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1 INTRODUCTION

For experiments using randomized block designs, all treatment combinations may not

be run in each block because of shortages of experimental units or facilities. Yates

(1936a) formally introduced balanced incomplete block (BIB) designs in which every

treatment is not present in every block, but the number of pairs of each treatment

occurring together is the same. A BIB design can reduce the number of experimental

units used in experiment as we already knew. Although BIB designs are efficient

designs, these designs are still not appropriate for experiments with a large number

of treatments such as animal breeding experiments. Moreover, the minimum number

of blocks required for a BIB design may be too large to be practical. In the same

year, Yates (1936b) proposed a new method of arranging agricultural variety trials

involving a large number of crop varieties. These types of arrangements were named

a quasi-factorial or lattice designs. His paper contained numerical examples based on

the results of a uniformity trial on orange trees. A special feature of lattice designs is

that the number of treatments, t, is related to the block size, k, in one of three forms:

t = k2, t = k3, or t = k(k + 1). Even though the number of possible treatments

is limited, a lattice design may be an ideal design for field experiments with a large

number of treatments. Although lattice designs have been frequently used, there is

limited software that performs an appropriate statistical analysis for a lattice design.

The SAS package is one of the most commonly-used packages for the design and

analysis of experiments. The use of SAS for analyzing a lattice design was first

discussed in a colloquium on horticulture (Stroup and Paparozzi, 1989). At that time,

PROC MATRIX, PROC IML, and PROC LATTICE, which can analyze experiments

using lattice designs, were only found on main-frame computers. Fernandez G. C.J.

(1990) presented a PC-SAS program for the analyses of data obtained from a lattice

design. His program consisted of two parts. In the first part, PROC GLM was used

to calculate unadjusted block sum of squares (SS), adjusted block SS, unadjusted

treatment SS, and intra-block error. In the second part, PROC MEANS and the

MERGE option were used to calculate many statistics such as adjusted block values

and treatment totals. Now PROC LATTICE is available in PC-SAS and will analyze

data from balanced square lattices, partially balanced square lattices, and some

rectangular lattices.

Besides SAS software, R, a free software environment for statistical computing and

graphics is capable of analyzing experimental design data. Groemping (2011) provides

a summary of R packages related to the design and analysis of experimental data. The
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R package “agricolae” has the capability to analyze data obtained from lattice designs.

Although it was not specifically created for lattice designs, there is one function

which can be applied to use with lattice designs. Felipe de Mendiburu (2010) wrote

the“agricola” package as a master’s degree project, and it offers extensive functionality

on experimental design especially for plant breeding and agricultural experiments.

The strength of this package is that it allows for the randomization of treatments

in lattice designs, factorial designs, randomized complete block designs, latin square

designs, balanced incomplete block designs, alpha designs, cyclic, augmented block,

and split and strip plot designs. Moreover, this package can also perform an analysis

of variance for many designs. The R “agricolae” package is the newest tool for the

analysis of lattice design data. More details are in a document by Felipe de Mendiburu

(2010).

This paper provides a review of the analysis of two types of square lattice designs:

balanced and partially balanced lattices, as well as numerical examples and the R

and SAS computer code needed to analyze the experimental data. In the last section,

the R function are written to give the complete analysis of variance which both SAS

and R do not provide.
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2 SQUARE LATTICE DESIGNS

The feature of balanced square lattices is that the number of treatments, t, is equal to

the square of the number of units per block, k or t = k2 . The numbers of replication

of partially balanced square lattices are similar to balanced square lattices, but only

some replications are selected. If the number of replications is less than required for

a balanced design, the analysis follows the same procedure as for a balanced design,

but some formulas are changed.

2.1 A Balanced Square Lattice Design

A balanced square lattice design is similar to a balanced incomplete block design

with k2 treatments arranged in k(k + 1) blocks with k runs per block and r = k + 1

replications. So, each replication has k blocks and contains every treatment. In this

design, every pair of treatments occurs together once in the same incomplete block.

This property holds for all plans having an odd number of treatments which is also

a perfect square (e.g. 9, 25, 49, 81, 121, and 169 treatments). Let λ be an integer

number indicating how many times each treatment occurs together in same block,

and the relationship among the number of treatments t, block size k, and number of

replications r. Numerically, it is defined as λ = r(k− 1)/(t− 1) (Montgomery, 2005).

In balanced square lattice designs, r = k+ 1 or t = k2 , implying λ = 1 . Because

the designs are balanced, all treatment differences have the same estimated variance

or the same precision. Hinkelmann and Kempthorne (2005) referred to the number

of replications, r, as the number of different systems of confounding. Designs with

r = 2 are called simple (or double) lattices; designs with r = 3 are called triple

lattices; designs with r = 4 are called quadruple lattices, and balanced square lattices

require r = k + 1.

2.1.1 Lattice Design Construction

Assume there are t treatments labeled as 1, 2, . . . , k2 with treatment numbers arranged

in a k× k square. For example, in a 3× 3 square forming Replication I (see Table 1),

there are nine treatment numbers arranged in a specific order such that each row of

the square array is considered as a block containing three treatments. To construct

Replication II, each column of the array for Replication I is taken to form the three

blocks in Replication II (see Table 1). Replications III and IV are based on two

orthogonal latin squares. Two latin squares are orthogonal if, when superimposed,
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all ordered pairs are distinct (See Table 2). From the standard array, the treatment

numbers that fall on the same letter in a latin square are taken to form a block. For

example, from latin square 1 (See Table 2), treatment numbers 1, 6 and 8 fall on

the letter A, so treatments 1, 6 and 8 are in the same block in Replication III (See

Table 1). Analogous to Replication III, Replication IV is constructed from the second

latin square. Another method of constructing lattice square designs can be found in

Federer and Wright (1988) who proposed a simple method for constructing lattice

square designs when the number of treatments is greater than 3.

Table 1: 3× 3 balanced lattice (t = 9, k = 3, r = 4, λ = 1)

Block Replication I

1 1 2 3

2 4 5 6

3 7 8 9

Block Replication II

4 1 4 7

5 2 5 8

6 3 6 9

Block Replication III

7 1 6 8

8 2 4 9

9 3 5 7

Block Replication IV

10 1 5 9

11 2 6 7

12 3 4 8

Table 2: Two orthogonal latin squares of order 3.

Latin Square 1 Latin Square 2 Superimposed

A B C A B C

(1) (2) (3) (1) (2) (3) (A,A) (B,B) (C,C)

B C A C A B

(4) (5) (6) (4) (5) (6) (B,C) (C,A) (A,B)

C A B B C A

(7) (8) (9) (7) (8) (9) (C,B) A,C) (B,A)
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2.1.2 Randomization

Randomization is always important when designing an experiment. The

randomization procedure gives an equal chance for each assignment of treatments to

the experimental units. Randomization consists of the following steps: (1) randomly

allotting the treatments to the treatment numbers (labels), (2) randomizing the

replications, and (3) randomizing the blocks separately and independently within

each replication.

2.1.3 Statistical Analysis

Although the following procedure can be applied to partially balanced designs, there

are some differences which will be discussed later. We will adopt the following

notation. Let

t denote the total number of treatments,

k denote the number of units per block or block size,

s denote the number of blocks per replication which is equal to k,

r denote the number of replications (for balanced designs, r = k + 1).

Let yij(l) denotes the response value of the jth treatment in the lth block within ith

replication, i = 1, 2, . . . , k + 1, j = 1, 2, . . . , k2, l = 1, 2, . . . , rk. The model is

yij(l) = µ+ πi + βi(l) + τj + εij(l).

where µ, πi, βi(l), and τj represent the effect of the mean, the replicate, the incomplete

block, and the treatment, respectively. εij(l) is the intra-block residual, assumed to

be normally and independently distributed with mean 0 and variance σ2
e .

Various ANOVA sums of squares are now presented:

1. Total Sum of Squares:

SSTot =
∑

y2ij(l) − CF (1)

, where CF = (
∑
yij(l))

2/(rk2),
∑
yij(l) is the grand total.

2. Unadjusted treatment sum of squares:

SSTrtU =

∑
T 2
j

r
− CF (2)

where Tj is the sum of observations for treatment j.

