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1. Introduction (\

Leo Brieman published his book entitled Classification and Regression Tree Analysis in |
1984. This book came about due to the advent of computer technology necessary to Implement
the tree methodology. “The use of trees was unthinkable before computers,” says Brieman. This
contrasts with previous statistical methods, which were first developed on paper, and moved over
to computers as data requirements dictated. Brieman developed the CART © software, which he
describes as a “flexible non-parametric tool [to add] to the data analyst’s arsenal,”

Classification and regression tree methods are increasingly seen in literature across many
disciplines. For example, they have been found to be very useful in remote sensing land cover
classification procedures, as well as other ecolo gical and environmental applications. Medical
studies of patient mortality, or indicators of presence or absence of disease, commonly employ
tree-based analysis methods. CART is used in these applications to sort through large datasets
with numerous variables and complex relationships in hopes of revealing the relationships
between variables, highlighting important variables, delineating the data set into smaller
homogeneous groups, and fo accurately predict the response of a new subject.

Due to increased usage and praise of these models in various scientific communities,
more insight is needed regarding how CART analysis fits into a statistician’s tool arsenal.
Further development of an appropriate statistical context of these methods is necessary to
reconcile the researcher’s use of these models. Their appropriate use, as with any analysis
method, depends on the question of interest at hand, and the subsequent goal of a study. In this
paper, we provide examples to help elucidate differences between Classification trees, logistic

regression, and between regression trees and ordinary regression.
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Sometimes the focus of statistical analysis is on trying to understand the relationship
between large numbers of explanatory variables in their association with a certain phenomena.
To accomplish this goal, traditional statistical tools are used to estimate model parameters, and
calculate measures of uncertainty to quantify the degree of error in our estimates. Practically,
standard errors and subsequent confidence intervals give researchers a way to quantify a range of
plausible values for an estimated parameter.

On the other hand, sometimes the main goal of statistical analysis, rather than

or predicts a new observation based on explanatory variable values. There are many ways to

quantify predictive model accuracy, such as the common k-fold cross validation, or use of an

of means and probabilities.

Classification or Regression trees are useful when a predictive model is the goal. In other
words, Classification and Regression trees often have high predictive accuracy in predicting
class memberships or mean values for data. We can quantify this predictive accuracy using

misprediction rates, as previously described. However, users should be aware that Classification



and Regression tree analyses do not quantify uncertainty in the estimated probabilities of class (\
membership, and in the estimated means for each terminal node in a regression tree. There is a

disconnect between the ability to quantify uncertainty in predictions made from trees, and the

ability to quantify uncertainty in the tree itself Other methods, such as linear or logistic

regression, can be utilized as predictive models and we can also describe both how uncertain we

are in the model itself,

This paper explains some of the background of Classification and Regression Tree
analysis as well as deseribes the basics of tree construction. Some current applications of CART
analysis and reasons for their current popularity will also be presented. Additionally, In order to
examine some of the advantages and disadvantages of CART, two examples compare CART to
both traditional logistic regression and multiple linear regression, followed by a discussion of the

important differences. -

2. Classification and Regression Tree Analysis Background

Whether a tree is a classification or a regression tree depends only on the type of response
variable. If the response variable is quantitative, then the tree is termed a regression tree, and if
the response variable is categorical, then a classification tree is grown,

CART uses classification rules to grow both types of trees. A classification rule isa
systematic way of predicting what class, or homogeneous group within the data set, a specific
observation belongs to (Brieman 1984). Classification and Regression trees are schematic tools
to help one decipher how response variable values (categorical or quantitative) are grouped

based on values of explanatory variables.
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CART uses binary recursive partitioning to divide the data set into sequentially more
homogenous subsets, or classes (Friedl and Brodley 1997). The binary recursive partitioning
process is dictated by an “impurity” function that is based on a single explanatory variable valye
at a single split. This function acts as a splitting rule, which partitions the response variable into
homogeneous groups. The data are a “learning sample” which “trains” the classifier in how to
classify new response values, There are many different functions by which to split the data, and
there are various “stopping rules”, which prevent the tree from growing, or splitting out more
classes. These become the main tasks of classification and regression trees: knowing how to use
the learning sample to determine the splits, and knowing when to Stop growing a tree (Brieman

1984).

