Math 172

1 Nov 2016

Quiz 8

Show Appropriate Work

Name:

Point Values in boxes.

1. 1 Find the sum.

$$4 - \frac{8}{5} + \frac{16}{25} - \frac{32}{125} + \frac{64}{625} - \dots = \frac{4}{(-(-\frac{2}{5}))} = \frac{20}{7}$$

- 2. 4 For the following determine if the conclusion is a Valid use of the Comparison Test or an Invalid use.
 - (a) $(\mathbf{V})/\mathbf{I}$: Since $0 < \frac{1}{n} < \frac{1}{n-1}$ and $\sum \frac{1}{n}$ diverges, by comparison $\sum \frac{1}{n-1}$ also diverges.
 - (b) V (L) Since $0 < \frac{1}{n+1} < \frac{1}{n}$ and $\sum \frac{1}{n}$ diverges, by comparison $\sum \frac{1}{n+1}$ also diverges.
 - (c) V / Since $0 < \frac{1}{n^2} < \frac{1}{n^2-1}$ and $\sum \frac{1}{n^2}$ converges, by comparison $\sum \frac{1}{n^2-1}$ also converges.
 - (d) $\widetilde{\mathbf{V}}$ $\widetilde{\mathbf{I}}$: Since $0 < \frac{1}{n^2+1} < \frac{1}{n^2}$ and $\sum \frac{1}{n^2}$ converges, by comparison $\sum \frac{1}{n^2+1}$ also converges.
- 3. 1 Assume $a_n, b_n > 0$ and $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$, are the following True or False.
 - (a) $\mathbf{T} \cdot \mathbf{F} : \text{If } \sum b_n \text{ converges, then } \sum a_n \text{ converges.}$
 - (b) **T** (\mathbf{F}) If $\sum b_n$ diverges, then $\sum a_n$ diverges.
- 4. 4 Show $\sum \frac{n-1}{\sqrt{n^5+3}}$ converges.

Since
$$0 < \frac{n-1}{\sqrt{n^5+3}} < \frac{n}{n^{5/2}} = \frac{1}{n^{3/2}}$$

and
$$\sum \frac{1}{h^{3/2}}$$
 is a convergent p-series $(p=\frac{3}{2})$,

by comparison,
$$\sqrt{\frac{n-1}{\sqrt{n^5+3}}}$$
 2/50 converges.