3. Replication sum of squares:

SSR =

∑
R2

i

k2
− CF (3)
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where Ri is the sum of observations in replication i.

4. For computing the adjusted block sum of squares, SSBAdj, several quantities

are required to be computed first. Let

Bj denote the sum of block totals for the blocks with treatment j, j = 1, 2, . . . , t,

Tj denote the total of the jth treatment total from all replications,

Wj denote the weight for the jth treatment which is used for adjustment for

block,

Wj = kTj − (k + 1)Bj +G (4)

where G =
∑
yij(l), or the grand total. Note that

∑
Wj = 0. The sum of

squares for blocks within replication, adjusted for treatment effects, SSBAdj, is

defined as

SSBAdj =

∑
W 2

j

k3(k + 1)
. (5)

5. Intra-block error sum of squares:

SSE = SST − SSR− SSTrtU − SSBAdj. (6)

Using the various sums of squares above, the analysis of variance (ANOVA)

table is given in Table 3.

Table 3: Analysis of Variance for the balanced square lattice design

Source of variation Degree of freedom Sum of squares Mean squares

Replication r − 1 SSR MSR

Treatment(Unadjusted) k2 − 1 SSTrtU MSTrtU

Block within replication(Adj) k2 − 1 SSBAdj MSBAdj = Eb

Intra-block Error (k2 − 1)(k − 1) SSE MSE = Ee

Total rk2 − 1 SST

It is important to note that the mean square of the unadjusted treatment cannot be

used for testing against the mean square of intra-block error because the mean square

of unadjusted treatment still contains block effects. The adjusted treatment sum of

the squares is defined as

SSTrtAdj =

∑
(Tj + µWj)

2

r
− CF =

∑
(T

′
j )

2

r
− CF (7)
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where T
′
j is the adjusted treatment total defined as Tj +µWj, and µ is the adjustment

factor for error and treatment means defined as

µ =
MSBAdj −MSE

k2MSBAdj

=
Eb − Ee

k2Eb

(8)

If dividing the SSTrtAdj by its degree of freedom, k2 − 1, we will get the MSTrtAdj.

So, the F-statistics is the MSTrtAdj divided by the the intra-block error mean square.

For t-test, the mean square of intra-block error, Ee, needs to be adjusted to take into

account the sampling error. The new mean square is called the “effective error mean

squar”, or E
′
e, which is defined as

E
′

e = Ee(1 + kµ) = Ee[1 + (r − 1)µ]. (9)

The F-statistic is

F =
MSTrtAdj

Ee

(10)

The degrees of freedom of the numerator and denominator for the F statistic are

k2 − 1 and (k − 1)(k2 − 1), respectively.

The variance of the adjusted treatment mean is E
′
e/r , and the error variance of the

difference between two adjusted treatment means in the same block is

2Ee[1 + (r − 1)µ]

r
=

2E
′
e

r
(11)

The square root of error variance of the difference between two treatment means is

the standard error used for t-tests between pairs of treatments.

If, however, Eb is less than Ee, then we conclude the blocks have no effect,

and the data will be analyzed as if it were a randomized block design but using

the replications as the blocks. One numerical value that summarizes the potential

advantage or disadvantage of one specific experimental design relative to another is

called a “relative efficiency”. The relative efficiency is expressed as an unbiased

estimator of the error variance that would have been present if the experiment

had been conducted as a randomized block divided by effective error mean square,

E
′
e. The sum of the SSBAdj and SSE, SSBAdj + SSE, is called the “randomized

complete block design (RCBD) error sum of squares” which is an estimate of the

block sum of squares in a randomized block design. The degrees of freedom for

RCBD sum of squares is the sum of the degrees of freedom of SSBAdj and SSE , or

(k2 − 1) + (k2 − 1)(k − 1) = rk(k − 1).
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2.2 Partially Balanced Square Lattice

Partially balanced square lattices are similar to balanced square lattices, but are more

flexible with respect to the number of replications. Partially balanced designs do not

use all replications of the basic plan. For example, for 3×3 lattice designs, we need 4

replications for a balanced design, but if we have only two or three replications, these

are partially balanced designs. The designs using only the first two replications from

the basic plan are called simple lattices, and designs using the first three replications

from the basic plan are called triple lattices.

2.2.1 Construction and Randomization

After construction of a balanced lattice design, the number of replications is selected.

The function named “design.lattice” in the R package “agricolae” can automatically

create partially balanced lattice designs, but only simple and triple lattice designs.

For example, the code for creating a 4× 4 triple lattice is:

library(agricolae)

design.lattice(4,type="triple")

and the R results are:

$square1

[,1] [,2] [,3] [,4]

[1,] 6 3 8 12

[2,] 11 13 10 15

[3,] 14 7 2 5

[4,] 9 1 4 16

$square2

[,1] [,2] [,3] [,4]

[1,] 15 5 12 16

[2,] 13 7 3 1

[3,] 10 2 8 4

[4,] 11 14 6 9

$square3

[,1] [,2] [,3] [,4]

[1,] 11 7 8 16

[2,] 13 5 6 4

[3,] 10 14 12 1

[4,] 15 2 3 9
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2.2.2 Statistical Analysis for Partially Balanced Lattices

Computations for the analysis of variance for a partially balanced lattice design is

more complicated than it is for a balanced design. Actually, the partially balanced

square lattices could be considered as partially balanced incomplete block designs

(PBIB). This was shown by Bose and Nair (1939). Nair (1952) used the method of

analysis of a PBIB design for the simple square lattice design. However, this paper

actually presents the method from Cochran and Cox (1950) who simplified the original

method by Yates (1936b). In the analysis, let

t denote the total number of treatments,

k denote the number of units per block (i.e., the block size),

s denote the number of blocks per replication (which equals k), and

r denote the number of replications.

The analysis procedure involves the following steps:

1. The total sum of squares (SSTot), the unadjusted treatment sum of squares

(SSTrtU), and the replication sum of squares (SSR) are computed in the same

way as those in balanced designs.

2. Find (1) the block total, Bl , l = 1, 2, . . . , rk, (2) the replication total, Ri,

i = 1, 2, . . . , r, (3) the treatment total, Tj, j = 1, 2, . . . , k2, and (4) the grand

total G.

3. For each block,

(1) calculate Cl =
∑
Tj(l) − rBl, l = 1, 2, . . . , rk, where

∑
Tj(l) is the sum of

the treatment totals which are in block l.

(2) calculate the total of C
′
s, RCi =

∑
Cl(i), in the ith replication (e.g. i = 1, 2

for a simple lattice).

4. Calculate the adjusted block sum of squares, SSBAdj, given by

SSBAdj =

∑rk
l=1C

2
l

rk(r − 1)
−
∑allrep

i=1 (RCi)
2

rk2(r − 1)
. (12)

5. Calculate the intra-block error sum of squares given by

SSE = SST − SSR− SSTrtU − SSBAdj (13)

From these sums of squares, the analysis of variance table is shown in Table 4.

From Table 4, the mean square of the unadjusted treatment, however, cannot be
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Table 4: Analysis of Variance for the partially balanced square lattice design

Source of variation Degree of freedom Sum of squares Mean squares

Replication r − 1 SSR MSR

Treatment(Unadjusted) k2 − 1 SSTrtU MSTrtU

Block within replication(Adj) r(k − 1) SSBAdj = Ba MSBAdj = Eb

Intra-block Error (rk − k − 1)(k − 1) SSE MSE = Ee

Total rk2 − 1 SST

used for testing against the mean square of intra-block error in an F test. Instead,

the unadjusted treatment mean square can be used for testing the data as if the

experiment were in randomized block. The denominator for the F-test is the pooled

mean square for adjusted blocks and intra-block error. For lattice designs, if we want a

test for the treatment effects, the treatment totals must be adjusted. The adjustment

factor, similar to the weight in a balanced lattice, is

µ =
MSBAdj −MSE

k(r − 1)MSBAdj

=
Eb − Ee

k(r − 1)Eb

. (14)

Then, the adjusted treatment total, T
′
j , is defined as

T
′

j = Tj + µ
r∑

i=1

Ci(in Block l containing Trt j). (15)

Then, for a simple lattice, T
′
j = Tj + µ[C∗

1 + C∗
2 ], where C∗

1 and C∗
2 are the values

of C’s in the particular blocks containing the treatment jth in the replication 1,

and 2, respectively. The procedure to obtain the adjusted treatment sum of squares

(Cochran and Cox, 1950) in a simple lattice is the following:

1. Calculate the unadjusted sum of squares for blocks within replication,

SSB(Within Rep)Unadj = (

∑
B2

l

k
− CF1)︸ ︷︷ ︸

replication 1

+ (

∑
B2

l

k
− CF2)︸ ︷︷ ︸

replication 2

= Bu (16)

where CFi is the correction factor in ith replication.

