
Causal Inference and Major League
Baseball

Jamie Thornton

Department of Mathematical Sciences

Montana State University

May 4, 2012

A writing project submitted in partial fulfillment
of the requirements for the degree

Master of Science in Statistics



APPROVAL

of a writing project submitted by

Jamie Thornton

This writing project has been read by the writing project advisor and has been
found to be satisfactory regarding content, English usage, format, citations,
bibliographic style, and consistency, and is ready for submission to the Statistics
Faculty.

Date Steve Cherry
Writing Project Advisor

Date Mark C. Greenwood
Writing Project Coordinator



Causal Inference and Major League Baseball 1

1. Introduction

Statistics has been a integral part of baseball for many years. Over a decade
ago, baseball managers started relying heavily on statistics to make on field
decisions. At the beginning, many of these statistics were simple stats calculated by
hand. How many runs did each batter hit in (RBI’s), or how many times did each
batter strike out? These easy statistics laid the ground work for some of the more
complicated statistics that are calculated in major league baseball today. The
simple stats still have plenty of value in the eye of the manager and team owner, but
there have also been new additions and improvements over the years. For example,
a relatively new statistic to the game, slugging percentage, looks at the total
number of bases earned per at bat. (Sports Reference LLC, 2009)

While the goal of the players may be to win a World Series, the goal of the
owner is to make a profit. The reality is that major league baseball is a business: a
multi-billion dollar business. With the cost of operating a franchise continuing to
rise, owners must be looking for a way to decrease costs and increase revenue. The
most costly aspect of owning a major league baseball team is usually the salaries
that the players earn. During the 2011 season the average salary for MLB players
was just under $3.1 million, with the minimum salary at $414,000 (Associated
Press, 2011). With 40-man rosters, it’s clear that paying players can quickly cost a
team over $100 million a year.

With salary costs soaring, teams are constantly searching for a way to
balance the costs of the team with potential revenue. It makes sense that winning
teams tend to sell more tickets, and thus make more revenue. Obviously, fans are
much more likely to jump on the bandwagon and pay for tickets if they are going to
watch a winning team. So the question becomes; how much is winning games
worth? And more importantly, if owners do invest in more expensive players, will
their investments be rewarded with more games won?

There are several examples of teams in major league baseball that spare no
expense when it comes to having the highest paid players. The New York Yankees
are a prime example of a team that might pay for their wins. In 2011, for the 13th
season in a row, the Yankees sported the highest league payroll. But the Yankees
also sported 97 wins, which was the best record in the American League (ESPN,
2011). But, there are also examples of teams with small payrolls winning a lot of
games. For example, the Tampa Bay Rays made it to the World Series in 2008 with
a payroll of only $43.8 million, which was second-to-lowest in the league that year.
So the real questions is, does a higher payroll lead to more wins?

Through-out this paper, I will be investigating work done by Derek Stimel
(Stimel, 2011) as he looked at the dependence relationships between payroll and
winning percentage in major league baseball. Stimel not only investigated how
payroll affected the winning percentage of a team, but also how the winning
percentage affected payroll. For example, after the Rays were in the World Series in
2008, the 2009 payroll for the team jumped $20 million dollars from the previous
year to $63.3 million (Kendrick, 2011). Was this jump a direct result of the success
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the previous year? Should the owners expect this increase in payroll lead to
continued success? These are all questions that we will investigate.

2. Possible Relationships

In the beginning of the paper by Stimel (2011), it is noted that there are
three potential relationships that could exist between a team’s payroll and their
winning percentage. First, the payroll of a team could affect the winning
percentage. We would imagine that this is a positive relationship, meaning that an
increase in payroll should lead to an increase in winning percentage. This makes
sense in the context of major league baseball where a player is supposedly paid
according to their skill and abilities. It would stand to reason that if you are
spending more on your payroll, then you should be paying for more skilled players;
and more skilled players should lead to a higher winning percentage.

The second relationship that could exist would be where an increase in
winning percentage leads to an increase in payroll. More success is likely to bring
not only more fans to the ball park, but also increase revenue through TV deals,
merchandise, advertising, etc. A team that is making more money is likely to spend
more of that revenue on players, thus increasing the team payroll. The team would
spend more money on what they hope are more skilled players, which would
hopefully continue to keep the winning percentage high.

