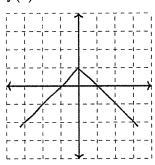
Math 172 Thanksgiving Worksheet

Name: ______Point values in boxes.

Sections: Fourier, 11.1 Due: 27 November 2018

1. Let f(x) be 2π -periodic with on period given by $f(x) = \begin{cases} 1+x, & -\pi \le x < 0 \\ 1-x, & 0 \le x \le \pi \end{cases}$.

(a) 1 Carefully sketch one period of f(x).



(b) $\boxed{1}$ Is f(x) odd; even, or neither? (Circle one.)

(c) $\boxed{6}$ Find the Fourier coefficients, a_0 , a_n , and b_n for f(x).

$$2_{o} = \frac{1}{\pi} \int_{0}^{\pi} (1-x) dx = \frac{1}{\pi} \left(x - \frac{x^{2}}{z} \right) \Big|_{0}^{\pi} = \frac{1}{\pi} \left(\pi - \frac{\pi^{2}}{z} \right) = 1 - \frac{\pi}{2}$$

$$Z_{n} = \frac{2}{\pi} \int_{0}^{\pi} (1-x) \cos(nx) dx = \frac{2}{\pi} \left[(1-x) \left[\frac{1}{n} \sin(nx) \right] + \int_{0}^{\pi} \frac{1}{n} \sin(nx) dx \right]$$

$$u = (1-x) \quad dv = \cos(nx) dx$$

$$du = -dx \quad V = \frac{1}{n} \sin(nx)$$

$$=\frac{2}{\pi}\left(-\frac{1}{N^2}\cos\left(nx\right)\right)\Big|_{0}^{\pi}=-\frac{2}{n^2\pi}\left(\cos\left(n\pi\right)-1\right)=\frac{2}{N^2\pi}\left(1-\cos\left(n\pi\right)\right)$$

by = 0 since t is even.

2. 2 Eliminate the parameter t to express the parametric curve $c(t) = \left(e^{2t}, \frac{1}{1 + e^{4t}}\right)$ with $t \in (-\infty, \infty)$ in the form y = f(x). Include the domain of f(x).

$$y = \frac{1}{1+x^2}$$
 for $x \in (0, \infty)$

Parameterizing Line Segments. Since each dimension (x and y) are parameterized separately, we consider only one dimension initially.

• Consider the one dimensional line segment from x = 0 to x = 1. The standard parameterization is given by

$$x = t, t \in [0, 1].$$

• Scaling the parameterization will cause the path to be covered faster. For example, the segment from x = 0 to x = 5 can be parameterized by

$$x = 5t, t \in [0, 1].$$

• Shifting parametric equations is accomplished by adding a constant. For example, the segment from x = -3 to x = 2 can be parameterized by

$$x = 5t - 3, t \in [0, 1].$$

- Note, in the above example the form of the parameterization is x = a + (b a)t for $t \in [0, 1]$ where a is where you start and (b a) is how far you need to go.
- Note, a parameterization is not unique. The line segment from x = -3 to x = 2 can be parametrized by

$$x = 5t - 3, t \in [0, 1],$$

$$x = s, s \in [-3, 2],$$

or even

$$x = 5e^u - 3, u \in (-\infty, 0].$$

In general, I try to parameterize for $t \in [0, 1]$.

• For line segments in multiple dimensions deal with each dimension separately. For example, the line segment from (7,9) to (0,13) can be parameterized by

$$x = 7 - 7t, y = 9 + 4t, t \in [0, 1].$$

- Often our parameterization is express as a curve. For example, the parameterization above is often written c(t) = (7 7t, 9 + 4t) for $t \in [0, 1]$.
- 3. 2 Using the strategy above, find a parameterization of the line segment from (1,2) to (5,-3). Include an appropriate domain for the parameter t.

$$X = 1 + 4t$$

$$for 0 \le t \le 1$$

$$y = 2 - 5t$$

Parameterizing Circles. Since $x^2 + y^2 = R^2$ is satisfied by $c(t) = (\pm R \cos \theta, \pm R \sin \theta)$ or $c(t) = (\pm R \sin \theta, \pm R \cos \theta)$, the standard parameterization of a circle involves sines and cosines.