2. Let Ba be the adjusted sum of squares for blocks within replication, or SSBAdj

(see Table 4). The adjusted treatment sum of squares, SSTrtAdj is calculated
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by

SSTrtAdj = SSTrtUnadj − k(r − 1)µ[
r

(r − 1)(1 + kµ)
Bu −Ba] (17)

Like the adjusted mean square error in balanced designs, the “effective error

mean square”, or E
′
e, is defined as

E
′

e = Ee[1 +
rkµ

k + 1
]. (18)

The effective error mean square is used for estimating the gain in accuracy over

randomized blocks. However, the F-statistic for testing the treatment effect

uses the intra block mean square as the denominator.

F =
MSTrtAdj

Ee

(19)

with the degrees of freedom (k2 − 1) and (rk − k − 1)(k + 1).

The formula for the error variance of the difference between two treatment means

in the same block is the same as those in for a balanced lattice design which is

2Ee[1+(r−1)µ]/r. Because of the partial balance, the error variance of the difference

between two treatment means in the same block is slightly smaller than the error

variance of the difference between two treatment means in different blocks which is

2Ee

r
[1 + rµ]. (20)

Except for small designs, we can use the average variance given by

2Ee

r

(
1 +

rµk

k + 1

)
. (21)

To estimate the gain in accuracy over the randomized block designs, the effective

error mean square is used to compare with the error mean square in randomized

block analysis.
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3 NUMERICAL EXAMPLES

3.1 Example of a balanced square lattice design

In the following example, the original data appeared in a paper by Comstock et al

(1948). They studied the effects of nine feeding treatments on the growth rates of

pigs. The experimental unit in this study was a pair of pigs which were fed in the

same pen. The 3×3 balanced lattice design is used, so six pigs were required for each

block. From past experience, the litter has an effect on the variance in the growth

rate; hence, two sets of three uniform littermates were assigned to each block. Within

a block, each treatment was applied to only one member of each set. The response

variable is the sum of gains in weight for 2 pigs. The data is given in Table 5. In this

example, we have r = k + 1 = 4 replications, block size of k = 3, k2=32 treatments,

and 32 − 1 = 8 blocks.

Table 5: Gain in weight for 2 pigs

Block Replication I Total Block Replication II Total

1 (1) (2) (3) 4 (3) (4) (8)

2.20 1.84 2.18 6.22 1.71 1.57 1.13 4.41

2 (4) (5) (6) 5 (2) (6) (7)

2.05 0.85 1.86 4.76 1.76 2.16 1.80 5.72

3 (7) (8) (9) 6 (1) (5) (9)

0.73 1.60 1.76 4.09 1.81 1.16 1.10 4.08

Block Replication III Total Block Replication IV Total

7 (1) (4) (7) 10 (3) (5) (7)

1.19 1.20 1.15 3.54 2.04 0.93 1.78 4.75

8 (2) (5) (8) 11 (2) (4) (9)

2.26 1.07 1.45 4.78 1.50 1.60 1.42 4.52

9 (3) (6) (9) 12 (1) (6) (8)

2.12 2.03 1.63 5.78 1.77 1.57 1.43 4.77

The total sum of squares, the unadjusted treatment sum of squares, the unadjusted

block sum of squares, and the replication sum of squares are computed below:

from equation (1), SST = (2.202 + 1.842 + . . .+ 1.432)−CF = 97.55− 91.58 = 5.97;
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from equation (2),

SSTrtU =

∑
T 2
j

r
− CF =

6.972 + 7.362 + . . .+ 5.922

4
− 91.58

=
379.24

4
− 91.58 = 3.23;

from (3),

SSR =
15.072 + 14.212 + 14.102 + 14.042

32
− 91.58 = 91.66− 91.58 = 0.08

Then, to find the adjusted sum of squares for blocks, (1) the sum of block totals for

block with the jth treatment, Bj, (2) the total of treatment j for all replications, Tj,

and (3) the weights for treatment j, Wj, are required. For example, for treatment 7,

T7 = 0.73 + 1.80 + 1.15 + 1.78 = 5.46,

B7 = 4.09 + 5.72 + 3.54 + 4.75 = 18.10,

and from equation (4), W7 = 3(5.46) − 4(18.10) + G = 1.40, where G is the grand

total. The values of Bj, Tj, and Wj are summarized in Table 6. From Table 6, we

Table 6: Treatment Totals and Adjustment Factors

Trt j Tj Bj Wj = kTj − (k + 1)Bj +G

1 6.97 18.61 3.89

2 7.36 21.24 -5.46

3 8.05 21.16 -3.07

4 6.42 17.23 7.76

5 4.01 18.37 -4.03

6 7.62 21.03 -3.84

7 5.46 18.10 1.40

8 5.61 18.05 2.05

9 5.92 18.47 1.30

can find SSBAdj from equation (5):

SSBAdj =

∑
W 2

j

k3(k + 1)
=

3.892 + (−5.46)2 + . . .+ 1.302

33(3 + 1)
=

153.43

108
= 1.42;

the intra-block error sum of squares,

SSE = SST − SSR − SSTrtU − SSBAdj = 5.97 − 0.08 − 3.23 − 1.42 = 1.24. The

complete ANOVA table is summarized in Table 7.
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Table 7: Analysis of Variance for the balanced square lattice design example

Source of variation Degree of freedom Sum of squares Mean squares

Replication 4− 1 = 3 0.08 0.026

Treatment(Unadjusted) 32 − 1 = 8 3.23 0.404

Block within replication(Adj) 32 − 1 = 8 1.42 0.178 = Eb

Intra-block Error (32 − 1)(3− 1) = 16 1.24 0.077 = Ee

Total 4(32)− 1 = 35 5.97

To test for a treatment effect, the adjustment factor for treatment means is calculated

as follows:

Eb = MSBAdj =
1.42

32 − 1
= 0.178

Ee = MSE =
1.24

(32 − 1)(3− 1)
= 0.078.

From equation (8), we can calculate the adjustment factor,

µ =
Eb − Ee

k2Eb

=
0.178− 0.078

32(0.178)
= 0.062.

So, using the adjustment factor to calculate the adjusted treatment total, T
′
j =

Tj + µWj, j = 1, 2, . . . , 9; all adjusted treatment totals are summarized in Table

8.

Table 8: The adjusted treatment totals

Adjusted treatment totals

T
′
1 T

′
2 T

′
3 T

′
4 T

′
5 T

′
6 T

′
7 T

′
8 T

′
9

7.21 7.01 7.85 6.90 3.76 7.38 5.55 5.74 6.00

Thus, the adjusted treatment sum of squares (see equation (7)) is

SSTrtAdj =

∑
(T

′
j )

2

r
− CF =

7.212 + 7.012 + . . .+ 6.002

4
− 91.58

=
379.02

4
− 91.58 = 3.16,
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and the effective error mean squares, equation (9), is E
′
e = Ee(1 + kµ) = Ee[1 +

(r − 1)µ] = 0.078[1 + 3(0.062)] = 0.092. The adjusted treatment mean square which

equals to SSTrtAdj/(k
2 − 1) = 3.16/8 = 0.395. Therefore, the F-ratio equals to

0.395/0.092 = 4.30 having 8 and 16 degrees of freedom. Normally, the intra-error

mean square is the denominator of F-statistic, but in this example the effective mean

square is used instead to take account of sampling errors. The standard error of the

adjusted treatment mean is
√
E ′

e/r =
√

0.092/4 = 0.151; and the standard error

of the difference between 2 adjusted means in the same block (see equation (11)) is√
2E ′

e/r =
√

(2× 0.092)/4 = 0.215.

