to the correct answer, with only the worse students
showing a slight tendency to choose a wrong answer.

• The relative spacing of the points indicates the speed at which probabilities of choice
changes. In these terms, see the contrast between items 24 and 92, in Figure 2, among
the worst students.

Naturally, all these considerations are also obvious from Figure 2(a) and Figure 3(a). For the
same items, the code

R> plot(Psych1, plottype="triangle", items=c(24,92))

produces the triangle plots displayed in Figure 5. For example, from Figure 5(a) we can see
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Figure 5: Probability triangles for two items of the Introductory Psychology Exam.

that the set of three most chosen options (O2, O3 and O4), O2 have much higher probability
of selection while the other two are characterized by almost the same probability of selection
since the sequence of points approximately lies on the bisector of the angle associated to O2.

Principle Component Analysis

By performing a principal component analysis (PCA) of the ICCs at each point of evaluation,
the KernsmoothIRT package provides a way for simultaneously compare items and show the
relationships among them. In particular, the code

R> plot(Psych1, plottype="PCA")
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Figure 6: First two principal components for the Introductory Psychology Exam. In the
interior plot, numbers are the identifiers of the items. The vertical component represents
discrimination, while the horizontal one difficulty. The small plots show the ICCs for the
most extreme items for each component.

produces the graphical representation in Figure 6. In the interior plot we have the graphical
representation of the first two components obtained by a PCA on the values of the ICCs at each
evaluation point ϑ1, . . . , ϑs, . . . , ϑq. In detail, the average ICC is preliminary calculated across
items and subtracted from each ICC; in other words, the PCA is carried out on the centered
ICCs. The dashed lines on the interior plot show the average item for each component. A
first glance to this plot shows that:

• the first principal component, plotted as the horizontal axis, represents item difficulty,
since the most difficult items are placed on the right and the easiest ones on the left.
The small plots on the left and on the right show the ICCs for the two extreme items
with respect to this component and help the user in identifying the axis-direction with
respect to difficulty (from low to high or from high to low). Here, item 7 shows high
difficulty, as test takers of all ability levels receive a low score while item 2 is extremely
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easy.

• the second principal component, on the vertical axis, corresponds to item discriminabil-
ity since low items tend to have an high positive slope while low items tend to be have
an high negative slope. Also in this case, the small plots on the bottom and on the top
show the ICCs for the two extreme items with respect to this component and help the
user in identifying the axis-direction with respect to discrimination (from low to high
or from high to low). Here, item 29 discriminates very well whereas item 96 does not,
it negatively discriminates.

We also note that, items 96 and 99 are outliers, since they possess a very negative discrim-
inability, while items 7 and 80 are outliers because they are very difficult. Concluding, the
principal components plot tends to be a useful overall summary of the composition of the
test. Figure 6 is fairly typical of most academic tests and it is also usual to have only two
dominant principal components reflecting item difficulty and discrimination.

Relative Credibility Curves

The RCCs shown in Figure 7 are obtained by the command

R> plot(Psych1,plottype="credibility",subjects=c(33,92,111,183))

In each plot, the red line shows the subject’s actual score T .

For both the subjects considered in Figure 7(a) and Figure 7(b), there is a substantial agree-
ment between the maximum of the RCC, ϑ̂ML, and T . Nevertheless, there is a difference in
terms of the precision of the ML-estimates; for subject 183 the RCC is indeed more spiky,
denoting an higher precision. In Figure 7(c) there is a substantial difference between ϑ̂ML

and T . This indicates that the correct and incorrect answers of this subject are more consis-
tent with a lower score than they are with the actual score received. Finally, in Figure 7(d),
although there is a substantial agreement between ϑ̂ML and T , a small but prominent bump
is present in the right part of the plot. Although subject 33 is well represented by his total
score, he passed some, albeit few, difficult items and this may lead to think that he is more
able than T33 suggests.

The commands

R> Psych1$scoresbysubject

[1] 74 56 89 70 56 57 ...