• A circle of radius 2 with center at the origin rotating counterclockwise and starting at c(0) = (2,0) has a standard parameterization

$$c(t) = (2\cos(t), 2\sin(t)), t \in [0, 2\pi].$$

• As with lines, we can speed up the travel along the path by scaling the parameter. A circle of radius 2 with center at the origin rotating counterclockwise and starting at c(0) = (2,0) can also be parameterized by

$$c(t) = (2\cos(2\pi t), 2\sin(2\pi t)), t \in [0, 1].$$

• By flipping the order of the sine and cosine and changing the sign on one or both, we can change the initial point (c(0)) and the direction of travel. For example, a circle of radius R with center at the origin rotating clockwise with initial point c(0) = (0, -R) can be parameterized by

$$c(t) = (-R\sin(t), -R\cos(t)), t \in [0, 2\pi].$$

• Also as before, we can shift the center by simply adding to each component. If we take the circle above and move it so that it is centered at (x_c, y_c) , we have a parameterization of

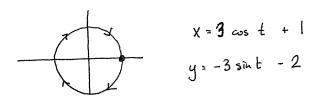
$$c(t) = (x_c - R\sin(t), y_c - R\cos(t)), t \in [0, 2\pi].$$

• An important note is that the center (x_c, y_c) is allowed to move. An important example is the cycloid (motion of a point of the circumference of a rolling circle of radius R). We track the center as $(x_c, y_c) = (R\theta, R)$. Substituting into the above we have

$$c(t) = (R\theta - R\sin(\theta), R - R\cos(\theta)).$$

See the Desmos project on my webpage.

4. $\boxed{2}$ Find a parameterization of a circle of radius 3, center (1, -2), initial point c(0) = (4, -2), and drawn out in a clockwise direction as t increases.



5. 2 Assume the Earth rotates in a counterclockwise direction in a circular orbit of radius 4 about the sun (located at the origin). Assume the moon rotates in a counterclockwise direction in a circular orbit about the Earth with radius 1 and completes 12 revolutions in the time the Earth completes one. Find a parameterization of the path of the moon. See the Desmos project linked on my webpage.

$$x = 4 \cos t + \cos (12+)$$

$$y = 4 \sin t + \sin (12+)$$

Derivatives of Parametric Curves. There are now three derivatives of interest to us. $\frac{dx}{dt}$ tells us about horizontal motion, i.e., how does x change with respect to the parameter t. $\frac{dy}{dt}$ tells us about vertical motion, i.e., how does y change with respect to the parameter t. The Chain Rule allows us to find the standard slope by computing $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$.

6. Consider the prolate cycloid given by

$$x(t) = t - 2\sin t$$

$$y(t) = 1 - 2\cos t.$$
(1)

See the Desmos project linked on my webpage.

(a) 1 For what values of $t \in [0, 2\pi)$ is $\frac{dx}{dt} = 0$? Note, these correspond to vertical tangent lines (provided $\frac{dy}{dt} \neq 0$).

$$\frac{dx}{dt} = 1 - 2\omega s t = 0 \quad \text{when} \quad \cos t = \frac{1}{2} \quad t = \frac{\pi}{3} \circ 2 \quad \frac{5\pi}{3}$$

(b) 1 For what values of $t \in [0, 2\pi)$ is $\frac{dx}{dt} < 0$? What does this tell us about the direction of travel?

$$t \in [0, \frac{\pi}{3}]$$
 or $t \in (\frac{5\pi}{3}, 2\pi)$

During these times the direction of travel is to the left,

1-e., the negative x-direction.

(c) 1 For what values of $t \in [0, 2\pi)$ is $\frac{dy}{dt} = 0$? How have we referred to these points in the past?

$$\frac{dy}{dt} = 2 \sin t = 0 \text{ when } t = 0 \text{ or } T \text{ or } ...$$
There are critical points.

(d) 1 Find the slope of the curve, $\frac{dy}{dx}$, at $t = \pi/6$.

$$\frac{dy}{dx} = \frac{2 \sin t}{1 - 2 \cos t}$$

$$50 \quad \frac{dy}{dx} = \frac{2\left(\frac{1}{2}\right)}{1 - 2\left(\frac{1}{2}\right)} = \frac{1}{1 - \sqrt{3}}$$