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Abstract

Regression trees are most appropriately used for modeling and prediction when observations are
independent and identically distributed. We will be looking at an adjustment to regression trees,
RE-EM Trees, which can be used when the observations are not independent. We suggest a new
conditional pruning method, based on cross-validation for selecting an optimal tree size and discuss
how to update terminal node estimates from the final mixed model and get standard errors of the
node estimates. We compare the RE-EM Tree to a conventional mixed model in an application
related to predicting fall to spring nitrate changes in farm fields in eight different locations in

Montana, measured twice over two years.
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1 Introduction

Regression trees are nonparametric predictive modeling methods. We use trees for predictive
modeling and/or when we are unsure about how the explanatory variables should enter the model,
whether they are linearly related to the response, have complex interactions or any relationship to
the response. The only assumptions that are attached to regression trees are the residuals should
be independent, normally distributed, centered at zero, and have constant variance. When the
observations are not independent, typical regression trees should not be used as they may mis-
represent the true structure. We will look in depth at one method, RE-EM Trees, that adjust the
typical regression tree to incorporate random effects. We then develop a way to prune the RE-EM
Tree and get estimates and standard errors of the terminal nodes from the final mixed model. We
will finish by comparing trees to the conventional mixed model.

I will explore these methods with a data set that is aimed at predicting the change in nitrate that
occurs between fall and spring. The researchers would like to provide a simple way for farmers to
predict this change. Farmers usually only have nitrate levels tested in the fall, therefore, being able
to predict how much the nitrate level has changed over the winter is important. If farmers over-
fertilize, they will be spending more money than they originally needed, and if they underfertilize,
the crop may not yield as much. Both of these conditions will impact how much the farmer profits

and suggest the importance of building an accurate (and simple) predictive model.

1.1 Introduction to Data Set

The data are collected across eight different soil sampling sites which are located near re-

search stations across Montana. At each site, eight fields are selected each year. The study takes



place over three years: 2007 - 2008, 2008 - 2009, and 2009 - 2010, although only two years are
analyzed here. Each year different fields are selected, with a total of 24 fields selected per site over
three years. The explanatory variables that are measured can be separated into two groups based
on whether they were measured for each field or measured once for all fields in the site, Field
level explanatory variables are those that vary from field to field and include August nitrate (Ib
N/acre), organic matter (%), crop (fallow, small grain, oilseed, and annual legume), and soil pH.
Site level explanatory variables are measured at a local weather station near the site and include
total precipitation (measured from September through February), average fall temperature (aver-
age of September, October, and November temperatures), and average winter temperature (average
of December, January, and February temperatures). The response variable is the change in nitrate
that occurs between April and August (April nitrate - Angust nitrate) in Ib N/acre. Sampling sites
and weather stations can be seen in Figure 1, We will assume that the sites in the study are rep-
resentative of all sites in Montana as they are geographically dispersed based on the network of
agriculture research stations.

The data set has some missing responses, After two years, the study should have 128 obser-
vations (8 sites * 8 fields per site * 2 years), and it only has 108. The changes in nitrate (April -
August) can be seen in Figure 2, plotted based on the ei ght sampling locations. One outlier (change
in nitrate of 194 lbs/acre) was removed from the analysis. While there may be important differ-
ences between the sites, that effect appears to be modest in Figure 2, There is a potential problem
with the explanatory variables as they may be collinear with each other and also with the sites and

years, potentially impacting the models we explore below.
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Figure 2: Side-by-side boxplots of the change in nitrate across the 8 sites.

2 Regression Trees

Regression trees are a useful exploratory data analysis tool, and are helpful when you have

many explanatory variables, when those variables may have complex interactions, when you have
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heavily skewed explanatory variables, or when some of the variables may have nonlinear relation-
ships with the response. They have limited assumptions when compared to the typical multiple
linear regression methods and can easily handle large data sets. They can even handle missing
explanatory variables,

The general model for a regression tree is:
% = f(z1, 29, .., 2x) + &

where f(z1,%2,...,zx) is a hierarchical binary partitioning of observations based on values of
the K explanatory variables (Maindonald and Braun, (2003), Venables and Ripley, (2002)). We
assume that € ~ N(0, o2I), and also that the tree is able to approximate the "true model” with the
variables available.