R> Psych1$subMLE

[1] 73.48316 59.06626 89.00686 67.47167 57.71787 55.03844 ...

allow us to evaluate the differences between the values of Ti and ϑ̂ML
i , i = 1, . . . , n.

Test Summary Plots

The KernSmoothIRT package also contains many analytical tools to assess the test overall.
Figure 8 shows a few of these, obtained via the code

R> plot(Psych1, plottype="expected")

R> plot(Psych1, plottype="sd")

R> plot(Psych1, plottype="density")
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(d) Subject 33

Figure 7: Relative credibility curves for some subjects. The vertical red line shows the actual
score the subject received.

Figure 8(a) shows the so-called Test Characteristic Function (TCF), which is the transfor-
mation of the quantiles of F into the expected scores. The TCF, for the Psych 101 dataset,
is nearly linear. Note that, in the nonparametric context, the TCF may be non-monotonic
due to either ill-posed items or random variations. In the latter case, a slight increase of the
bandwidth may be advisable.

The total score T , for subjects having a particular value ϑ, is a random variable, in part
because different examinees, or even the same examinee on different occasions, cannot be
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Figure 8: Test Summary Plots.

expected to make exactly the same choices. The standard deviation of these values, graphically
represented in Figure 8(b), is therefore also a function of ϑ, denoted by σT (ϑ). Figure 8(b)
indicates that σT (ϑ) reaches the maximum for examinees at around a total score of 50, where
it is about 4.5 items out of 100. This translates into 95% confidence limits of about 41 and
59 for a subject getting 50 items correct. Low proficiency subjects have a relatively high
standard deviation in their scores relative to high proficiency subjects.

Figure 8(c) shows a kernel density estimate of the distribution of T . Although such distribu-
tion is commonly assumed to be “bell-shaped”, from this plot we can note as this assumption
is strong for these data. In particular, a negative skewness can be noted which is a conse-
quence of the exam having relatively more easy items than hard ones. Moreover, bimodality
is evident with modes at T = 60 and T = 70.

5.3. Voluntary HIV-1 Counseling and Testing Efficacy Study Group

It is often useful to explore if, for a specific item on a questionnaire or test, its characteristic
curves differ when estimated on two or more different groups of subjects, commonly formed
by gender or ethnicity. This is called Differential Item Functioning (DIF) analysis in the
psychometric literature. In particular, DIF occurs when subjects with the same ability but
belonging to different groups have a different probability of choosing a certain option. DIF
can properly be called item bias because the characteristic curves of an item should depend
only on ϑ, and not directly on other person factors. Zumbo (2007) offers a recent review of
various DIF detection methods and strategies.

The KernSmoothIRT package allows for a nonparametric graphical analysis of DIF, based
on kernel smoothing methods. To illustrate this analysis, we will use data coming from the
Voluntary HIV Counseling and Testing Efficacy Study, conducted in 1995-1997 by the Cen-
ter for AIDS Prevention Studies (see The Voluntary HIV-1 Counseling and Testing Efficacy
Study Group 2000a,b, for details). This study was concerned with the effectiveness of HIV
counseling and testing in reducing risk behavior for the sexual transmission of HIV. To per-
form this study, n = 4292 persons were enrolled. The whole dataset – downloadable from
http://caps.ucsf.edu/research/datasets/, which also contains other useful survey de-
tails – reported 1571 variables for each participant. As part of this study, respondents were
surveyed about their attitude toward condom use via a bank of k = 15 items. Respondents

http://caps.ucsf.edu/research/datasets/
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were asked how much they agreed with each of the statements on a 4-point response scale,
with 1=“strongly disagree”, 2=“disagree more than I agree”, 3=“agree more than I disagree”,
4=“strongly agree”). Since 10 individuals omitted all the 15 questions, they have been pre-
liminary removed from the used data. Moreover, given the (“negative”) wording of the items
I2, I3, I5, I7, I8, I11, and I14, a respondent who strongly agreed with such statements was
indicating a less favorable attitude toward condom use. In order to uniform the data, the
score for these seven items was preliminary reversed. The dataset so modified can be direct
loaded from the KernSmoothIRT package by the code