2.1. Split Rules

As stated, there are many different functions by which to the split the data, Different
statistical computing packages make these decisions automatically depending on different default
values. These default values vary across packages, and therefore, a user of these models must be
aware of what rules the tree is utilizing, In the statistical computing package, R, the default split

rule is the gini index,

2.1.1. Classification Trees

There are three common splitting rules for growing classification trees {De’ath and
Fabricus 2000): the entropy index, the gini index and the twoing index. Each one of the
following rules split the data with a different approach. The eniropy index (otherwise known as

the information rule) is defined as



Entropy(f) = —Z p;logp, (™
i S

Where p, is the relative frequency of class ; at node #. This rule works to minimize the
heterogeneity within a group by identifying those splits which divide out as many groups as
possible as precisely as possible. This rule has a higher predictive accuracy than the other rules
when identifying rare classes (Zambon et al. 2006).

The gini index is defined as

Gini(t)=3 p,(1-p,)

This rule splits the data by first finding the largest homogeneous category within the data and
separating it out from the rest of the dataset (Zambon et al. 2006).

The twoing index is

Twoing(t) = pf" (Z_(! pile)~pl|t) )’ ( )

where p(i | 1) is the relative frequency of class i at node £ and 7 and R denote the left and right

sides of a given split respectively. Twoing tends to split the data up evenly in that it separates

groups of the data by identifying groups that make up 50% of the remai ning data at each node.

2.1.2. Regression Trees

If the dataset has a quantitative response variable, then a regression tree is grown. The
most common impurity rules for regression trees include: the sums of squares about the group
means, and the sums of absolute deviations from the group medians. Both of these rules split the
data based on the largest reduction in the sum of squares about a group mean or median, akin to
least squares linear models (De’ath and Fabricus 2000). The default splitting rule in the statistical

computing package R is based on the group means. Each explanatory variable in the data set is (
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assessed for each split and the one explaining the most amount of variation in the response is

chosen for that split (Crawly 2007).

2.1.3. Tree Construction Summary

To summarize the steps in growing a tree, all of the data, or the learning sample, start in a
root node. The tree searches through all the explanatory variables available in the data set and
picks the variable that best splits the data into the two most homogenous groups. This “best” split
is one that minimizes the impurity in the data set, or maximizes the homogeneity (definition of
“best split” dependent on the splitting rule applied). The tree does this unti] all the terminal nodes
are either pure (have the same fesponse variable value) or there are five or fewer observations in
the node (the defauit “stopping rule” in the Statistical compuiing package R). Additionally, single

classification trees require “pruning” as they are susceptible to over-fitting the data. This means

improve (Brieman 1984).

3. Tree Popularity

Tree-based models have been increasingly popular in many sciences. The literature
describes many advantages of tree-based models. For example, Zambon et al. (2006) describes
decision frees as non-parametric methods independent from data distributional assumptions, and

are useful for examining large, complex data sets. Crawly (2007) describes tree-based models are



a simple data exploration tool, producing a clear picture of the data structure, as well as
providing an “intuitive insight into...the interactions between variables”. Because ¢cological and
environmental data are ofien very complex, with many explanatory variables, tree-based models
have become popular in this area. Scientists need a methodology that is flexible and robust in
handling a wide range of data types, while also be easily interpretable, and has the capacity to
handle missing data values (De’ath and Fabricius 2000).

Classification trees in Remote Sensing are often used to produce acecurate land cover
classifications needed for environmental monitoring practices (Chen and Paelinckx 200 8). Other
environmental monitoring applications include delineating wetland or riparian zones (Baker et al.
2006), documenting certain agricultural practices (Yang et al. 2002), or mapping invasive plant
species (Lawrence et al. 2005). The search for the most capable classification tool in terms of its
predictive accuracy has led remote sensin g scientists through many different classification
procedures.

Another useful tool commonly used for image classification is binomial or multinomial
Logistic regression (Panateloni et al. 2009). In the case of remote sensing data, a binary response
could be an indicator of land cover class (e.g. water versus not water). The explanatory variables
for the model are the spectral responses, or scaled radiance values (i.e. digital numbers), in each
band of remote sensing data, Logistic regression can be used to model the probability of a
specific pixel belonging to a certain land cover class given a specific set of spectral
characteristics. Logistic regression also provides an estimate of the uncerfainty associated with
that probability. When a probability cut-off rule is applied to the estimated probability, logistic

regression becomes a classification tool,

10



Classification trees are also used to classify imagery (Lawrence and Wri ght 2001). Many
studies have found that classification tree analysis has yielded higher predictive accuracies when
compared to traditional classification methods such as minimum distance to means or
paralellpiped (Lawrence et al. 2004). One can use classification tree analysis to estimate the
probability of a pixel belonging to a certain land cover class by using the relative proportions of
that class in that node (Brieman 1984). However, when one does this there is no estimate of the
uncertainty assigned to that probability as there is in logistic regression, This fact is one of the

main catalysts for this discussion.