Regression trees are fit by a recursive partitioning aigorithm in the R (R Development Core
Team, (2009)) package rpart (Therneau & Atkinson, 2009). Wc begin by defining the residual
sum of squares as RSS = 37, (3 — %), then split the full data set into two subsets by choosing
the split that gives the maximum reduction in RSS. The split is chosen as the best split over all
possible values of all the available explanatory variables. For the next split, each of the current
cells is considered for splitting and the split is chosen that gives the maximum reduction in RSS.
This pattern continues until there is no longer a split that will reduce the RSS.

Terminal nodes are defined as the set of cells that are not split. For classic regression trees, the
model in each terminal node is a sample average of observations in that terminal node. We decide
which terminal node an observation belongs to by asking a sequence of yes;'no- questions about the
explanatory variables, If we answer "yes" to the question, we follow the branch to the left down to

the next split and ask the next question. If we answer "no" to the question, we follow the branch
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to the right down to the next split. This process continues until you reach a terminal node. For
example, the regression tree in Figure 3 is the estimated tree for the nitrate data set, If we want to
predict the change in nitrate that occurred over winter for an observation (#1), we begin by asking
ourselves whether or not that observation had a value for August nitrate greater than or equal to
61. Suppose that answer is "no”, therefore, we follow the branch to the right. The next question we
ask is whether that observation had a value for total precipitation less than 3.415. If the answer is
“yes", we would follow the branch to the left. We have reached a terminal node, and our prediction
for the change in nitrate that occurred for that observation is 12.4 pounds per acre. For another
observation (#29), we begin by asking whether or not it had a value for August nitrate greater than
or equal to 61. The answer is "yes", so we follow the branch to the right. The next question we ask
is whether it had a value for pH less than 7.7. The answer is "no", so we follow the branch to the
right. We have reached a terminal node, and our prediction for the change in nitrate that occurred
for that observation is 13.8 pounds per acre. The explanatory variable values and predictions are

shown in Table 1.

Observation | AugN | OM | pH | Totalprecip AveWinterTemp i

1 38 3] 17 3.37 23.66 | 124

29 94 2]82 4.67 26.67 | 13.8

Table 1: Table showing 2 observations and their predictions.
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Figure 3: Example of a regression tree applied to the nitrate data set.

Regression trees are grown to the point of overfitting. One way to prune the tree involves using

the cross-validated (CV) error. To calculate the cross-validated error for a tree of size n, you:

1. Randomly split the data into 10 equally sized subsets,

2. Withhold one subset of data at a time and fit the tree on the remaining data,

3. Predict § for each withheld subset of data, and calculate the prediction error (for each with-

held subset of data).

4. Sum the squared prediction errors for each of the 10 subsets. This is the total CV prediction

CITOT,

total CV prediction error
root node error

5. Cross-validated error =

There are two common rules for pruning the tree. One rule says (o choose the tree with the smallest
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cross-validated error, and the other says to choose the smaliest tree whose cross-validated error is
less than the minimum CV error + 1 SE. The minimum CV error + 1 SE rule is generally more
conservative and picks a smaller tree, although sometimes the two rules will pick the same tree.
If we apply pruning methods to the regression tree in Figure 3, the minimum CV rule tells us to
prune the tree to where we only have three splits as seen in Table 2. The minimum CV error + 1
SE rule tells us to prune the tree to a zero split tree, which would be the root node (no tree). Figure
4 shows the same information, with a horizontal line at the value of the minimum CV error + 1
SE. We can control the size of the tree by specifying the value of the complexity parameter (cp) as

a condition in rpart. The ¢, column in Table 2 shows the cp values we would specify to get each

size tree,
Splits | ¢, | Relative Error | CV error | SE (CV)
010177 1.000 1.022 0.173
10078 0.823 1.016 0.158
310039 0.666 0.983 0.150
41 0.017 0.627 1.083 0.169
510017 0.610 1.112 0.164
710016 0.576 1.123 0.163
8 | 0.010 0.560 L112 0.163