R> data(HIV)

R> HIV

SITE GENDER AGE I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15

1 Ken F 17 4 1 1 4 1 2 4 4 4 4 3 4 1 2 4

2 Ken F 17 4 2 4 4 2 3 1 4 3 3 2 3 4 1 4

3 Ken F 18 4 4 4 4 4 1 4 4 4 1 NA 4 1 NA 4

4 Ken F 18 4 NA 1 4 1 1 NA 4 2 1 4 2 1 3 3

5 Ken F 18 4 1 1 3 1 1 NA 1 2 1 3 2 1 1 3

6 Ken F 18 4 4 4 4 4 1 3 1 2 1 4 2 3 NA 4

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

4277 Tri M 72 4 4 1 4 1 4 2 4 4 4 2 4 1 2 1

4278 Tri M 72 4 4 4 4 4 4 4 4 4 1 1 4 1 4 4

4279 Tri M 73 2 4 2 3 NA NA NA NA NA NA NA NA NA 1 NA

4280 Tri M 76 4 4 1 4 1 1 1 4 4 4 4 4 1 1 NA

4281 Tri M 79 4 4 1 4 1 NA 4 NA 4 NA NA NA NA 1 4

4282 Tri M 80 4 NA 4 4 1 4 NA NA NA 1 NA 4 1 4 NA

R> attach(HIV)

As it can be easily seen, the above data frame also contains the following person factors:

SITE = “site where the study was conducted” (Ken=Kenya, Tan=Tanzania, Tri=Trinidad)
GENDER = “subject’s gender” (M=male, F=female)

AGE = “subject’s age” (age at last birthday)

Each of these factors can be potentially used for a DIF analysis. These data have been also
analyzed, through some well-known parametric models, by Bertoli-Barsotti, Muschitiello, and
Punzo (2010) which also perform a DIF analysis. Part of this sub-questionnaire has been also
considered by De Ayala (2003, 2009) with a Rasch Analysis.

The code below

R> HIVres <- ksIRT(HIV[,-(1:3)], key=HIVkey, scale="ordinal", miss="omit")

R> HIVres

Item Correlation

1 1 0.2112497

2 2 0.4190828

3 3 0.4195175
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4 4 0.2869221

5 5 0.4070306

6 6 0.3247448

7 7 0.4265602

8 8 0.4463606

9 9 0.4470928

10 10 0.2784581

11 11 0.4146700

12 12 0.3998968

13 13 0.3201667

14 14 0.2776529

15 15 0.3554800

R> plot(HIVres, plottype="OCC", item=9)

R> plot(HIVres, plottype="ICC", item=9)

R> plot(HIVres, plottype="tetrahedron", item=9)

produces the plots displayed in Figure 9 for I9. The option miss="omit" excludes from the
nonparametric analysis all the subjects with at least an omitted answer, leading to a sample
of 3473 respondents; the option scale="ordinal" specifies the rating scale nature of the
items. Figure 9(a) displays the OCCs for the considered item. As expected, subjects with the
smallest scores are choosing the first option while those with the highest ones are selecting
the fourth option. Generally, as the total scores increase, respondents are approximately
estimated to be more likely to choose an higher option and this reflects the typical behavior
of a rating scale item. From the Figure 9(b), which shows the ICC for item 9, it may be
observed how the expected item score climbs consistently as the total test score increases.
Moreover, the ICC displays a fairly monotonic behavior that covers the entire range [1, 4].
Finally, Figure 9(c) shows the tetrahedron for item 9. It corroborates the good behavior of
I9 already seen in Figure 9(a) and Figure 9(b). The sequence of points herein, as expected,
starts from (the vertex) O1 and gradually terminates at O4, passing from O2 and O3.