The last relationship that is possible between payroll and winning percentage
is that they are both influenced by on field performance. A team that performs
better on the field should win more games, leading to a higher winning percentage.
But if a team is performing better on the field, then some individual players are
likely performing better, and with better performance comes higher salaries, which
would increase payroll. It is common practice for contracts to be renegotiated,
especially after a player does particularly well. If a team suddenly does better on
the field than it has previously, it would make sense that the players on the team
that helped produce the increase in wins would want to be compensated for their
production. This could easily lead to an increase in payroll.

3. Data

To investigate which of these situations is more likely, Stimel used the PC
algorithm and graph theory to look at the directional relationships between payroll,
winning percentage, and on field performance. Before we delve into what the PC
algorithm is actually doing, we will investigate the choice of variables. Stimel used
29 variables in an effort to describe the on field performance of each team. All the
variables were taken at the team level and recorded for 21 seasons between 1985 and
2009. The variables were separated in to 5 basic categories; overall variables,
batting variables, fielding variables, pitching variables and base running variables.

The overall variables included winning percentage and payroll. Winning
percentage is defined as the number of games won during a season divided by the
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total number of games played. Each team plays 162 regular season games with up
to 19 additional games for the playoffs. Payroll is defined in millions of dollars, so a
payroll value of 75.4 would correspond to a team having a payroll of $75.4 million
that season. All the payroll numbers were inflated to represent 2008 dollar value
(Stimel, 2011).

The batting variables included at bats, batting average, walks, batter park
factor, singles, doubles, triples, home runs, total bases, runs on base percentage,
slugging percentage and strikeouts. Again, all of these variables are at the team
level; for example at bats represents the total number of at bats that a team had
during a season. Batting average is the total number of hits divided by total at
bats, i.e. the average number of hits per at bat. Walks, singles, doubles, triples,
home runs, and strikeouts are simple counts of how many of each type of outcome
resulted from a plate appearance. Total bases counts how many total bases a team
achieved in a season. For example, a double that was moved over on a sacrifice fly
would get 3 total bases; 2 for the double and 1 for the sacrifice fly. Slugging
percentage, as explained before, represents the average number of bases per hit. The
last variable, batter park factor, tells us if the team plays in a hitter-friendly park or
not. If a team plays in a hitter-friendly park it may not only affect the number of
hits or home runs the team achieves, but also the type of player they are willing to
pay for. A team with a hitter-friendly park may be more willing to pay large
amounts of money for a proven hitter, than a team that is not in a hitter-friendly
park (Stimel, 2011).

The only fielding variable included was fielding percentage. Fielding
percentage is calculated by dividing the total number of outs completed by a team
by the total number of opportunities they had to get an out. For example, when a
team commits an error and does not throw a runner out at first base, that is
considered a missed opportunity for an out. The fielding percentage represents the
average number of outs a team gets per opportunity (Stimel, 2011).

Pitching variables include walks against, complete games, earned runs,
earned run average, hits against, home runs against, innings pitched, pitching park
factor, runs against, strikeouts against, and saves. Walks against, complete games,
hits against, home runs against, runs against, and strikeouts against are simple
counts; for example, hits against represents the total number of hits opposing teams
got against a team. Earned runs are runs scored by non-defensive errors. This
means that the runner had to get on base by a hit and be scored by a hit. Earned
run average is the average number of earned runs per nine innings, i.e. earned runs
divided by total innings played times nine. Innings pitched represents the total
number of innings the pitching staff pitched in a season. Saves are the total number
of games relief pitchers finished where the team had the lead when the relief pitcher
came in and went on to win the game. Finally, pitching park factor is a lot like
batter park factor, where we have a variable to represent how friendly a teams home
field is to pitchers. Again, if a team plays in a pitchers park they might be more
willing to pay money for a good pitcher (Stimel, 2011).

The last category, base running variables, contains 2 variables; caught
stealing and stolen bases. Caught stealing is a count of how many times a team had
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a runner thrown out as they were attempting to steal a base. Stolen bases is a count
of how many times a team was successful in stealing a base (Stimel, 2011).

All variables, except those that are already on a percentage scale, were
transformed by taking the natural log. The variables that were not transformed
include: winning percentage, batting average, on base percentage, slugging
percentage, and fielding percentage. I believe this transformation was used to
decrease the wide range that would have been present in some of the variables with
out the transformation (Stimel, 2011).