The randomized complete block design error sum of squares is SSBAdj + SSE =

1.42 + 1.24 = 2.66 with 24 degrees of freedom. So, the unbiased estimate of error

variance for a randomized block design is 2.66/24, or 0.1108, and the efficiency of the

experiment relative to a randomized complete block design is 0.1108/0.092, or 120%.

3.2 Example of a partially balanced square lattice design

This example is from Cochran and Cox (1967). The data are yields in bushels per acre

of 25 varieties of soybeans. The data are collected in two replications of 25 varieties

in five blocks. Each block contains 5 varieties. So, this is a simple lattice design. The

data is given in Table 9. In this example, we have r = 2 replications, block size of

k = 5, k2=52 = 25 treatments, and rk = 2(5) = 10 blocks.

From the data in Table 9, the total sum of squares, the unadjusted treatment sum of

squares, the unadjusted block sum of squares, and the replication sum of squares are

calculated from equation(1),

SST = (62 + 72 + . . .+ 142)− CF = 10, 767− 9, 275.22 = 1, 491.78

and from equation (2),

SSTrtU =

∑
T 2
j

r
− CF =

302 + 282 + . . .+ 332

2
− 9, 275.22

= 9, 834.50− 9, 275.22 = 559.28

The jth treatment totals are summarized in the Table 10. For example, T1 = 6+24 =

30.

From equation (3),

SSR =
2892 + 3922

52
− 9, 275.22 = 9, 487.4− 9, 275.22 = 212.8

, where CF is the correction factor, 6812/50 = 9, 275.22. To calculate the adjusted

block sum of squares (equation (12)) we need Cl and RCi. For example, for block 2
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Table 9: Data of yields in bushels per acre of 25 varieties of soybeans

Bk Replication I TotalBl Bk Replication II TotalBl

1 (1) (2) (3) (4) (5) 6 (1) (6) (11) (16) (21)

6 7 5 8 6 32 24 13 24 11 8 80

2 (6) (7) (8) (9) (10) 7 (2) (7) (12) (17) (22)

16 12 12 13 8 61 21 11 14 11 23 80

3 (11) (12) (13) (14) (15) 8 (3) (8) (13) (18) (23)

17 7 7 9 14 54 16 4 12 12 12 56

4 (16) (17) (18) (19) (20) 9 (4) (9) (14) (19) (24)

18 16 13 13 14 74 17 10 30 9 23 89

5 (21) (22) (23) (24) (25) 10 (5) (10) (15) (20) (25)

14 15 11 14 14 68 15 15 22 16 19 87

Total 289 Total 392

Table 10: Treatment totals

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

30 28 21 25 21 29 23 16 23 23 41 21 19

T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25

39 36 29 27 25 22 30 22 38 23 37 33

(which is in replication 1) C2 =
∑
Tj(2) − rB2 = (T6 + T7 + T8 + T9 + T10)︸ ︷︷ ︸

see Table 10

−2(61) =

(29 + 23 + 16 + 23 + 23)− 2(61) = −8. Other Cl’s, l = 1, 2, . . . , 10 are computed in

the same way. The complete set of values of Cl’s are in Table 11.

Then, calculate the total of Cls in each replication:

for replication 1, RC1 = C1 +C2 +C3 +C4 +C5 = 61 + (−8) + 48 + (−15) + 17 = 103;

for replication 2, RC2 = C6 + C7 + C8 + C9 + C10 = (−9) + (−23) + (−8) + (−32) +

(−31) = −103.
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Table 11: Value of Cl for each block

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

61 -8 48 -15 17 -9 -23 -8 -32 -31

From the equation (12), the adjusted block sum of squares is calculated:

SSBAdj =

∑rk
l=1C

2
l

rk(r − 1)
−
∑allrep

i=1 (RCi)
2

rk2(r − 1)

=
612 + (−8)2 + . . .+ (−31)2

2(5)(2− 1)
− 1032 + (−103)2

2(52)(2− 1)
= 501.84.

The intra-block error sum of square (equation (13)) is

SSE = SST−SSR−SSTrtU−SSBAdj = 1, 491.78−212.18−559.28−501.84 = 218.48.

The complete ANOVA table is summarized in Table 12.

Table 12: Analysis of variance table for example of yield data

Source of variation Degree of freedom Sum of squares Mean squares

Replication 2− 1 = 1 212.18 212.18

Treatment(Unadjusted) 52 − 1 = 24 559.28 23.30

Block within replication(Adj) 2(5− 1) = 8 501.84 = Ba 62.73 = Eb

Intra-block Error 16 (Substraction) 218.48 13.66 = Ee

Total 2(52)− 1 = 49 1, 491.78

To get the adjusted treatment total, the adjustment factor, equation (14), is

calculated:

µ =
Eb − Ee

k(r − 1)Eb

=
62.73− 13.66

5(2− 1)62.73
= 0.1564.

After getting the the adjustment factor, this quantity is used for calculating the

adjusted treatment total (see equation (15)). For example, the adjusted treatment

total 2, treatment 2 are in the blocks 1 and 7 in replications 1 and 2 , respectively.

So,

T
′

2 = T2 + µ[ C∗
1︸︷︷︸

in block 1

+ C∗
2︸︷︷︸

in block 7

] = 28︸︷︷︸
fromTable 10

+0.1564[61 + (−23)︸ ︷︷ ︸
see Table 11

] = 33.945.
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Another example for treatment 23 which are in the blocks 5 and 8 in replications 1

and 2 , respectively. So,

T
′

23 = T23 + µ[ C∗
1︸︷︷︸

in block 5

+ C∗
2︸︷︷︸

in block 8

] = 23︸︷︷︸
fromTable 10

+0.1564[17 + (−8)︸ ︷︷ ︸
see Table 11

] = 24.41.

The complete set of values of T
′
j ’s are in Table 13.

Table 13: Adjusted treatment totals

T
′
1 T

′
2 T

′
3 T

′
4 T

′
5

38.14 33.95 29.29 29.54 25.70

T
′
6 T

′
7 T

′
8 T

′
9 T

′
10

26.34 18.15 13.50 16.74 16.90

T
′
11 T

′
12 T

′
13 T

′
14 T

′
15

47.10 24.91 25.26 41.50 38.66

T
′
16 T

′
17 T

′
18 T

′
19 T

′
20

25.24 21.05 21.40 14.65 22.80

T
′
21 T

′
22 T

′
23 T

′
24 T

′
25

23.25 37.06 24.41 34.65 30.81

To test the treatment effect, we need the adjusted treatment sum of squares, equation

(17). Equations (16) and (17) would be used to obtain SSTrtAdj. First, calculate the

unadjusted sum of squares for blocks within replication:

Bu = (

∑
B2

l

k
− CF1)︸ ︷︷ ︸

replication 1

+ (

∑
B2

l

k
− CF2)︸ ︷︷ ︸

replication 2

= [
322 + 612 + 542 + 742 + 682

5
− 2892

25
] + [

802 + 802 + 562 + 892 + 872

5
− 3922

25
]

= 211.36 + 138.64 = 350.
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Next, calculate the adjusted treatment sum of squares (equation (17)) in the following:

SSTrtAdj = SSTrtUnAdj − k(r − 1)µ[
r

(r − 1)(1 + kµ)
Bu −Ba]

= 559.28− 5(2− 1)(0.1564)[
2

(2− 1)(1 + 5(0.1564))
(350)− 501.84]

= 559.28− (−85.26) = 644.54.

The effective error mean square, E
′
e, is

E
′

e = Ee[1 +
rkµ

k + 1
] = 13.66[1 +

2(5)(0.1564)

5 + 1
] = 17.2144.

Therefore, the F-ratio equals to MSTrtAdj/Ee = (644.54/24)/13.66 = 1.966

having 24 and 8 degrees of freedom. The standard error of the adjusted

treatment mean is
√
E ′

e/r =
√

17.2144/2 = 2.933; and the standard error of the

difference between 2 adjusted means in the same block is
√

2Ee[1 + (r − 1)µ]/r =√
2(13.66)[1 + (2− 1)(0.1564)]/2 =

√
15.796 = 3.975; the standard error of the

difference between two adjusted treatment means in different blocks (equation (20))

is √
2Ee

r
(1 + rµ) =

2(13.66)

2
(1 + 2(0.1564)) = 4.235.