In the following, we provide an example of DIF analysis using the person factor GENDER. To
perform the DIF analysis, a new ksIRT object must be created with the addition of the groups
argument by which the different subgroups may be specified. In particular, the code

R> gr1 <- as.character(HIV$GENDER)

R> DIF1 <- ksIRT(res=HIV[,-(1:3)],key=HIVkey,scale="ordinal",groups=gr1,miss="omit")

R> plot(DIF1, plottype="expectedDIF", lwd=2)

R> plot(DIF1, plottype="densityDIF", lwd=2)

produces the plots in Figure 10. Figure 10(a) displays the QQ-plot between the distributions
of the expected scores for males and females; if the performances of the two groups are about
the same, the relationship will appear as a nearly diagonal line (a dotted diagonal line is
plotted as a reference). Figure 10(b) shows the density functions for the two groups. Both
plots confirm that there is a strong agreement in behavior of the two groups with respect to
the test.

After this preliminary phase, the DIF analysis proceeds by considering the item by item group
comparisons. Figure 11 displays the OCCs for the (rating scale) item I3. These plots allow
the user to compare the two groups at the item level. Lack of DIF is here manifested by
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Figure 9: Item 9 from the Voluntary HIV-1 Counseling and Testing Efficacy Study Group.

OCCs being nearly coincident for all the four options. DIF may also be evaluated in terms of
the expected scores of the groups, as displayed in Figure 12. This plot is obtained with the
code

R> plot(DIF1, plottype="ICCDIF", cex=0.5, item=3)

The different color points on the plot represent how individuals from the groups actually
scored on the item. Although we have focused the attention only on I3, similar results are
obtained for all of the other items in I, and this confirms as GENDER is not a variable producing
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Figure 10: Behavior of male (M) and female (F) on the test. In the QQ-plot on the left, the
dashed diagonal line indicates the reference situation of no difference in performance for the
two groups; the horizontal and vertical dashed blue lines indicate the 5%, 25%, 50%, 75%
and 95% quantiles for the two groups.

DIF in this study. This result is confirmed in Bertoli-Barsotti et al. (2010). Note that, for
both OCCs and ICCs, it is possible to add confidence intervals, through the alpha option.

The code

R> gr2 <- as.character(HIV$SITE)

R> DIF2 <- ksIRT(res=HIV[,-(1:3)],key=HIVkey,scale="ordinal",groups=gr2,miss="omit")

R> plot(DIF2, plottype="expectedDIF", lwd=2)

R> plot(DIF2, plottype="densityDIF", lwd=2)

produces the plots in Figure 13, differentiate amongst subjects with different SITE levels.
Among the 3473 subjects answering to all the 15 items, 987 come from Trinidad, 1143 come
Kenya and 1346 from Tanzania. As highlighted by Bertoli-Barsotti et al. (2010), there are
differences among these groups, and Figure 13 shows this. The three pairwise QQ-plots of the
expected score distributions show that there is a slight dominance of people from Kenia over
people from Trinidad (in the sense that people from Kenia have, in distribution, a slightly
greater attitude toward condom use than people from Trinidad), and a large discrepancy
between the performances of people from Tanzania relative to both other groups, as shown in
Figure 13(a) Figure 13(b). The above dominance, and the peculiar behavior of people from
Tanzania compared with the other countries, can be also noted by looking at the expected
total score densities in Figure 13(d). Here, there is more higher variability in the total score
for people from Tanzania. But what about DIF? The command

R> plot(DIF2, plottype="ICCDIF", item=c(6,11))
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Figure 11: OCCs, for males and females, related to the item 3 of the Voluntary HIV-1
Counseling and Testing Efficacy Study Group. The overall OCCs are also superimposed.

produces the ICCs in Figure 14, for I6 and I11. In both the plots we have a graphical indication
of the presence of DIF for I6 and I11, and this confirms the results by Bertoli-Barsotti et al.
(2010) that detect site-based DIF for these and other items in the test.
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Figure 12: ICCs for male and female for item 3.