4. PC Algorithm

Stimel’s goal in his paper was to establish cause and effect relationships
between the aforementioned variables. However, it is well known that causal
inferences in observational studies are problematic in statistics. In the book
Causation, Prediction, and Search the authors Peter Spirtes, Clark Glymour and
Richard Scheines note that while it is true that most statistical methods cannot be
used to draw cause and effect inferences, that is exactly what these methods are
often used to do. They note that while it is stated that linear regression can only be
used as a means of fitting a line to data and predicting new values, it is often used
”to predict values of a variable when the regressors are manipulated, that is, when
action or policy forces some novel distribution on the regressors,” (Glymour et al.,
2001, pg. 1).

This inherent battle between what statistics can tell us and what researchers
actually want to know lead Spirtes, Glymour and Scheines to develop several new
algorithms that help show where cause and effect relationships actually are present.
The PC algorithm that Stimel used in his paper is one such algorithm. Stimel was
hoping to use the PC algorithm to investigate whether payroll depended on winning
percentage, if winning percentage depended on payroll or if they were both caused
by on field performance.

The PC algorithm is based on the theory behind independence relationships
and directional acyclic graphs, otherwise known as DAGs. There are 6 situations in
which a relationship, or ”statistical dependency,” between variable X and Y can be
observed from a sample of the variables. This relationship can be detected when: X
causes Y; Y causes X; X and Y cause each other; a third variable causes both X and
Y; the sample is not representative; or when the values of X and Y form time series.
Experimentation is generally accepted as the only option to separate the most
common and interesting of cases, when X causes Y, Y causes X, they cause each
other, or some third variable causes them both (Glymour et al., 2001 pg. 22).
However, when other variables are measured we may be able to infer causal
relationships if we can assume that all variables that affect the system are included
in our data set (Glymour et al., 2001).

Graph theory can be used in many statistical situations to help illustrate the
relationships between the variables. The graphs consist of vertices, V, and edges, E.
The vertices represent the variables that are in play in a given problem. The edges
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connect the vertices or variables. There are several types of edges that can connect
2 vertices. Directed, bi-directed, undirected and partially directed edges are
possible. In this paper we will not discuss partially directed edges. The plot below
shows an example of several different types of edges (Glymour et al., 2001).

In the graph above, you can see directional edges between verticies A & D, A
& B, A & E, D & B, and D & C. Bidirectional edges are found between B & C and
E & C. There are no undirected edges in this graph, but those are simply edges with
no arrow heads. A directed edge from A to B (arrow pointing toward B) is said to
be out of A and into B. It is also considered that A is the parent of B and B is the
child of A. In the graph above, B would be a collider because there are two arrows
that meet head on at B. E would also be a collider for the same reason (Glymour et
al., 2001).

Also, a graph is considered complete if every vertex is connected to every
other vertex. The graph below is a complete undirected graph: complete because
each vertex is directly linked to every other vertex, and undirected because all the
edges are undirected (Glymour et al., 2001).

These graphs can prove very useful when it comes to visualizing the
relationships between variables. A graph could have a vertex for each variable in the
problem, then appropriate edges could be used to indicate the relationship between
variables. If it was know that A caused B then we would expect to see a directed
edge out of A into B. If A and B caused each other, then a bi-directional edge could
be used between the two vertices. If other variables caused both A and B, then
there could be directed edges out of those other variables into A and B, with no
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edge directly linking A and B. Thus, these graphs can be a useful tool for
visualizing the relationships between variables.

Before we can apply the idea of directional acyclic graphs to our questions
about the effects of winning percentage and payroll in major league baseball, we
need to understand how edges in the graphs become directed. The graphs use
standard definitions of independence between any 2 variables. If the joint
distribution of the variables can be expressed as a product of the individual
variables, then they are considered independent. For example, variables X and Y
would be considered independent if the joint density of X and Y was equal to the
product of the density of X and the density of Y. Furthermore, we can say that X
and Y are independent conditional on Z when the density of X and Y given Z equals
the product of the density of X given Z and the density of Y given Z (Glymour et
al., 2001). Obviously, in most situations the true probability distributions for the
variables are unknown, and so data must be used to estimate these distributions.

The PC algorithm was developed to efficiently detect the needed edges in a
graph and find proper directions for these edges. The PC algorithm starts with a
complete undirected graph by connecting all the variables in the problem. Next, the
algorithm iteratively attempts to remove unnecessary edges in the graph by testing
pairs of adjacent vertices for d-separation (see below for more on d-separation).
Adjacent vertices are defined as vertices that are directly connected by an edge. So
in the beginning, when we have a complete undirected graph, each variable will be
adjacent to every other variable (Glymour et al., 2001).