4. Examples
The following two 'relativel}r simple examples illustrate the differences in inference
between classification trees and logistic regression, and between regression trees and multiple

linear regression.

4.1. Logistic Regression versus Classification Tree

The Donner Party was a pioneer group that attempted a route from Wyoming fo the
Sacramento Valley in 1846. The party was stranded in the eastern Sierra Nevada Mountains in a
late October snow, and when the Iasf survivor was rescued in April of 1847, 40 of the 87-
member party had perished. The Donner Party data set consists of the party members sex, age
and whether or not they survived (Ramsey and Schafer 2002).

In this case, the response is survival (0 if the party member died, 1 if they lived). Logistic
regréssion is a statistical modeling tool appropriate for data in which the response variable is

binary. From this model, one could estimate the probability of surviving given a certain age or

11




gender, the odds of survival for females relative to males for a given age, or the odds of survival
for females (or males) at different ages. These estimates could be used to study whether there is
evidence that the females were more capable of withstanding harsh conditions than the males
were. Additionally, confidence intervéls for parameters of interest can be a way to describe a set
of “plausible values”. This is a way to quantify the degree of uncertainty in our estimates, which
is traditionally one of the main goals of statistics. The mathematical details of logistic regression
are beyond the scope of this paper, but for a detailed discussion of logistic regression see page 70
of Alan Agresti’s An Introduction 1o Categorical Datg Analysis, 2007,

A classification tree could also be fit to these data since the response is categorical (lived
vs. died). This tree is used to determine what values of age and/or gender best predict whether or
hot a person lived or died. The branches of the tree are rules that decide which survival category
a person belongs to based on their age and sex. It is possible to obtain predicted probabilities
from a tree model through a Class Probability Tree. A Class Probability Tree is very similar to
Classification Tree, but instead of only getting the predicted group assignment for a given
observation, we can also get the probability of belonging to that class. The probabilities of
belonging to category j given that the observation is in terminal node f, are the relative
proportions of class j cases in that node f (Brieman 1984). For this example, all the tree models

were grown using the gini splitting rule.

4.1.1. Models using age as the only explanatory variable
We first compare a logistic regression model including only age to a tree based only on

age. The estimated logistic regression equation is

logir(7,) =1.81152 ~0.06647age,
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From this logistic regression equation, we can calculate the probability of survival for a given
age, or the odds of survival of a specific age relative to another age. We would also be able to
give a range of plausible values for the true probability of survival based on the age of an
individual.

Figure 1 displays the resulting classification tree, which splits the data into two
homogenous groups: those who survived and those who died. If an individual has an age greater
than or equal 0 22.5 years, then they would be classified as survived. If they are less than this
age, they would be classified as dead. The numbers at the split and at each terminal node
represent the number of people that truly lived or died. For example, in the survival node {which
is labeled as 1), there are six individuals who actually survived, and one who died. Therefore,
there are seven observations in that node total. Similarly, in the “died” node, there are 14 actual
survivors, and 24 actual deaths, for a total of 38 observations in the node. The predicted
probabilities of survival from CART are calculated from the full tree, not the pruned tree. This
means the predicted probabilities from CART are the relative proportions of class J cases in node
{ in each terminal node constructed, not necessarily shown. It should be noted that this is not in
the software documentation, nor explicitly stated in the 1984 Brieman text.

Figure 2 compares the predicted probabilities of survival from the lo gistic regression
model to the predicted probabilities of survival from CART using only age. In order to classify
individuals into survival categories based on their predicted probability of survival from logistic
regression, a cutoff probability of 0.5 was used. The red dots indicate individuals of the Donner
Party who actually survived, and the blue dots indicate those that actually died. Because there are
only four distinct values for the probabilities from CART, these probabilities were “jittered”

along the y-axis. This means the response values were scattered a small random amount in order

13



to display points that were overlaid on top of one another. The misprediction rate for the logistic (.
regression model was 42%. The misprediction rate from CART was only 26%. Therefore, the -
predictive accuracy of the CART model is hi gher than the logistic regression method for this

example. However, inferences from the logistic regression model may be more useful to the

researcher’s question of interest as we could make statements about the odds or probability of

survival for an individual with a measure of uncertainty associated with this estimate.