The average of variance, equation (21), is

2Ee

r
[1 +

rµk

k + 1
] =

2(13.66)

2
[1 +

2(0.1564)(5)

5 + 1
] = 17.22.

The randomized complete block design error sum of squares is SSBAdj + SSE =

501.84 + 218.48 = 720.32 with 24 degrees of freedom. While the mean square of

error variance for randomized block design is 720.32/24 = 30.01, the effective error

mean square in this design is 17.22. The efficiency of the experiment relative to a

randomized complete block design is 30.01/17.22, or 174.27%.
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4 R AND SAS PROGRAMS

4.1 R and SAS Programs for a balanced lattice design

4.1.1 R Program

In R Package “agricolae”, although there is no function that can directly analyze data

obtained from a lattice design, there are 2 useful functions for use with lattice designs.

The function “design.lattic” can randomize treatments into a k×k lattice, but only for

a partially balanced lattice design (simple and triple lattice designs). This function,

however, does not generate the analysis of variance. The function “PBIB.test” which

is aimed at the analysis of the partially balanced incomplete block design (PBIB) can

be applied to resoluble designs (lattice and alpha designs). For the previous example

of the study of the effects of nine feeding treatments on the growth rates of pigs by

Comstock et al (1948), the data in Table 5 must be structured in an appropriate form

for use in R. Variables referring to replications, blocks, treatments, response values

must be created. Sample R code is given below:

First, we have to load packages “agricolae” and MASS”. Package “MASS” is also

required because package “agricolae” needs a function “ginv” from the MASS package.

library(agricolae)

library(MASS)

Second, create column vectors for the replication, the block, treatment, and response

which are the argument of the function “PBIB.test”. In Table 5, we have 4

replications, 12 blocks, and 9 treatments.

# Creates a replication vector

rep<-rep(1:4,each=9)

# Creates a block vector

block<-rep(1:12,each=3)

# Creat a treatment vector

trt<-c(1,2,3,4,5,6,7,8,9,

3,4,8,2,6,7,1,5,9,

1,4,7,2,5,8,3,6,9,

3,5,7,2,4,9,1,6,8)

# Creat a response vector

gain.wt

<-c(2.20,1.84,2.18,2.05,0.85,1.86,0.73,1.60,1.76,

1.71,1.57,1.13,1.76,2.16,1.80,1.81,1.16,1.11,
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1.19,1.20,1.15,2.26,1.07,1.45,2.12,2.03,1.63,

2.04,0.93,1.78,1.50,1.60,1.42,1.77,1.57,1.43)

Now, specify the value of k , the block size. For this example, k = 3.

model<- PBIB.test(block,trt,rep,gain.wt,k=3)

After running the above program and display “data”, the following output is

generated:

ANALYSIS PBIB: gain.wt

Class level information

Blocks: 12

Trts : 9

Number of observations: 36

Analysis of Variance Table

Response: gain.wt

Df Sum Sq Mean Sq F value Pr(>F)

replication 3 0.0774 0.02580 0.3337 0.801132

trt.unadj 8 3.2261 0.40326 5.2168 0.002467 **

replication:block.adj 8 1.4206 0.17758 2.2972 0.074630 .

Residuals 16 1.2368 0.07730

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

coefficient of variation: 17.4 %

gain.wt Means: 1.595

Treatments

Parameters PBIB

treatmeans : 9

Block size : 3

Blocks/rep : 3

Replication: 4

Efficiency factor 0.75

The mean sums of squares corresponds to those in Table 7 except for the F tests. As

we saw in the previous calculations, to test the treatment effect, both the treatment

sum of squares and the error mean square have to be adjusted. The actual F value

is 4.30 instead of 5.21. The function “PBIB.test” also gives the adjusted treatment

means which are presented below (and correspond to adjusted treatment totals in

Table 8).
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model$means

<<< to see the objects: comparison and means >>>

trt means mean.adj N std.err

1 1.7425 1.8035178 4 0.1554838

2 1.8400 1.7543554 4 0.1554838

3 2.0125 1.9643445 4 0.1554838

4 1.6050 1.7267220 4 0.1554838

5 1.0025 0.9392861 4 0.1554838

6 1.9050 1.8447665 4 0.1554838

7 1.3650 1.3869601 4 0.1554838

8 1.4025 1.4346559 4 0.1554838

9 1.4800 1.5003916 4 0.1554838

The standard error above does not exactly corresponds to the
√
E ′

e/r =
√

0.092/4 =

0.151. We can ask “PBIB.test” to show the difference between 2 adjusted mean in

the same block. This follows from equation (11) as well as the previous example.

model$comparison

Comparison between treatments means

<<< to see the objects: comparison and means >>>

Difference stderr pvalue

1 - 2 0.04916241 0.2143020 0.821460

3 - 1 0.16082670 0.2143020 0.463868

1 - 4 0.07679588 0.2143020 0.724764

1 - 5 0.86423169 0.2143020 0.000964

6 - 1 0.04124861 0.2143020 0.849788

1 - 7 0.41655769 0.2143020 0.069722

1 - 8 0.36886191 0.2143020 0.104484

1 - 9 0.30312627 0.2143020 0.176386

3 - 2 0.20998911 0.2143020 0.341734

2 - 4 0.02763347 0.2143020 0.899008

2 - 5 0.81506928 0.2143020 0.001562

6 - 2 0.09041103 0.2143020 0.678722

2 - 7 0.36739528 0.2143020 0.105760

2 - 8 0.31969950 0.2143020 0.155200

2 - 9 0.25396386 0.2143020 0.253292

3 - 4 0.23762257 0.2143020 0.283896

3 - 5 1.02505839 0.2143020 0.000204

3 - 6 0.11957808 0.2143020 0.584576

3 - 7 0.57738439 0.2143020 0.015958

3 - 8 0.52968860 0.2143020 0.025060

3 - 9 0.46395297 0.2143020 0.045852

4 - 5 0.78743581 0.2143020 0.002050

6 - 4 0.11804449 0.2143020 0.589358
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4 - 7 0.33976181 0.2143020 0.132432

4 - 8 0.29206603 0.2143020 0.191798

4 - 9 0.22633039 0.2143020 0.306596

6 - 5 0.90548031 0.2143020 0.000644

7 - 5 0.44767400 0.2143020 0.053044

8 - 5 0.49536978 0.2143020 0.034454

9 - 5 0.56110542 0.2143020 0.018634

6 - 7 0.45780631 0.2143020 0.048454

6 - 8 0.41011052 0.2143020 0.073720

6 - 9 0.34437489 0.2143020 0.127616

8 - 7 0.04769578 0.2143020 0.826692

9 - 7 0.11343142 0.2143020 0.603860

9 - 8 0.06573564 0.2143020 0.762994

Done.

The P-values are based on a t statistic. For example, for comparing treatments 1 and

2, t = 0.049/0.214 = 0.229 with an associated P-value of 2P (t16 > 0.229) = 0.821.

4.1.2 SAS Program

The LATTICE procedure in SAS can analyze data from balanced square lattices,

partially balanced square lattices, and some rectangular lattices. The LATTICE

procedure determines the type of lattice design from the data set. It also checks

whether the data is valid and gives the message if it is not working. The data

that we will create must consist of variables named “Group”, “Block”, “Treatmnt”,

and “Rep”. The variable Group indicates which orthogonal replication in the basic

plan (balanced design) includes the experimental unit. The values of ”Group” are

1, 2, . . . , r where r is the number of replicates for a balanced design. The variable

“Rep” is needed when there are more than 1 repetition of the entire basic plan. The

values of “Rep” are 1, 2, . . . , p, where p is the number of replications of the entire basic

plan. Hence, the experiment has a total of r × p replications. Then, for a balanced

square lattice design, there will be a variable “Rep”. More details are in SAS/STAT

9.2 (2008). A sample program for the pig data example is given below.