D-separation is a way of looking for independence and conditional
independence relationships. Variables X and Y are said to be d-separated by Z if
there is no path from X to Y without traversing a collider or traversing a member of
Z. The exception to these rules are that if a collider has a child in Z, then the path
from X to Y can traverse the collider without being d-separated. It’s important to
note that when we consider paths from X to Y for the sake of determining
d-separation we don’t need to consider the direction of the edge (Pearl, 2009).

In this graph from Glymour et al. (2001), X and V are d-separated because
there is no path from X to V without traversing U, which is a collider. Because we
don’t need any variables in the set Z to condition on to declare this d-separation, we
say that X and V are d-separated given the empty set. X & S1, X & W, X & Y, and
X & S2 are all d-separated given the empty set because any path from X to another
variable would need to traverse the collider at U, which can’t be done. If we
considered Z to include S1, then X and V are no longer d-separated; we say they are
d-connected. Because S1 (a child of the collider U) is in Z, we can now traverse U in
our path from X to V. While X and V are now d-connected, X and Y are still
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d-separated because the collider W is still in the path from X to Y; we would say X
and Y are d-separated given S1. If the set Z included S1, S2, and V, then X and Y
would be d-separated given the set {S1, S2, V }. Even though we can now traverse
the colliders U and W because they each have a child in the set Z, we cannot find a
path from X to Y that does not traverse a member of Z, namely V. There is no way
to move from X to Y without passing through V.

When n=0, the algorithm attempts to determine any pairs of variables that
are d-separated given the empty set. This will only occur when there are colliders
present in the true graph. When n=1, the algorithm looks for pairs of variables that
are d-separated given 1 other variable. When n=2, the algorithm looks for pairs of
variables that are d-separated given 2 variables. This continues until all unnecessary
edges have been removed from the complete undirected graph.

Let’s consider an example. Suppose we were considering a problem with 5
variables: A, B, C, D and E. Suppose the true directional acyclic graph (Glymour et
al., 2001) was:

Using the PC algorithm, we would start with the complete undirected graph,
shown below.

When n=0, the PC algorithm would not remove any edges because there are
no pairs of variables that are d-separated given the empty set. There is one collider
in the true graph, vertex E, but there are no pairs of variables that are d-separated
given the empty set because there is another path between all the variables that
does not involve traversing E. The only likely variables that could be d-separated
given the empty set are C and D, but there is a path from C to D through B so that
you are not required to traverse the collider at E. So when n=0, all variables are
still d-connected.

When n=1, the PC algorithm would find several pairs of variables that are
d-separated given one other variable. A and C are d-separated given B. There is no
path from A to C that does not pass through B. Because these variables are
d-separated the PC algorithm would remove this edge of the graph. The algorithm
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would also find that A & E, A & D, and C & D are all d-separated given B. These
represent all the d-separated relationships in the true graph that are conditional on
only one variable. After this step, the PC algorithm would remove the edges
between the variables that are determined to be d-separated. The graph would then
look like the following (Glymour et al., 2001):

When n=2, the PC algorithm is looking for pairs of variables that are
d-separated given sets of 2 other variables. The only relationship in this example
that meets this requirement is B and E, which are d-separated given the set {C,D}.
There is no path from B to E that does not pass through either C or D. The PC
algorithm would also remove this edge, resulting in an undirected graph that has all
the correct edges (Glymour et al., 2001):

At this point the iteration process would stop because there are no more
remaining pairs of adjacent variables where there are more than 2 other adjacent
variables, so the n=3 step is not needed.

The final step of the PC algorithm is to attempt to correctly orient the edges
in the simplified undirected graph so that the edges match the true relationships.
We can follow several rules to orient the edges. For each group of three vertices, X,
Y, and Z, such that X & Y and Y & Z are adjacent in the reduced graph but X & Z
are not adjacent, orient the edges X → Y ← Z if and only if X & Z are not
d-separated given Y (Glymour et al., 2001). This means that if there are three
variables so that X and Y are connected and Y and Z are connected, but X and Z
are not connected, the edges will both point to Y as long as X and Z are not
d-separated given Y. This is because we don’t want a situation where (1) X and Z
are d-separated given Y, and then (2) we make Y a collider, as that would eliminate
the need for Y to separate X and Z. If Y was a collider, then X and Z would be
d-separated given the empty set, not Y. Following a similar thought process, we can
continue to orient edges such that if A→ B and B & C are adjacent but A & C are
not adjacent, then the edge between B and C should be oriented such that B → C.