Table 2: Table of cross-validated errors (CV error) and their standard errors (SE (CV)).
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Figure 4: CV error plot

When comparing the two trees in Figure 5, we see that the pruned tree has a less "complicated"
structure when compared to the unpruned tree. The value that the tree is splitting on stays the same
between the two trees, but in the pruned tree we have taken out some of the explanation of "noise"
that was occurting in the lower splits. The pruned tree suggests that AugN, Totalprecip, and OM
are important explanatory variables when trying to explain the change in nitrate that occurs over
the winter.

In typical multiple linear regression, if we have a missing explanatory variable for an observa-
tion it causes problems, specifically we have to throw the entire observation out. Regression trees
can be fit to observed responses even if some explanatory variables are missing, with three differ-
ent methods available for handling missing explanatory variables. To understand the methods, we
ficst must define surrogate variables. At each split, rpart produces splits on other variables that
are similar to the variable that it chose to split on. Surrogates are the splits that are next best to the
split that was actually chosen (Therneau and Atkinson, 2009). The three options for dealing with

a missing explanatory variable follow, with option 3 being the default in rparr.

1. An observation with a missing value for the primary split rule is not sent further down the

tree. The prediction for that observation is a wei ghted average of the terminal nodes that fall
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Figure 5: Regular regression tree (left) and the "pruned” regression tree (ri ght). Pruning was based

on the minimum cross-validated error rule.

under the primary split rule.

2. Use surrogates to split subjects missing the primary split variable. If all surrogates are miss-

ing, the observation is not split.

3. Use surrogates to split subjects missing the primary split variable. If all surrogates are miss-

ing, then the observation is sent in the majority direction.

Regression trees can be used to make predictions both easily and quickly, as explained above.
They provide a nice visual tool that makes it easy to see which variables "may be" important when
making predictions. Trees have limited assumptions on the fixed effects part of the model as com-
pared to typical multiple linear regression models. They are, however, based on jid assumptions in

the cross-validation methods and in tree growth. When using trees, observations that have missing
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explanatory variables do not have to be discarded, and high leverage observations do not cause
the same sort of problems as in linear models. Explanatory variables for regression trees can be
quantitative, categorical, or ordinal. Ordinal variables are treated like they are quantitative, since
location in the varialbe is all that matters. For categorical variabies, the splits group levels of the
variable together to provide the greatest reduction in RSS.

The typical regression tree should only be applied to independent observations. In 1992, Segal
published the first paper in which trees were adapted to longitudinal data. In Segal’s approach,
all observations for one individual go to the same node. He assumes some parametric form of the
covariance function that is assumed to hold over all subgroups. This approach can’t handle missing
data, requiring the same number of responses for all subjects.

In 2002, Abdolell introduced another method in which trees could handle longitudinal data.
His method can be found in the R package, longRPart. Abdolell based his approach on a linear
mixed effects model. Splits are likelihood based, and a new mixed effects model is estimated for
each node. His approach requires a large sample size (default is to have a minimum sample size
of 80 at each terminal node) and estimates unique mixed models for each node in the tree with no
apparent penalty for the number of unique variance parameter estimates,

In 2009, Sela and Simonoff submitted a paper to Machine Learning in which they adjust the
regular regression tree for random effects. Their method can be found in the R package, REEMiree.
Sela and Simonoff’s approach iterates between estimating the random effects and estimating a
regression iree based on an "adjusted target value," They don’t apply pruning methods when they
are finished, nor do they go back and update the final estimates of the terminal nodes in the pruned
tree, which can differ from those reported in their function. Their approach does allow random
effects to cross tree nodes, allowing observations for a subject to end up in different nodes and

10



still have a common random subject effect. In 2008, Hajjem, Bellavance, and Larocque developed
a method similar to Sela and Simonoff’s, that adjusts trees for random effects. In the following
section, we provide a thorough exploration of Sela and Simonoff’s method in which we suggest a
way to prune the fitted tree and update the final estimates of the terminal nodes. Finally, we apply

their method to the nitrate data set.