Ags Only Modal

Age>=225
25f20

2414 176

Figure 1: This is the survival classification tree from R using age as the only explanatory variable,

4.1.2. Models using age and gender as explanatory variables
The second pair of models included both a party member’s gender and age as explanatory
variables. Female is an indicator variable for a party member’s gender such that if an observation

is from a female it equals 1, and 0 if from a male. The estimated logistic regression equation is

logif(#,)=1.63312+1.59729 female, + 0.0782age,
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If one were using logistic regression to model the probability of survival for the Donner
party members, there is evidence that gender is an important variable in explaining survival after
accounting for age (t = 2.114, two-sided p-value = 0.0345). We could make inferences about the
odds of female to male survival given a certain age, while also providing a range of plausible
values for the parameter. For example, the odds of survival for females are estimated to be 4.94

times that of males of the same age. A 95% confidence interval ranges from 1.12 to 21.54 times.

Predicted Probabilities of Surival from Logistic Regression vs. those from CART- Age Model

2 - CART-Surive, LR-Die : Both predict Survive
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Predicted Probabilities from Logisitic Regression

Figure 2: Predicted Probabilities from Logistic Regression vs. those from CART using age as the only
explanatory variable. The red dots indicate actually survival, while blue indicates actual death.

The classification tree constructed with age and gender as explanatory variables appears
identical to the previous tree. The tree does not use gender as an important variable in predicting

the probability of survival and therefore, one would not suspect the relationship of gender with
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survival, unless one examined the whole tree grown. The predicted probabilities of survival (—-
change in comparison to the previous model, but the classification rule to assign party members

to groups did not change with the additional explanatory variable. This is an interesting point that

users should be aware of. We can see from the logistic regression model that there is evidence

that gender is associated with the odds or probability of survival, but one does not see the

relationship of gender in the pruned the classification tree shown in Figure 3.

Age and Female Model

Age >= 225
25/20

24/14 1/6

Figure 3: This is the classification tree constructed in R using gender and age as explanatory variables.

Figure 4 is a plot of CART probabilities versus logistic regression probabilities when
both age and gender are included. When compared to Figure 2, it is clear that the CART
probabilities from this model differ from the age-only model probabilities of survival. Again, we

would not have recognized how the probabilities of survival changed when included female in (
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the model if we were to only examine the pruned tree. The misprediction rates of the Logistic

Regression model including age and gender is equal to the misprediction rate of the

corresponding CART model at 22%.

Predicted Probabilities of Surival from Logistic Regression vs. those from CART- Age and Female Model

=
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04 0.6 0.8
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Predicted Probabilities from Logisitic Regression

Figure 4: These are the predicted probabilities from the logistic regression model versus those from
CART using age and gender as explanatory variables. Red indicates actual survival while blue indicates

actual death.

4.1.3. Interaction Models

Lastly, an interaction model was fit, which would allow the relationship between gender

and survival to be dependent on age. The estimated logistic regression equation is

logit(7,)=0.31834 —0.03248age, + 6.92805 Female, —0.1616age * Female,

There is suggestive evidence that the relationship between gender and probability of

survival does vary across ages as indicated by evidence for the interaction term in the model (t-

stat = -1.74, two sided p-value = 0.0865).
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Figure 5 is a schematic of the full grown tree using the age and gender explanatory
variables. Since the user of these models cannot include an interaction term in the model
construction, in order to view potential interactions between age and gender, the full tree using
age and gender was grown. The full tree reveals the relationship between gender and survival
for individuals older than 42.5. Therefore, it is showing that the relationship between gender and
survival may depend on age of an individual. However, we cannot mathematically describe or

obtain an estimate for the interaction from the tree.

Full Age and Female Model

age >= 22.5
25/20

Age 3425

24/14 1/6

femalke<0.5

74 16/13

1517 118

Figure 5: This is the full classification tree for the model constructed using age and gender as explanatory
variables.

