\qquad

1. Let $f(x)$ be 2π-periodic with on period given by $f(x)=\left\{\begin{array}{ll}1+x, \\ 1-x, & -\pi \leq x<0 \\ 0 \leq x \leq \pi\end{array}\right.$.
(a) 1 Carefully sketch one period of $f(x)$.

(b) 1 Is $f(x)$ odd, even, or neither? (Circle one.)
(c) 6 Find the Fourier coefficients, a_{0}, a_{n}, and b_{n} for $f(x)$.
2. 2 Eliminate the parameter t to express the parametric curve $c(t)=\left(e^{2 t}, \frac{1}{1+e^{4 t}}\right)$ with $t \in$ $(-\infty, \infty)$ in the form $y=f(x)$. Include the domain of $f(x)$.

Parameterizing Line Segments. Since each dimension (x and y) are parameterized separately, we consider only one dimension initially.

- Consider the one dimensional line segment from $x=0$ to $x=1$. The standard parameterization is given by

$$
x=t, t \in[0,1] .
$$

- Scaling the parameterization will cause the path to be covered faster. For example, the segment from $x=0$ to $x=5$ can be parameterized by

$$
x=5 t, t \in[0,1] .
$$

- Shifting parametric equations is accomplished by adding a constant. For example, the segment from $x=-3$ to $x=2$ can be parameterized by

$$
x=5 t-3, t \in[0,1] .
$$

- Note, in the above example the form of the parameterization is $x=a+(b-a) t$ for $t \in[0,1]$ where a is where you start and $(b-a)$ is how far you need to go.
- Note, a parameterization is not unique. The line segment from $x=-3$ to $x=2$ can be parametrized by

$$
\begin{gathered}
x=5 t-3, t \in[0,1], \\
x=s, s \in[-3,2],
\end{gathered}
$$

or even

$$
x=5 e^{u}-3, u \in(-\infty, 0] .
$$

In general, I try to parameterize for $t \in[0,1]$.

- For line segments in multiple dimensions deal with each dimension separately. For example, the line segment from $(7,9)$ to $(0,13)$ can be parameterized by

$$
x=7-7 t, y=9+4 t, t \in[0,1] .
$$

- Often our parameterization is express as a curve. For example, the parameterization above is often written $c(t)=(7-7 t, 9+4 t)$ for $t \in[0,1]$.

3. 2 Using the strategy above, find a parameterization of the line segment from $(1,2)$ to $(5,-3)$. Include an appropriate domain for the parameter t.

Parameterizing Circles. Since $x^{2}+y^{2}=R^{2}$ is satisfied by $c(t)=(\pm R \cos \theta, \pm R \sin \theta)$ or $c(t)=(\pm R \sin \theta, \pm R \cos \theta)$, the standard parameterization of a circle involves sines and cosines.

- A circle of radius 2 with center at the origin rotating counterclockwise and starting at $c(0)=$ $(2,0)$ has a standard parameterization

$$
c(t)=(2 \cos (t), 2 \sin (t)), t \in[0,2 \pi]
$$

- As with lines, we can speed up the travel along the path by scaling the parameter. A circle of radius 2 with center at the origin rotating counterclockwise and starting at $c(0)=(2,0)$ can also be parameterized by

$$
c(t)=(2 \cos (2 \pi t), 2 \sin (2 \pi t)), t \in[0,1]
$$

- By flipping the order of the sine and cosine and changing the sign on one or both, we can change the initial point $(c(0))$ and the direction of travel. For example, a circle of radius R with center at the origin rotating clockwise with initial point $c(0)=(0,-R)$ can be parameterized by

$$
c(t)=(-R \sin (t),-R \cos (t)), t \in[0,2 \pi]
$$

- Also as before, we can shift the center by simply adding to each component. If we take the circle above and move it so that it is centered at $\left(x_{c}, y_{c}\right)$, we have a parameterization of

$$
c(t)=\left(x_{c}-R \sin (t), y_{c}-R \cos (t)\right), t \in[0,2 \pi]
$$

- An important note is that the center $\left(x_{c}, y_{c}\right)$ is allowed to move. An important example is the cycloid (motion of a point of the circumference of a rolling circle of radius R). We track the center as $\left(x_{c}, y_{c}\right)=(R \theta, R)$. Substituting into the above we have

$$
c(t)=(R \theta-R \sin (\theta), R-R \cos (\theta))
$$

See the Desmos project on my webpage.
4. 2 Find a parameterization of a circle of radius 3 , center $(1,-2)$, initial point $c(0)=(4,-2)$, and drawn out in a clockwise direction as t increases.
5. 2 Assume the Earth rotates in a counterclockwise direction in a circular orbit of radius 4 about the sun (located at the origin). Assume the moon rotates in a counterclockwise direction in a circular orbit about the Earth with radius 1 and completes 12 revolutions in the time the Earth completes one. Find a parameterization of the path of the moon. See the Desmos project linked on my webpage.

Derivatives of Parametric Curves. There are now three derivatives of interest to us. $\frac{d x}{d t}$ tells us about horizontal motion, i.e., how does x change with respect to the parameter t. $\frac{d y}{d t}$ tells us about vertical motion, i.e., how does y change with respect to the parameter t. The Chain Rule allows us to find the standard slope by computing $\frac{d y}{d x}=\frac{d y}{d t} / \frac{d x}{d t}$.
6. Consider the prolate cycloid given by

$$
\begin{align*}
& x(t)=t-2 \sin t \\
& y(t)=1-2 \cos t . \tag{1}
\end{align*}
$$

See the Desmos project linked on my webpage.
(a) 1 For what values of $t \in[0,2 \pi)$ is $\frac{d x}{d t}=0$? Note, these correspond to vertical tangent lines (provided $\frac{d y}{d t} \neq 0$).
(b) 1 For what values of $t \in[0,2 \pi)$ is $\frac{d x}{d t}<0$? What does this tell us about the direction of travel?
(c) 1 For what values of $t \in[0,2 \pi)$ is $\frac{d y}{d t}=0$? How have we referred to these points in the past?
(d) 1 Find the slope of the curve, $\frac{d y}{d x}$, at $t=\pi / 6$.