3 RE-EM Trees

The Random Eifects-Expectation Maximization (RE-EM) Tree is a typical regression tree
adjusted to account for random effects. Consider the general mixed effects model with additive

errors where we observe subjects 1 = 1,2, ..., T at times ¢ = 1,2,..,7;:
Yie = bi + f(Tir, Tisz, ooy Tk ) + €.

We assume the errors are normally distributed and independent between subjects, but can be corre-
lated within subject, €; ~ N(0, R;), where R; is the subject-specific variance-covariance matrix.
We also assume the random subject effects, b;, are normally distributed, b; ~ N(0, ¢?). To fit an
RE-EM Tree, one iterates between estimating the random effects part of the model (Pinheiro and
Bates, 2000) and estimating the regression tree. Sela and Simonoff’s estimation method is given

as follows:

1. Initialize the estimated random effects, 5,-, to zero.
2. Iterate through the following steps until the mixed mode] likelihood converges:

a. Estimate a regression tree approximating f, based on the adjusted target variable, 1;; —
b;, and predictors, Xy = (Tin, Ti, ..., Taux ). Use this regression tree to create a set of

11



indicator variables, I(z;, € g,), where g, ranges over all the terminal nodes in the tree.

b. Fit the linear random effects model, v = b+ I{zy € gp),up -+ ¢;. Extract 5,- from the

estimated model.

In this prcedure, estimated random effects (5,-) are initialized to zero in step 1. We found better
performance when we initialized the estimated random effects to a nonzero preliminary estimate.
Sela and Simonoff state that the linear mode] with random effects in step 2b can be estimated using
maximum likelihood (ML) or using restricted maximum likelihood (REML), and note using ML
instead of REML had only a small effect on the resulting estimates. In their approach, they use
REML. In our application, we observed large differences in the estimates we obtained when using
ML and REML, possibly due to the small relative size of a:f . For the examples presented here, we
estimate the mixed model with REML, to stay consistent with Sela and Simonoff.

The RE-EM Tree model with additive errors applied to the nitrate data set is
(AprilN — AugN); = a+ f(X) + b; + €ify

where f(X) is the tree part of the model based on X = AugN, Treatment, OM, pH, Totalprecip,
AveFallTemp, AveWinterTemp, b; is the site random effect (i =1,2,..,8), and ¢; is the random
error for observation j in site i. The researchers are currently in the final year of data collection so
we will ignore the random year effect in the present analysis.

Figure 6 contains the estimated full RE-EM tree part of the model. Comparison of this tree
to the typical regression tree in Figure 3 shows many similarities. For instance, the first split in
both trees is identical. Many of the next splits are also identical. In the REEMTtree output, for each
split, it also gives you other variables that provided a reduction in RSS that are comparable to the
split on the variable that it chose. In Figure 6, if we follow the tree to the right from the first split,

12



we get to a split on organic matter. In the output, we were able to see that if the tree had split on
total precipitation instead, it would have provided almost the same reduction in residual sums of
squares. If the RE-EM Tree had split on total precipitation instead of organic matter, than the two

trees would be almost identical.
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Figure 6: Example of a RE-EM Tree applied to the nitrate data set.

To prune the RE-EM Tree, we use cross-validated error. We begin by estimating the random
effects, b; for a tree of size m. Then we get the cross-validation error for 4,* = y; — b, for a tree
of size m. We select the tree with either the smallest cross-validated error or the smallest tree
whose cross-validated error is less than the minimum CV error + 1 SE. After we fit the optimal
pruned tree, we estimate the node means and random effects in the final mixed model, updating
}i, from the last iteration of step 2a to 2b. In Sela and Simonoff’s paper, the fitted tree is not
updated with the estimates provided from the final mixed model. In typical regression trees, the
same random splits are used for all tree sizes in the cross-validation process. We used different

random splits of the data for each tree size because each tree cross-validation involved a new call
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to rpart. This introduces more random variability in the CV process, making repeated CV runs
even more important,