First, create a dataset with variables Group, Treatmnt, Rep, and response Weight.

data pigs;

input Group Block Treatmnt Weight @@;

cards

1 1 1 2.20 1 1 2 1.84 1 1 3 2.18 1 2 4 2.05

1 2 5 0.85 1 2 6 1.86 1 3 7 0.73 1 3 8 1.60

1 3 9 1.76 2 1 1 1.19 2 1 4 1.20 2 1 7 1.15

2 2 2 2.26 2 2 5 1.07 2 2 8 1.45 2 3 3 2.12
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2 3 6 2.03 2 3 9 1.63 3 1 1 1.81 3 1 5 1.16

3 1 9 1.11 3 2 2 1.76 3 2 6 2.16 3 2 7 1.80

3 3 3 1.71 3 3 4 1.57 3 3 8 1.13 4 1 1 1.77

4 1 6 1.57 4 1 8 1.43 4 2 2 1.50 4 2 4 1.60

4 2 9 1.42 4 3 3 2.04 4 3 5 0.93 4 3 7 1.78

;

Second, use PROC LATTICE to generate the analysis of variance.

proc lattice data = pigs;

var Weight;

run;

The results are the following:

The Lattice Procedure

Analysis of Variance for Weight

Sum of Mean

Source DF Squares Square

Replications 3 0.07739 0.02580

Blocks within Replications (Adj.) 8 1.4206 0.1776

Component B 8 1.4206 0.1776

Treatments (Unadj.) 8 3.2261 0.4033

Intra Block Error 16 1.2368 0.07730

Randomized Complete Block Error 24 2.6574 0.1107

Total 35 5.9609 0.1703

Additional Statistics for Weight

Variance of Means in Same Block 0.04593

LSD at .01 Level 0.6259

LSD at .05 Level 0.4543

Efficiency Relative to RCBD 120.55

Adjusted Treatment

Means for Weight

Treatment Mean

1 1.8035

2 1.7544

3 1.9643

4 1.7267

5 0.9393
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6 1.8448

7 1.3870

8 1.4347

9 1.5004

The mean sums of squares are the same as those from function PBIB.test in R except

that PROC LATTICE did not perform the F tests. PROC LATTICE also gives the

randomized complete block error, the pooled sums of squares for blocks and intra-

block error. The relative efficiency of the lattice design was 120.5. However, both

SAS and R did not give the adjusted treatment sum of squares. Therefore, we cannot

obtain the test of treatment effect from both R and SAS.

4.2 R and SAS Programs for a partially balanced lattice

design

4.2.1 R Program

We use the same function as we did for a balanced lattice design. Column vectors

are created for the replication, the block, treatment, and response which are the

arguments of the function “PBIB.test”. The example in Table 9 has 2 replications,

10 blocks, and 25 treatments.

library(agricolae)

library(MASS)

rep<-rep(1:2,each=25)

block<-rep(1:10,each=5)

trt<-c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,

21,22,23,24,25,1,6,11,16,21,2,7,12,17,22,3,8,13,18,23,

4,9,14,19,24,5,10,15,20,25)

yield<-c(6,7,5,8,6,16,12,12,13,8,17,7,7,9,14,18,16,13,13,14,14,15,

11,14,14,24,13,24,11,8,21,11,14,11,23,16,4,12,12,12,17,10,

30,9,23,15,15,22,16,19)

PBIB.test(block,trt,rep,yield,k=5)

The results from R are the following:

ANALYSIS PBIB: yield

Class level information

Blocks: 10

Trts : 25

Number of observations: 50

Analysis of Variance Table
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Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

replication 1 212.18 212.180 15.5386 0.001166 **

trt.unadj 24 559.28 23.303 1.7066 0.135789

replication:block.adj 8 501.84 62.730 4.5939 0.004629 **

Residuals 16 218.48 13.655

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

coefficient of variation: 27.1 %

yield Means: 13.62

Treatments

Parameters PBIB

treatmeans : 25

Block size : 5

Blocks/rep : 5

Replication: 2

Efficiency factor 0.75

All mean squares are the same as those in Table 12 except for the F statistics.

Again, the estimates of adjusted treatment means which are obtained by dividing

the adjusted treatment totals (in Table 13) by 2 (the number of replications) are

given below. The standard error below is not exactly the same as
√
E ′

e/r = 2.933.

PBIB.test(block,trt,rep,yield,k=5)$means

Comparison between treatments means

<<< to see the objects: comparison and means >>>

trt means mean.adj N std.err

1 15.0 19.068070 2 2.993997

2 11.5 16.972820 2 2.993997

3 20.5 14.646302 2 2.993997

4 10.5 14.768731 2 2.993997

5 9.5 12.846963 2 2.993997

6 19.5 13.170054 2 2.993997

7 18.0 9.074805 2 2.993997

8 14.5 6.748286 2 2.993997

9 13.5 8.370716 2 2.993997

10 12.5 8.448948 2 2.993997

11 11.0 23.551052 2 2.993997

12 14.0 12.455803 2 2.993997

13 15.0 12.629284 2 2.993997
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14 11.0 20.751714 2 2.993997

15 19.0 19.329946 2 2.993997

16 11.5 12.622429 2 2.993997

17 18.5 10.527180 2 2.993997

18 16.5 10.700662 2 2.993997

19 10.5 7.323091 2 2.993997

20 12.5 11.401323 2 2.993997

21 10.5 11.625857 2 2.993997

22 14.5 18.530607 2 2.993997

23 11.5 12.204089 2 2.993997

24 8.0 17.326518 2 2.993997

25 11.5 15.404751 2 2.993997

Again, we can generate the estimates of differences in treatment effects from

PBIB.test. There are 2 standard errors (see below). For example, treatments 1

and 2 are in the same block (see Table 9), and formula (11) is applied. Treatments 1

and 7 are in different blocks, and formula (20) is applied.

PBIB.test(block,trt,rep,yield,k=5)$comparison[1:24,]

Difference stderr pvalue

1 - 2 2.095249 3.973854 0.605248

1 - 3 4.421768 3.973854 0.282270

1 - 4 4.299338 3.973854 0.295332

1 - 5 6.221106 3.973854 0.137026

1 - 6 5.898015 3.973854 0.157188

1 - 7 9.993265 4.234151 0.031300

1 - 8 12.319783 4.234151 0.010234

1 - 9 10.697354 4.234151 0.022446

1 - 10 10.6191216 4.234151 0.023298

11 - 1 4.4829826 3.973854 0.275902

1 - 12 6.6122669 4.234151 0.137930

1 - 13 6.4387853 4.234151 0.147856

14 - 1 1.6836442 4.234151 0.696154

15 - 1 0.2618763 4.234151 0.951450

1 - 16 6.4456400 3.973854 0.124338

1 - 17 8.5408895 4.234151 0.060780

1 - 18 8.3674079 4.234151 0.065638

1 - 19 11.7449785 4.234151 0.013552

1 - 20 7.6667464 4.234151 0.089006

1 - 21 7.4422127 3.973854 0.079486

1 - 22 0.5374621 4.234151 0.900574

1 - 23 6.8639806 4.234151 0.124534

1 - 24 1.7415511 4.234151 0.686302
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4.2.2 SAS Program

The following SAS code is similar to the code used for a balanced design:

data Soy;

do Group = 1 to 2;

do Block = 1 to 5;

do Plot = 1 to 5;

input Treatmnt Yield @@;output;

end;

end;

end;

cards;

1 6 2 7 3 5 4 8 5 6

6 16 7 12 8 12 9 13 10 8

11 17 12 7 13 7 14 9 15 14

16 18 17 16 18 13 19 13 20 14

21 14 22 15 23 11 24 14 25 14

1 24 6 13 11 24 16 11 21 8

2 21 7 11 12 14 17 11 22 23

3 16 8 4 13 12 18 12 23 12

4 17 9 10 14 30 19 9 24 23

5 15 10 15 15 22 20 16 25 19

;

proc lattice data=Soy;

run;

The following SAS output was generated by the code above:

The Lattice Procedure

Analysis of Variance for Yield

Sum of Mean

Source DF Squares Square

Replications 1 212.18 212.18

Blocks within Replications (Adj.) 8 501.84 62.7300

Component B 8 501.84 62.7300

Treatments (Unadj.) 24 559.28 23.3033

Intra Block Error 16 218.48 13.6550

Randomized Complete Block Error 24 720.32 30.0133

Total 49 1491.78 30.4445

Additional Statistics for Yield
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Variance of Means in Same Block 15.7915

Variance of Means in Different Bloc 17.9280

Average of Variance 17.2159

LSD at .01 Level 12.1189

LSD at .05 Level 8.7959

Efficiency Relative to RCBD 174.34

The mean sums of squares are the same as those in Table 12 as well as the results

from R. PROC LATTICE provides the variances of the mean differences in the same

block and in different blocks. Their square roots are equal to standard errors in R

output. Unlike the PBIB.test in R, PROC LATTICE also gives the average variance

corresponding to formula (21). The following results are the estimates of adjusted

treatment means.