6. Conclusions

In this paper some theoretical as well as practical considerations over the use of kernel smooth-
ing in IRT have been presented, with respect to the application of the KernSmoothIRT pack-
age for the R environment.

The advantages of nonparametric IRT modeling are well known. Ramsay (2000) recommends
its application at least as an explorative tool, to guide the user over the choice of an appro-
priate parametric model. While most current IRT analyses are conducted with parametric
models; quite often the assumption underling parametric IRT modeling are not preliminarily
checked. One reason for this may be the lack, apart from TestGraf, of available software.
TestGraf has set a milestone on this field, being it the first computer program to implement
a kernel smoothing approach at IRT and the prominent software used over the years. With
respects to TestGraf, our package has the major advantage of running within the R environ-
ment. Users do not have to export their results into another piece of software, in order to
perform non-standard data analysis or to produce personalized plots. Also, within the same
environment, the user may perform parametric IRT using one of several packages available.

We believe that KernSmoothIRT may prove useful to lecturers and psychologists developing
questionnaires for test diagnostics such as spotting ill-posed questions and formulating more
plausible wrong options. Also, in the paper we show how KernSmoothIRT can be used to do
DIF analysis, by graphically displaying differences among groups of subjects in terms of how
they respond to items.
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Figure 13: Behavior of people from Kenya (Ken), Tanzania (Tan), and Trinidad (Tri), on the
test. In all the pairwise QQ-plots, the dashed diagonal line indicates the reference situation
of no difference in performance for the two groups; the horizontal and vertical dashed blue
lines indicate the 5%, 25%, 50%, 75% and 95% quantiles for the two groups.

Future work will consider extending the package by allowing for kernel smoothing estimation
of test and item information functions too. Although well-established in parametric IRT,
information functions present serious statistical problems – as also underlined by Ramsay
(2000, p. 66) – in our context. Currently available nonparametric-based IRT programs such
as TestGraf estimate test and item information functions based on parametric OCCs.
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Figure 14: ICCs, for people from Kenya (Ken), Tanzania (Tan), and Trinidad (Tri), for items
6 and 11 of the Voluntary HIV-1 Counseling and Testing Efficacy Study Group.
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Università degli studi di Bergamo.

Bock RD, Aitkin M (1981). “Marginal Maximum Likelihood Estimation of Item Parameters:
Application of an EM Algorithm.” Psychometrika, 46(4), 443–459.

Bock RD, Lieberman M (1970). “Fitting a response model for n dichotomously scored items.”
Psychometrika, 35(2), 179–197.

Boeck PD, Bakker M, Zwitser R, Nivard M, Hofman A, Tuerlinckx F, Partchev I (2011). “The
Estimation of Item Response Models with the lmer Function from the lme4 Package in R.”



30 KernSmoothIRT: An R Package allowing for Kernel Smoothing in IRT

Journal of Statistical Software, 39(12), 1–28.

Chang HH, Mazzeo J (1994). “The Unique Correspondence of the Item Response Function
and Item Category Response Functions in Polytomously Scored Item Response Models.”
Psychometrika, 59(3), 391–404.

De Ayala R (2003). “The effect of missing data on estimating a respondent’s location using
ratings data.” Journal of Applied Measurement, 4(1), 1–9.

De Ayala R (2009). The theory and practice of item response theory. Guilford Press, New
York.

Douglas JA (1997). “Joint Consistency of Nonparametric Item Characteristic Curve and
Ability Estimation.” Psychometrika, 62(1), 7–28.

Douglas JA (2001). “Asymptotic Identifiability of Nonparametric Item Response Models.”
Psychometrika, 66(4), 531–540.

Douglas JA, Cohen A (2001). “Nonparametric Item Response Function Estimation for As-
sessing Parametric Model Fit.” Applied Psychological Measurement, 25(3), 234–243.

Eubank RL (1988). Spline Smoothing and Nonparametric Regression. Marcel Dekker.
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