Math 172
28 Oct 2016
Quiz 7
Show Appropriate Work
Name:
Point Values in [boxes].

1. **2** Please indicate **True or False**.
 (a) **T**
 If \(a_n \to 0 \) as \(n \to \infty \), the series \(\sum a_n \) diverges.
 (b) **F**
 If \(a_n \to 0 \) as \(n \to \infty \), the series \(\sum a_n \) converges.

2. **1** Fill in the blanks.
 For \(c \neq 0 \), the geometric series \(\sum_{n=0}^{\infty} c r^n \) converges if \(|r| < 1 \) and diverges if \(|r| > 1 \).

3. **4** Find the partial sums \(S_3, S_4, S_n \), and the sum \(S \) for the following series.

 \[
 \sum_{n=1}^{\infty} \frac{4}{(2n-1)(2n+3)}
 \]

 HINT:
 \[
 \frac{4}{(2n-1)(2n+3)} = \frac{1}{2n-1} - \frac{1}{2n+3}
 \]

 \[
 S_3 = \left(\frac{1}{3} - \frac{1}{5} \right) + \left(\frac{1}{5} - \frac{1}{7} \right) + \left(\frac{1}{7} - \frac{1}{9} \right) + \ldots
 \]

 \[
 S_4 = \left(\frac{1}{3} - \frac{1}{5} - \frac{1}{7} - \frac{1}{9} \right)
 \]

 \[
 S_n = \left(\frac{1}{3} - \frac{1}{2n+1} - \frac{1}{2n+3} \right) \to \frac{4}{3} \quad S
 \]

4. **3** Let \(SC_0 \) be a unit square. Subdivide \(SC_0 \) into nine subsquares and remove the middle one, resulting in \(SC_1 \). Subdivide the remaining eight subsquares in \(SC_1 \) into nine subsquares and remove the middle of each, generating \(SC_2 \). The limit of this process is the Sierpinski carpet, \(SC \). The area removed is given by the series

 \[
 \frac{1}{9} + \frac{8}{9^2} + \frac{8^2}{9^3} + \frac{8^3}{9^4} + \frac{8^4}{9^5} + \frac{8^5}{9^6} + \ldots = \frac{\frac{1}{9}}{1 - \frac{8}{9}} = \frac{1}{9}
 \]

 Find the amount of area removed, i.e. the sum of the above series. Make an appropriate series argument.