The pruning of a RE-EM Tree is a random process since different random data subsets are
selected. We applied the pruning methods described above 30 times to the RE-EM tree, with the
results provided in Table 3. From the table, we see that if we were using the minimum CV error
pruning rule, 23 out of 30 times we would choose a two-split tree. If we were using the smallest
tree whose CV error is less than the minimum CV error + 1 SE pruning rule, we would choose a
zero-split (root node) tree 17 out of 30 times, and a two-split tree 11 out of 30 times. When there is
alot of noise present in the response variable compared to the size of the differences in the terminal
nodes, cross-validation methods tend to favor simple trees. This happens because cross-validation
methods have a difficult time distinguishing "significant” structure from noise if there is a lot of
noise present in the data. A CV error plot for one of the 30 replications is shown in Figure 7. For
this particular replication, the two pruning rules would both have chosen a two split tree. Figure 8

shows both the unpruned and pruned RE-EM trees.

Splits

Rule 0 2|1314)6| 8

minimum CV 11231301211

mnCV+1SE |17 |11 {1|[1|0f0

Table 3: Results for 30 replications of the pruning process.

The final step in the pruning process involves estimating the node means and random effects in
the final mixed model. These estimates are shown in Table 4 and Table 5. Intra-site correlation is

calculated by taking the random site effect variance and dividing it by the sum of the random site

14
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Figure 7: CV Error plot for one run of the pruning process.

variance and residual variance. The estimated intra-site correlation was 0.11, which indicates that
we have small variation across the sites compared to the total variance in our data. The estimates
from the final mixed model are slightly different than the estimates given on the pruned tree in
Figure 8. The pruned rpart tree and the pruned RE-EM tree are shown in Figure 9. The pruned
rpart tree has three splits, and the pruned REEMtree has two splits. The variables that may be
considered "important” are August nitrate, total precipitation, and organic matter. We include total
precipitation in the variables that we may consider "important," because we were able to see that
if the tree had split on total precipitation instead of organic matter, it would have provided almost

the same reduction in residual sums of squares.

Random Effect | Variance | 95% Confidence Interval

Site SD 5141 (9.30, 282.91)

Residual SD 41047 (309.76 , 543.36)

Table 4; Estimated Random Effects (REML).

Some advantages of using a RE-EM Tree are: they can handle missing explanatory variables,
they are easy to understand since they clearly display which variables may be important, and we

aren’t as concerned with points that have high leverage. One disadvantages is that if a strong linear
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Figure 8: Unpruned RE-EM Tree (left) and pruned RE-EM Tree (right). Pruning was based on the

minimum cross-validated error rule.

relationship is present, the trees are not as efficient as linear models. Additionally, if outliers are
present, they greatly affect the trees performance just like in more conventional models,

Through the examples with the nitrate data set, we were able to explore both the regular rpart
and RE-EM trees. We saw that the trees had similar performance, and that between site variation
was minimal. We were able to see that August nitrate, total precipitation and organic matter are
potentially "important" explanatory variables. We developed a way to prune the RE-EM Tree,
which was not developed for longRPart or REEMiree previously. We updated the terminal nodes
in the pruned RE-EM Tree with the estimates from the final mixed model, which is not part of the
default in REEMiree. We were able to get standard errors for the terminal node estimates, which is
also not typically a part of trees. The standard errors can be adjusted for the correlation structure

and/or random effects, providing more accurate estimates of precision of node estimates than if
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Terminal Node Estimate | Standard Error | 95% Confidence Interval

AugN2> 61 372 5.00 (-6.22,13.65)
AugN< 61 & OM< 3.35 23.98 3.51 (17.01,30.95)
AugN< 61 & OM> 3.35 51.82 8.12 (35.71,01.93)

Table 5: Estimated terminal nodes, along with their standard errors and a 95% confidence interval,
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Figure 9: Pruned rpart tree (left) and pruned RE-EM tree (right). Pruning was based on the

minimum cross-validation error rule.

important dependence is ignored. When the full data set is available, we will adjust the RE-EM

Tree so that it can also handle crossed-random effects.
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4 Conventional Mixed Model

The conventional mixed model is used when both linear fixed and random effects are present.