In our example, there are 6 groups of 3 variables that satisfy the conditions
above: A-B-C, A-B-D, C-B-D, B-C-E, B-D-E, and C-E-D. One such group, C-E-D,
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allows us to orient the edges C → E ← D because C and D are not adjacent but
they are not d-separated given E. The other triples, such as A-B-C, do not allow us
to orient their edges because A and C are d-separate given B. At this point we have
no way of knowing which way the edges between A & B and B & C should be
oriented. The final graph the algorithm would produce is (Glymour et al., 2001):

This graph is close to the true DAG, but it’s not exactly right. There are
several big assumptions that are made when the PC algorithm is applied to a data
set. The first assumption is that all variables that have an effect on the system of
interest have been measured. The second assumption is that every unit in the
population follows the same causal relationships. In the baseball study, this means
that each team follows the same relationship between payroll and winning
percentage. The final assumption is that the algorithm correctly finds the graph, no
needed edges were removed and no non-needed edges were left in the graph
(Glymour et al., 2001).

Clearly the PC algorithm is not a perfect system. It can be very difficult to
assume that every variable that has an effect on the system has been measured. In
addition to the assumptions, the algorithm has trouble directing all the edges, even
if it does detect the correct graph. Also, if you have data samples that do not
adequately represent the true underlying probability distribution for each variable,
then the PC algorithm could seriously misjudge the true relationships that are
present. If a needed edge is removed or a non-needed edge is left in the graph it can
seriously alter the relationships represented by the graph.

5. Results

Before Stimel applied the PC algorithm to his data set, he realized the need
to remove the time dependence in the data. All of the variables were at the team
level and most likely depended heavily on time as a covariate. For example, a
team’s batting average is most likely dependent on their batting average from the
previous year. Teams are likely to have many of the same players that they did the
previous year and it’s likely that these players will perform similarly to how they
performed the year before. Using two information criteria, Akaike Information
Criterion (AIC) and Schwarz Criterion (SC), Stimel found that a one year lag was
the best option to remove any time effect before applying the PC algorithm. Stimel
was also worried about single team effects, such as the Yankees with their unusually
high payroll, unfairly influencing the results. To adjust for individual team effects,
Stimel used a panel vector autoregression with fixed effects to filter the variables
before the PC algorithm was applied (Stimel, 2011).
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When using the PC algorithm, Stimel chose to use a ”less restrictive” alpha
level of 10% for all of the independence (or d-separation) tests the algorithm used.
Stimel noted that this choice of alpha could lead to a slightly different structure
than an alpha level of 1% or even 5%, but hopefully not significantly different. A
significance level of 10% allows more edges to stay in the graph than would remain
at a 5% or 1% significance level, because you are less likely to fail to reject the null
hypothesis that variables X and Y are d-separated at the 10% level. Stimel also
chose to orient any undirected edges left by the PC algorithm as bi-direction,
meaning that he assumed that if the algorithm was unable to orient the link then
the 2 variables depended on each other, or more likely on a third unmeasured
variable (Stimel, 2011).

After applying the algorithm, Stimel found a number of interesting
dependency relationships. Because the main goal is to discover the relationship
between payroll and winning percentage, only that portion of the graph the PC
algorithm produced is shown below (Stimel, 2011).

From the graph above, we can see that payroll is dependent on winning
percentage but winning percentage is not directly dependent on payroll. Winning
percentage is only dependent on payroll through it’s effect on fielding percentage
(FP). Winning percentage is dependent on fielding percentage, and has
bi-directional relationships with on base percentage (OBP) and saves (SV), meaning
that they depend on each other. Payroll is dependent on winning percentage and
has bi-directional relationships with fielding percentage and strikeouts against
(SOA), again meaning that they depend on each other (Stimel, 2011).

Now that the dependence relationships have been established, we would
really like to know how strong these relationship are. How does payroll respond to a
change in winning percentage? These are the real questions that get at the heart of
the matter.