Again, the predicted probabilities from the CART versus the predicted probabilities from

the logistic regression interaction model are plotted in Figure 6.
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Predicted Probabilities of Surival from Logistic Regression vs. those from CART- Interaction Mode!
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Figure 6: Predicted probabilities from the logistic regression interaction model versus those from CART
using only age and gender as explanatory variables. The red indicates actually survival while blue
indicates actual death.

The interaction logistic regression model predicted three individuals to die who actually
survived, while these three individuals had been predicted to survive by the no-interaction
model. This caused the misprediction rate to increase to 26%, which is a slight increase from the
age and female only model. While the predictive accuracy may have gone down in the
interaction model, estimating the interaction effect is a useful part of logistic regression. With
logistic regression, we can mathematically estimate the interaction while also calculating a range
of plausible values for the true change in the relationship of gender for varying ages. In other
words, we can quantify our uncertainty in the estimate of the interaction effect. We cannot

however, estimate the interaction effect from the tree model, nor can we describe how uncertain
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we are 1n the interaction. Tree models do not allow a programmer to include an interaction term (h
in the tree-model, but it is claimed that the schematic of the tree reveals interactions between

explanatory variables. In Figure 5, we see that for different levels of age, the relationship of

gender to survival is different. A tree was physically constructed to display this interaction, but

we do not know the strength mathematically. Users of tree-based models advertise that trees are

not limited to modeling linear relationships between variables, and that they can deal with

interactions between explanatory variables. Trees may be able to create predictive models for

data where interactions and non-linear relationships exist, but we have not learned anything

about the mathematical magnitude of them.

4.2. Multiple Linear Regression versus Regression Tree
The previous example focused on the comparison of classification trees to logistic
regression as a classification tool. The next example shows a comparison of a regression tree and

classical multiple linear regression analysis.

4.2.1. The use of the original versus a transformed response

Brain size is an interesting variable with regard to how it may be related to evolution.
One might expect that larger brained animals would be better suited to survive evolutionarily.
Yet, there may be some downsides related to having a larger brain, such as the need for longer
pregnancies, and/or a smaller number of offspring. The dataset used in the following example
consists of average brain weight (Brain.size) values, body weights (Body.weight), gestation
lengths (Gest.time), and litter (Litter) sizes for 96 mammal species (Ramsey and Schafer, 2002).

As brain size and body weight are related, multiple linear regression could be used here to
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determine which variables, if any, are associated with brain size after accounting for body
weight. In order to model these data using multiple linear regression, the response variable (brain
weight) was transformed using the natural log function because the use of the raw data violated
the necessary homogeneity of variance and normality assumptions of the residuals for linear
regression. For further discussion of the use of multiple linear regression see The Elements of
Statistical Learning by Trevor Hastie, Robert Tibshirani, and Jerome Friedman, page 42.
The estimated regression equation is

Hlog(brain.size)} =2.13+0.015Gest fime — 0.005 Body .weight — 0.2149 Liiter

A regression tree was also fit to the same set of data to determine how it would be split
the data into homogenous brain size groups based on explanatory variables. The variables chosen
by the tree are often considered by the researchers to be the most important variables in
explaining the response, which in this case, is brain weight. Because trees are advertised as not
having data distributional assumptions, the first tree was constructed on the untransformed data
set, as often users do not transform the response variable when using trees. The resulting tree is
shown in Figure 7.

One might interpret Figure 7 to mean that gestation time is the most important variable in
predicting brain size group. It split the data such that a group of 7 observations have a mean
brain size of 1169 units, while 89 observations have a brain size of 144.5 units. A regression tree
is based on splitting the data for the largest reduction in the sum of squares about group means or
medians, akin to least squares linear models (De’ath and Fabricus 2000). Therefore, in the
context of this data set, one needs to consider the variances of brain weights. There are animals
in this data set that range from a field mouse to an elephant and this is the reason why we

transform the response variable for the multiple linear regression model. If one of the split rules
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for regression trees involves minimizing deviations from a group mean, and we are growing a (
tree in the context of this data set, we must consider that the squared deviations from a group

mean are likely to be very large and very variable. Means are not robust measures of center in

the presence of significant skewness. In other words, means are heavily influenced by extremely

large or small values, which is the case for our dataset. Therefore, it is unclear how to proceed

with regression tree analysis in a situation with such extreme data values. Perhaps the split rule

involving medians would be a better rule to choose for this data set, but this was not investigated

in this paper. Instead, to further compare regression trees and multiple linear regression with this

data set, the logged response variable was used to construct another regression tree.