Adjusted Treatment

Means for Yield

Treatment Mean

1 19.0681

2 16.9728

3 14.6463

4 14.7687

5 12.8470

6 13.1701

7 9.0748

8 6.7483

9 8.3707

10 8.4489

11 23.5511

12 12.4558

13 12.6293

14 20.7517

15 19.3299

16 12.6224

17 10.5272

18 10.7007

19 7.3231

20 11.4013

21 11.6259

22 18.5306

23 12.2041

24 17.3265

25 15.4048
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5 R PROGRAMS FOR SQUARE LATTICE

DESIGNS

The function PBIB.test in library agricolae did not give the right F-test because the

mean square of unadjusted treatment still contains block effects. PROC LATTICE

in SAS did not give the F-test for the treatment effect. Therefore, in this paper the R

function, named “lattice.design” is written for balanced and partially balanced square

lattice designs. The arguments for this function are exactly the same as those for the

function PBIB.test. The R code for the function “lattice.balance” is in appendix.

5.1 A Balanced lattice design

Using the same data in section 3.1 (gain in weight in pigs), the result generated by

the lattice.balance function is below.

> lattice.design(block,trt,rep,y,3)

S.E.Adjusted Treatment Mean : 0.1515

S.E.Diff of Adj Treatment Mean : 0.2143

Effective error mean square : 0.0919

Efficiency Relative to RCBD : 120.5494

Analysis of Variance Table: Balanced

Df Sum Sq Mean Sq F value Pr(>F)

Replication 3 0.0774 0.02580 0.3337

Block.Adj 8 1.4206 0.17758 2.2972 0.074630 .

Treatment.Adj 8 3.1717 0.39646 5.1289 0.002689 **

Intra-block Error 16 1.2368 0.07730

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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5.2 A Partially balanced lattice design

Using the same data in section 3.2 (yield data), the result generated by the

lattice.balance function is below.

> lattice.design(block,trt,rep,y,5)

S.E.Adjusted Treatment Mean : 2.9339

S.E.Diff of Adj Trt Mean : 3.9739

S.E.Diff of Adj Trt Mean (not the same bk): 4.2342

The average variance : 17.2159

Efficiency Relative to RCBD : 174.3353

Analysis of Variance Table: Partially Balanced

Df Sum Sq Mean Sq F value Pr(>F)

Replication 1 212.18 212.180 15.5386

Block.Adj 8 501.84 62.730 4.5939 0.004629 **

Treatment.Adj 24 644.63 26.859 1.9670 0.082442 .

Intra-block Error 16 218.48 13.655

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The class of the lattice.balance is the list. In this object, the sums of squares, their

degrees of freedom, and the adjusted treatment means can be extracted. The function

“names” gives all objects in the “lattice.balance”.
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A R Code for lattice.design

lattice.design<- function(block,trt,rep,y,bksize.sclar)

{

if(max(rep)==(bksize.sclar+1)){

############## FIND Adj SSB ####################

k<-bksize.sclar

Total.InBj<- as.matrix(tapply(y,list(block),sum))

Tj<- as.matrix(tapply(y,list(trt),sum))

NumOfBlock<- max(dim(Total.InBj))

NumOfTrt<- max(dim(Tj))

BTotal.long<-rep(Total.InBj,each=k)

dat<-as.data.frame(cbind(BTotal.long,trt,block))

Bj<-matrix(0,ncol=1,nrow=NumOfTrt)

for(i in 1:NumOfTrt){

SumVec<-rep(0,(NumOfBlock*k))

dat<-as.data.frame(cbind(BTotal.long,trt,block,SumVec))

Bj[i]<-sum(ifelse(dat$trt==i,dat$SumVec<- dat$BTotal.long,dat$SumVec<- 0))

}

##############################################

FindW<-as.data.frame(cbind(Tj,Bj))

FindW$W<- k*FindW$V1-(k+1)*FindW$V2+sum(y)

FindW$WSquare<-(FindW$W)^2

SSB.Adj<-sum(FindW$WSquare)/((k^3)*(k+1))

#############################################

MSB.Adj<-SSB.Adj/(max(trt)-1)

SSRep<- anova(lm(y~factor(rep)))$"Sum Sq"[1]

MSRep<- SSRep/(max(rep)-1)

SSTrt.UnAdj<- anova(lm(y~factor(trt)))$"Sum Sq"[1]

MSTrt.UnAdj<- SSTrt.UnAdj/(max(trt)-1)

SSTotal<- sum(anova(lm(y~factor(trt)))$"Sum Sq")

SSE<- SSTotal-SSRep-SSTrt.UnAdj-SSB.Adj

MSE<- SSE/((max(trt)-1)*(sqrt(max(trt))-1))

mu<- (MSB.Adj-MSE)/(max(trt)*MSB.Adj)

CF<- (sum(y))^2/length(rep)

Adj.Total<-FindW$V1+mu*FindW$W

Adj.Trt.Mean<- Adj.Total/(k+1)

SSTrt.Adj<- sum(Adj.Total^2)/max(rep)-CF

MSTrt.Adj <- SSTrt.Adj/(max(trt)-1)

RBD.MSE<-(SSB.Adj+SSE)/((max(trt)-1)+(max(trt)-1)*(sqrt(max(trt))-1))

EffectiveMSE2<-MSE*(1+sqrt(max(trt))*mu)

EffectiveSSE2<-EffectiveMSE2*(k^2-1)*(k-1)

Efficiency<- (RBD.MSE/EffectiveMSE2)*100

F.Trt <- MSTrt.Adj/EffectiveMSE2

pval<-pf(F.Trt, df1=max(trt)-1, df2=(max(trt)-1)*(sqrt(max(trt))-1),lower.tail = FALSE)

se.Adj.trtMean<- sqrt(EffectiveMSE2/(sqrt(max(trt))+1))

se.Diff.same<- sqrt(2*EffectiveMSE2/(sqrt(max(trt))+1))
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############# bar plot ####################

#mp<-barplot(Adj.Trt.Mean, names.arg=seq(1:max(trt)),xlab="Treatments",

#ylab="Adjusted Means",col=terrain.colors(max(trt)),

#main="Balanced Square Lattice Design")

#tot <- round(colMeans(t(Adj.Trt.Mean)),2)

#text(mp, tot + 0.05, format(tot), xpd = TRUE, col = "black",cex=1)

#legend("bottomright",legend=paste(c("F-statistic=","p-value=","Efficiency="),

# c(format(F ,digits=4,justify = "right", scientific = TRUE)

# ,format(pval,digits=4,justify = "right", scientific = TRUE)

# ,format(Efficiency*100,,digits=4,justify = "right",

# scientific = TRUE)

# )

# ),bg="white",box.col="grey")

#error.bar <- function(x, y, upper, lower=upper, length=0.1,...){

#if(length(x) != length(y) | length(y) !=length(lower) | length(lower) != length(upper))

#stop("vectors must be same length")

#arrows(x,y+upper, x, y-lower, angle=90, code=3, length=length, ...)