Using the causal relationships established by the DAG, Stimel fit the
regression model

WINPCT = β0 + β1FPCT + β2OBP + β3SV + ε
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Stimel fit several different versions of this model. One version included the one year
time lags, while another version included only fixed effects. A third version included
both fixed effects and lags, and the final version had neither lags nor fixed effects.
In the table below we can see the results of the 4 models (Stimel, 2011).

It is interesting to note that while the AIC values for all four models are very
close (all within 0.5 of each other), the coefficient estimates on some of the variables
vary quite a bit. While the coefficient estimates for on base percentage and and
saves are relatively stable, the coefficient estimates for fielding percentage range
from 4.95 from the full model to 1.91 from the simple model. This variation in
coefficient estimates despite similar AIC values could imply a lack of robustness in
the estimation process. This is not an issue that Stimel discusses in his paper.

Stimel focused on an interpretation of the coefficients from the lags only
model because this model had the lowest AIC value. Using this model, we can
interpret the coefficients as follows: the coefficient estimate for fielding percentage of
4.6 means that a 1 point increase in fielding percentage would lead to a 4.6 point
increase in winning percentage. For example, if a team had a .500 winning
percentage and a .95 fielding percentage, then increases their fielding percentage to
.96, we would expect the winning percentage to increase to .546. The coefficient
estimate of 2.03 for on base percentage means that a 1 point increase in on base
percentage leads to a 2.03 point increase in winning percentage. For example, a
team with a .450 on base percentage and a .500 winning percentage could expect
their winning percentage to increase to .520 if they increased their on base
percentage by 1 point to .451. Finally, the coefficient estimate of 0.14 for saves
means that a 10 percent increase in saves in a season would lead to a 1.4 point
increase in winning percentage. For example, a team that increased their saves from
30 to 33 could expect their winning percentage to raise from .500 to .514 (Stimel,
2011).
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A similar method was used to fit a model for the payroll variable. From the
causal graph, we found that the dependent relationship was

PAY ROLL = β0 + β1FP + β2SOA+ β3WINPCT + ε

Again, fitting this model using four different methods (both lags and fixed effects,
lags only, fixed effects only, and a simple model with no fixed effects or lags), we see
the following coefficient estimates (Stimel, 2011).

Again, Stimel focused on an interpretation of the coefficients from the lags
only model because this model had the lowest AIC value. Using this model, the
coefficient estimate for fielding percentage of 12.68 means that a 1 point increase in
fielding percentage would lead to a 12.68 percent increase in payroll. For example, a
team with a $75 million payroll would expect their payroll to jump to $84.51 million
if the fielding percentage jumped 1 point. The coefficient estimate on strikeouts
against of 0.26 means that a 10% increase in strikeouts against would lead to a 2.6
percent increase in payroll. Finally, the coefficient estimate of 0.88 on win
percentage means that a 10 percent increase in winning percentage would lead to an
8.8 percent increase in payroll (Stimel, 2011).

It is important to note again that these coefficient estimates vary greatly
among the different models even though the AIC values are fairly similar. The AIC
values range from -0.11 for the full model to 1.37 for the simple model. The
coefficient estimate for fielding percentage is especially variable, with estimates
ranging from 87.58 from the fixed effects model with no lags to 12.68 from the lags
only model. An estimate of 87.58 for the fielding percentage coefficient would mean
that a 1 point increase in fielding percentage would lead to an 87.58 percent increase
in payroll, which is clearly too high. It is most likely that in this situation, there are
other variables affecting the causal relationship that are not present in this model
(Stimel, 2011).
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6. Conclusions

This study introduced me to several new and interesting aspects of statistical
analysis of causal relationships. Causal graphs and the PC algorithm were both new
to me. While there are several big assumptions that go along with the algorithm,
the ability to draw causal inference is an appealing advantage. A carefully planned
study could have the ability to meet the assumptions of the algorithm, i.e. that all
units in the population follow the same relationships and that all needed variables
are measured.

I think the application of the PC algorithm and causal graphs to the
relationship between payroll and winning percentage is something that could be
applied to many areas in sports. For example, it would be interesting to investigate
the effect of number of years of college on the length of careers for NFL and NBA
players; or the effect of concussions on the lifespan of NFL and NHL players.
Possibly the most interesting area of application I can think of would be the
relationship between on field success and academic success for NCAA sport
programs. Do those programs that neglect the student side of student-athletes have
more success? In addition to these few areas of interest, I’m sure there are ample
opportunities to expand this research to other sport-related questions, as well as
other areas of statistical investigation.
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