The equation describing a mixed model is
U= X+ Z;b; + ¢,

where y; is a vector of observations from the ith level of some random factor, 3 is the population
average coefficient vector, b; is a vector of random effects, and €; is a vector of errors from the ith
level of the random factor, as discussed previously.
In our example, the model is
Yij = XafB + b + €54,

where y;; is the jth observation from the jith site, X; is a matrix based on AugN, Treatment, OM,
pH, Totalprecip, AveFallTemp, AveWinterTemp (which now enter the model linearly), 8 is the
population average coefficient vector, b; is the random site effect, and ¢;; is the error for the jth
observation in site /. Two different models were selected based on two different model selection
criteria. The first model, Model 1, was built based on including all of the explanatory variables
present and also a three-way interaction between August nitrate, total precipitation, and the treat-
ment. The reason for including the three-way interaction was based a priori on expected interac-
tions of the researchers. A stepwise reduction testing procedure was applied to the full model. The
analysis of variance (ANOVA) table for Model 1 is shown in Table 6, and diagnostic plots can be
seen in Figure 10. From the ANOVA table, we can see that a fairly complicated model was chosen.
The three-way interaction was significant, so all the two-way interactions and main effects related
to that interaction remain in the model. Also, the main effect for organic matter was retained.
Main effects for pH, average fall temperature, and average winter temperature were removed from

18
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the model, suggesting they are not important after adjusting for the other effects. Random effect
variances and 95% confidence intervals can be seen in Table 7. The estimated intra-site correlation
for this model is 0.15. From the diagnostic plots in Figure 10, we see that the assumptions of
constant variance and normality of the residuals appear to be valid. We have one observation that

is "unusual”, which can be seen in both the residual versus fitted value plot and also in the normal

quantile plot.
Fixed Effects numerator df | denominater df F-value | p-value
Intercept 1 83 | 40.20523 | <.0001
AugN 1 83 | 20.16172 | <.0001
Totalprecip | 83 [ 250757 | 0.1171
treatment 3 83| 1.39192 | 0.2510
oM - 1 33 8.23462 | 0.0052
AugN:Totalprecip 1 83 1.94736 | 0.1666
AugN:treatment 3 83 ] 1.95825 | 0.1266
Totalprecip:treatment 3 83 | 094734 | 04217
AugN:Totalprecip:treatment 3 83 | 2.61813 | 0.0563

Table 6: ANOVA table for Model 1.

Random Effect | Variance | 95% Confidence Interval

Site 55.93 (9.68,323.34)

Residual 322.85 (242,95, 429.03)

Table 7: Random effects for Model 1.

19
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Figure 10: Model 1 diagnostic plots.

The second model, Model 2, was built based on Akaike’s An Information Criterion, AIC
(Akaike, 1973), and not including the three-way interaction discussed above. AIC is equal to:
—2 x logLikelihood + 2 # p, where p = the number of parameters estimated in the model. AICs
are used as a model selection tool, where preference is given to models with smaller AICs. Model
2 was built by including all of the explanatory variables as main effects, then applying a stepwise
AIC approach which was allowed to both add and drop terms if the add/drop reduced the AIC.
The ANOVA table for Model 2 is shown in Table 8, and diagnostic plots can be seen in Figure
11. From the ANOVA table, we see that this method chose a much simpler model than Model 1.
The main effects for August nitrate, total precipitation, and organic matter remain in the model, as
does the two-way interaction between August nitrate and total precipitation. The main effects for
treatment, pH, average fall temperature, and average winter temperature were removed from the

model and other two-way interactions were not incorporated. Random effect variances can be seen
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in Table 9. Model 2 has a smaller random site effect variance than Model 1, but a larger residual
variance, resulting in a smaller estimated infra-site correlation (0.05). From the diagnostic plots in
Figure 11, we again see that our assumptions of constant variance and normality of the residuals
look reasonable. The "unusual” observation remains, and can be seen in both the residual versus

fitted value plot and also the normal quantile plot.