#}

#error.bar(mp,Adj.Trt.Mean,rep(se.Adj.trtMean,length(Adj.Trt.Mean))

############## Make a Table Output (ANOVA)###############

ssrep<-SSRep

repdf<- k

SSBAdj<-SSB.Adj

SSBAdjrep<- max(trt)-1

SSTrt.Adj<-SSTrt.Adj

SSTrt.Adjdf<- max(trt)-1

SSE.Effective<-EffectiveSSE2

Errordf<-(max(trt)-1)*(k-1)

Df <- c(repdf, SSBAdjrep, SSTrt.Adjdf,Errordf,Errordf)

ssq <- c(ssrep, SSBAdj,SSTrt.Adj,SSE, SSE.Effective)

frep<-MSRep/MSE

fb<-MSB.Adj/MSE

pval.B<-pf(fb, df1=max(trt)-1, df2=(max(trt)-1)*(sqrt(max(trt))-1),lower.tail = FALSE)

ftrt<-MSTrt.Adj/EffectiveMSE2

fsse<-1

Fval<-c(frep,fb,ftrt,NA,NA)

Means.Adj<-Adj.Trt.Mean

Pvalue<-c(NA,pval.B,pval,NA,NA)

anovadf <- data.frame(Df, ‘Sum Sq‘=ssq, ‘Mean Sq‘=ssq/Df,
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‘F value‘=Fval ,‘Pr(>F)‘ = Pvalue, check.names=FALSE)

rownames(anovadf) <- c("Replication","Block.Adj[a]","Treatment.Adj[b]","Error[a]",

"Effective.Error[b]")

class(anovadf) <- c("anova","data.frame")

print(list(Adj.means=Means.Adj))

cat(c(" \n"))

cat(c(" \n"))

cat(c("S.E.Adjusted Treatment Mean : "),round(se.Adj.trtMean,4),"\n")

cat(c("Efficiency Relative to RCBD : "),round(Efficiency,4),"\n")

cat(c("S.E.Diff of Adj Treatment Mean : "),round(se.Diff.same,4),"\n")

cat(c(" \n"))

cat(c("Analysis of Variance Table: Balanced\n"))

cat(c(" \n"))

return(anovadf)

}

else{

k<-bksize.sclar

tmp<-as.data.frame(cbind(rep,block,trt,y))

class(tmp$block)

SSTrt.UnAdj<-anova(lm(y~factor(trt),data=tmp))$"Sum Sq"[1]

SSRep<-anova(lm(y~factor(rep),data=tmp))$"Sum Sq"[1]

SSTot<-anova(lm(y~factor(rep),data=tmp))$"SumSq"[1]+anova(lm(y~factor(rep),

data=tmp))$"Sum Sq"[2]

Total.InBj<- as.matrix(tapply(y,list(block),sum))

Tj<- as.matrix(tapply(y,list(trt),sum))

SumTj.L<-matrix(0,ncol=1,nrow=max(block))

for(i in 1:max(block)){

SumTj.L[i,1] <- sum(Tj[tmp[block==i,][,3]])

}

r<-max(rep)

CL<-SumTj.L-r*Total.InBj

RCi<-matrix(0,ncol=1,nrow=r)

for(j in 1:r){

RCi[j,1]<-sum(CL[unique(tmp[rep==j,][,2])])

}

SSB.Adj<- (sum(CL^2)/(r*k*(r-1)))-(sum(RCi^2)/(r*(k^2)*(r-1)))

SSE<- SSTot-SSRep-SSTrt.UnAdj-SSB.Adj

Df.Rep<- (r-1)

Df.Trt<- k^2-1

Df.Block<- r*(k-1)

Df.Error<- (r*k-k-1)*(k-1)

MSTrt.UnAdj<-SSTrt.UnAdj/Df.Trt

MSRep<-SSRep/Df.Rep

MSB.Adj<-SSB.Adj/Df.Block



37

MSE<-SSE/Df.Error

mu<-(MSB.Adj-MSE)/(k*(r-1)*MSB.Adj)

Adj.Total<-matrix(0,ncol=1,nrow=k^2)

for(i in 1:(k^2)){

Adj.Total[i,1]<- Tj[i]+ mu*sum(CL[tmp[trt==i,][,2]])

}

Adj.means<-Adj.Total/r

BuI<-matrix(0,ncol=1,nrow=r)

for(i in 1:r){

BuI[i,1]<-(sum(Total.InBj[unique(tmp[rep==i,][,2])]^2)/k)-

(sum(Total.InBj[unique(tmp[rep==i,][,2])])^2)/(k^2)

}

Bu<-sum(BuI)

SSTrt.Adj<- SSTrt.UnAdj-k*(r-1)*mu*(r/((r-1)*(1+k*mu))*Bu-SSB.Adj)

Effective.Error <- MSE*(1+((r*mu*k)/(k+1)))

SSE.Effective <- (Effective.Error)*Df.Error

F.Trt<- (SSTrt.Adj/Df.Trt)/Effective.Error

se.Adj.Mean<- sqrt(Effective.Error/r)

se.Adj.Mean.Same<- sqrt((2*MSE*(1+(r-1)*mu))/r)

se.Adj.Mean.DiffB<- sqrt((2*MSE*(1+r*mu))/r)

averg.var<- 2*MSE*(1+(r*mu*k)/(k+1))/r

RBD.SSE<-SSB.Adj+SSE

RBD.MSE<- RBD.SSE/(Df.Block+Df.Error)

Efficiency<- (RBD.MSE/Effective.Error)*100

######################################

# MSTrt.UnAdj<-SSTrt.UnAdj/Df.Trt #

# MSRep<-SSRep/Df.Rep #

# MSB.Adj<-SSB.Adj/Df.Block #

# MSE<-SSE/Df.Error #

######################################

Df <- c(Df.Rep, Df.Block, Df.Trt,Df.Error,Df.Error)

ssq <- c(SSRep, SSB.Adj,SSTrt.Adj,SSE, SSE.Effective)

frep <- MSRep/MSE

fb<- MSB.Adj/MSE

ftrt<- F.Trt

Fval<-c(frep,fb,ftrt,NA,NA)

pval.B<-pf(fb, df1= Df.Block, df2= Df.Error,lower.tail = FALSE)
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pval.trt<-pf(ftrt, df1= Df.Trt, df2= Df.Error,lower.tail = FALSE)

Pvalue<-c(NA,pval.B,pval.trt,NA,NA)

anovadf <- data.frame(Df, ‘Sum Sq‘=ssq, ‘Mean Sq‘=ssq/Df,

‘F value‘=Fval ,‘Pr(>F)‘ = Pvalue, check.names=FALSE)

rownames(anovadf) <- c("Replication","Block.Adj[a]","Treatment.Adj[b]","Error[a]"

,"Effective.Error[b]")class(anovadf) <- c("anova","data.frame")

print(list(Adj.means=Adj.means))

cat(c(" \n"))

cat(c("S.E.Adjusted Treatment Mean : "),round(se.Adj.Mean,4),"\n")

cat(c("S.E.Diff of Adj Trt Mean : "),round(se.Adj.Mean.Same,4),"\n")

cat(c("S.E.Diff of Adj Trt Mean (not the same bk): "),round(se.Adj.Mean.DiffB,4),"\n")

cat(c("The average variance : "),round(averg.var,4),"\n")

cat(c("Efficiency Relative to RCBD : "),round(Efficiency,4),"\n")

cat(c(" \n"))

cat(c("Analysis of Variance Table: Partially Balanced\n"))

cat(c(" \n"))

return(anovadf)

}

}

#############################################################################

####################### BALANCED LATTICE DESIGN #############################

#############################################################################

# Creates a replication vector

rep<-rep(1:4,each=9)

# Creates a block vector

block<-rep(1:12,each=3)

# Creat a treatment vector

trt<-c(1,2,3,4,5,6,7,8,9,

3,4,8,2,6,7,1,5,9,

1,4,7,2,5,8,3,6,9,

3,5,7,2,4,9,1,6,8)

# Creat a response vector

y<-c(2.20,1.84,2.18,2.05,0.85,1.86,0.73,1.60,1.76,

1.71,1.57,1.13,1.76,2.16,1.80,1.81,1.16,1.11,

1.19,1.20,1.15,2.26,1.07,1.45,2.12,2.03,1.63,

2.04,0.93,1.78,1.50,1.60,1.42,1.77,1.57,1.43)

lattice.design(block,trt,rep,y,3)

#############################################################################

############# PARTIALLY BALANCED LATTICE DESIGN #############################

#############################################################################

rep<-rep(1:2,each=25)

block<-rep(1:10,each=5)

trt<-c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,

21,22,23,24,25,1,6,11,16,21,2,7,12,17,22,3,8,13,18,23,
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4,9,14,19,24,5,10,15,20,25)

y<-c(6,7,5,8,6,16,12,12,13,8,17,7,7,9,14,18,16,13,13,14,14,15,

11,14,14,24,13,24,11,8,21,11,14,11,23,16,4,12,12,12,17,10,

30,9,23,15,15,22,16,19)

lattice.balance(block,trt,rep,y,5)
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