Regression Tree with Regular Response

Gest.time <305
219
n=96
1169 1443
n=7 n=89

Figure 7: This is the regression tree for brain size using body weight, gestation length, and litter size as
explanatory variables.
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Regression trea using the transformed response

body.weight<1.6
3.865
n=96

0.6695
n=23

3.823 589
n=36 n=37

Figure 8: This is the regression tree using the log transformed brain size and all three explanatory
variables

This tree chose body weight as the “first split™, or best explanatory variable to predict
brain size. However, the question of interest was to assess how gestation time and litter size
explain brain size after accounting for body size, as body and brain sizes are likely to be already
related. While we could have concluded from the output of the multiple linear regression that
gestation time and litter size are associated with brain size even after accounting for body weight,
one is not capable of assessing this question of interest from a regression tree because it does not
bring gestation time and litter size in as splitting variables. Therefore, it is unclear how to
interpret the tree when there are several collinear explanatory variables in an observational study
setting.
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It is possible that if the main goal was simply to predict brain size for some other (.\
mammal based on the body weight, this regression tree could be an accurate and functional tool. N
However, It remains unclear as to what useful conclusions can be drawn from this regression
tree. As it stands, it says that different body weights explain these relatively homogenous
groupings of logged brain size data. This is not as useful as a multiple linear regression model on
a logged response, from which you can make estimates of gestation time and litter size, which
include measure of uncertainty of those estimates. Users of these models should take care when

trying to attach importance to variables based on the early splits in the tree. Multicollinearity still

must be considered in the context of interpretation.

4.2.2. Justifiable Statistical Inference

As areminder, conventional statistical inference dictates that inferences to a larger
population can only be made when random sampling is employed, and that cause and effect
statements between variables can only be made under the condition of random assignment to
groups. Therefore, the tree-based models, as with any model, do not allow for population
inference or causal statements when these two conditions are not met. It is surprising therefore,
to consistently read inference statements that violate the conventional statistical rules of

inference. For example:
- “...the aim is to understand causes of variation in the [response]...” (Crawley 2007)

- “...[explanatory variable] is a key determinant in the [response]...” (Crawley 2007)
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- <., the strongest effects were due to [explanatory variable]...” (De’ath and Fabricius

2000)

- “...the [explanatory variables] are possibly major determinants of [response

variable...” (De’ath and Fabricius 2000).

Causal inference is not justified as the design did not involve random assignment.
Unjustifiable statistical inferences are clearly not restricted fo tree-based models, but one must
apply the same critical thinking to these models as with all other models in regards to justifiable

statistical conclusions.

5. Conclusion

Classification trees are claimed advantageous because they can handle large data sets
with numerous variables and complex structures by outputting an easily understood schematic
representation of that complex structure. Classification and Regression trees can be useful
schematic tools to decipher how response variables are grouped based on values of explanatory
variables. However, a user of CART must be aware that different statistical packages use various
splitting rules in tree construction, and as a result, different trees can be constructed using the
same set of data. CART can also be a useful classification or prediction tool as it often has higher
predictive accuracy when compared to logistic regression as a classification tool. However,
CART analysis does lack parameter inferences and the ability to quantify the degree of
uncertainty in our estimates. Additionally, trees allow users to visually see interactions between
explanatory variables, but we cannot mathematical quantify this interaction relationship using
CART the way we have using traditional regression estimation techniques. It also remains

unclear as to how to interpret regression trees in the presence of collinear explanatory variables,
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or what useful conclusions can be drawn from regression trees when the goal is not group mean
prediction.

As a statistical scholar, one is educated to think critically about the methods applied for
data analysis, the associated assumptions, and what the allowable inference of a certain result is.
Classification and Regression free analysis can be a useful data exploratory tool, or an accurate
prediction tool. Therefore, if data exploration or new observation prediction is the research goal,
then CART may be an appropriate analysis choice. However, when the question of interest
involves interpretation of variable relationships, CART lacks the ability to quantify uncertainty
of the estimates of those relationships, and the ability to mathematically quantify interactions
between explanatory variables. If Classification and Regression trees are to be used as a
statistical model, then they are not exempt from the model considerations traditional ly
necessitated. As usual, the analyst needs to consider the question of interest, and what methods

of analysis may be most appropriate for the task at hand.
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