Fixed Effects numerator df | denominator df | F-value | p-value
Intercept 1 95 | 68.32875 | <«.0001
AugN 1 95 | 20.51606 | <.0001
Totalprecip 1 95 [ 121796 | 02725
oM 1 95 1 6.80037 | 0.0106
AugN: Totalprecip 1 951 308138 { 00824

Table 8: ANOVA table for Model 2.

Random Effect | Variance | 95% Confidence Interval

Site 22.10 (1.65 , 296.86)

Residual 413.84 (312,63, 547.79)

Table 9: Random effects for Model 2.
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Residuals vs, Fitted Normal Q-G Plot
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Figure 11: Model 2 diagnostic plots.

We re-estimated the mixed model of the pruned tree using maximum likelihood estimates to be
able to compare AICs between the models. Table 10 shows the three models and their correspond-
ing AIC and log-likelihood values. The tree method has the smallest AIC. Model 2 and the tree
model have basically the same log-likelthood values, which indicates that they are similar fitting
modeis but the tree uses two fewer degrees of freedom to achieve this fit. Random effect variances
can be scen in Table 11. The tree model has a random site variance that is between the random site
variance for Model 1 and Meodel 2. Also, the residual variance for the tree model is between the
residual variance of Model 1 and Model 2. The estimated intra-site correlation is 0.09, which is
slightly smaller than the estimated intra-site correlation when the tree was estimated using REML.
Figure 12 contains diagnostic plots for the tree model. We see that our assumptions look reason-
able, although the "unusual" observation is still present. When we analyze the final data set, we

may re-consider removing this observation.
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Model df AlC | Log-Likelihood

RE-EM Tree | 5 | 962.19 -476.10
Mode] 2 7 | 966.68 -476.34
Model 1 19 | 969.37 -465.69

Table 10: AIC’s and Log-Likelihoods for the 3 mixed models considered, sorted by AIC values.

Random Effect | Variance | 95% Confidence Interval

Site 38.63 (6.54 ,228.19)

Residual 403.31 (305.21, 532.92)

—

Table 11: Random effects for the tree model (ML),

Residuals vs. Fitted Normal Q-Q Plot
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Figure 12: Pruned RE-EM tree diagnostics.

5 Conclusions

We looked at regular regression trees, RE-EM Trees, and the conventional mixed model, all
applied to the nitrate data set. Regular regression trees cannot be used when observations are
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not independent, therefore, RE-EM Trees were employed. We saw many similarities between the
pruned regression tree fit and the pruned RE-EM Tree fit, which could be a result of the small
intra-site correlation. Previously, methods for pruning the RE-EM Tree were not available, so
we developed a novel method to prune the tree. We saw that outliers had a large impact on the
tree building and pruning methods. We fit two different conventional mixed models, based on
different model selection criteria. The model fit based on the stepwise reduction testing procedure,
Model 1, was fairly complex with 19 parameters being estimated. Model 2, based on a stepwise
AIC procedure and excluding the three-way interaction, had only seven parameters and a smaller
random site variance. The tree model had only five parameters estimated and yielded the smallest
AIC. The variables that were important in Model 2 were the same variables that showed up in the
pruned RE-EM Tree. Also, the random site variance and residual variance of Model 2 were similar
to that of the RE-EM Tree model. The assumptions of constant variance and normality appeared
valid for all three of the models discussed.

A potential further application of the RE-EM Tree method consists of adjusting the RE-EM
Tree to incorporate crossed-random effects. We anticipate the necessity of this adjustment when
we analyze the final nitrate data set which will have eight sites measured over three years and
at most eight fields per site per year. When we fit the RE-EM Tree, we saw large differences in
the fitted trec when we used the estimation methods of restricted maximum likelihood (REML)
compared to maximum likelihood (ML). Future research miay explain why these differences in the
fitted tree occurred. Also, when we pruned the RE-EM Tree, we used different random splits in
each run of the cross-validation process. Future research may lead to a pruning procedure for RE-
EM Trees that uses the same random splits in each run of the cross-validation process, making the
process more similar to what is done in rpart.
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