
Math 172 Thanksgiving Worksheet Name:
Sections: Fourier, 11.1 Point values in boxes .
Due: 27 November 2018

1. Let f(x) be 2π−periodic with on period given by f(x) =

{
1 + x, −π ≤ x < 0
1− x, 0 ≤ x ≤ π .

(a) 1 Carefully sketch one period of f(x).

(b) 1 Is f(x) odd, even, or neither? (Circle one.)

(c) 6 Find the Fourier coefficients, a0, an, and bn for f(x).

2. 2 Eliminate the parameter t to express the parametric curve c(t) =

(
e2t,

1

1 + e4t

)
with t ∈

(−∞,∞) in the form y = f(x). Include the domain of f(x).



Parameterizing Line Segments. Since each dimension (x and y) are parameterized separately,
we consider only one dimension initially.

• Consider the one dimensional line segment from x = 0 to x = 1. The standard parameteri-
zation is given by

x = t, t ∈ [0, 1].

• Scaling the parameterization will cause the path to be covered faster. For example, the
segment from x = 0 to x = 5 can be parameterized by

x = 5t, t ∈ [0, 1].

• Shifting parametric equations is accomplished by adding a constant. For example, the seg-
ment from x = −3 to x = 2 can be parameterized by

x = 5t− 3, t ∈ [0, 1].

• Note, in the above example the form of the parameterization is x = a+ (b− a)t for t ∈ [0, 1]
where a is where you start and (b− a) is how far you need to go.

• Note, a parameterization is not unique. The line segment from x = −3 to x = 2 can be
parametrized by

x = 5t− 3, t ∈ [0, 1],

x = s, s ∈ [−3, 2],

or even
x = 5eu − 3, u ∈ (−∞, 0].

In general, I try to parameterize for t ∈ [0, 1].

• For line segments in multiple dimensions deal with each dimension separately. For example,
the line segment from (7, 9) to (0, 13) can be parameterized by

x = 7− 7t, y = 9 + 4t, t ∈ [0, 1].

• Often our parameterization is express as a curve. For example, the parameterization above
is often written c(t) = (7− 7t, 9 + 4t) for t ∈ [0, 1].

3. 2 Using the strategy above, find a parameterization of the line segment from (1, 2) to (5,−3).
Include an appropriate domain for the parameter t.



Parameterizing Circles. Since x2 + y2 = R2 is satisfied by c(t) = (±R cos θ,±R sin θ) or
c(t) = (±R sin θ,±R cos θ), the standard parameterization of a circle involves sines and cosines.

• A circle of radius 2 with center at the origin rotating counterclockwise and starting at c(0) =
(2, 0) has a standard parameterization

c(t) = (2 cos(t), 2 sin(t)), t ∈ [0, 2π].

• As with lines, we can speed up the travel along the path by scaling the parameter. A circle
of radius 2 with center at the origin rotating counterclockwise and starting at c(0) = (2, 0)
can also be parameterized by

c(t) = (2 cos(2πt), 2 sin(2πt)), t ∈ [0, 1].

• By flipping the order of the sine and cosine and changing the sign on one or both, we can
change the initial point (c(0)) and the direction of travel. For example, a circle of radius
R with center at the origin rotating clockwise with initial point c(0) = (0,−R) can be
parameterized by

c(t) = (−R sin(t),−R cos(t)), t ∈ [0, 2π].

• Also as before, we can shift the center by simply adding to each component. If we take the
circle above and move it so that it is centered at (xc, yc), we have a parameterization of

c(t) = (xc −R sin(t), yc −R cos(t)), t ∈ [0, 2π].

• An important note is that the center (xc, yc) is allowed to move. An important example is
the cycloid (motion of a point of the circumference of a rolling circle of radius R). We track
the center as (xc, yc) = (Rθ,R). Substituting into the above we have

c(t) = (Rθ −R sin(θ), R−R cos(θ)).

See the Desmos project on my webpage.

4. 2 Find a parameterization of a circle of radius 3, center (1,−2), initial point c(0) = (4,−2), and
drawn out in a clockwise direction as t increases.

5. 2 Assume the Earth rotates in a counterclockwise direction in a circular orbit of radius 4 about
the sun (located at the origin). Assume the moon rotates in a counterclockwise direction in a
circular orbit about the Earth with radius 1 and completes 12 revolutions in the time the Earth
completes one. Find a parameterization of the path of the moon. See the Desmos project linked
on my webpage.



Derivatives of Parametric Curves. There are now three derivatives of interest to us. dx
dt tells

us about horizontal motion, i.e., how does x change with respect to the parameter t. dy
dt tells us

about vertical motion, i.e., how does y change with respect to the parameter t. The Chain Rule

allows us to find the standard slope by computing
dy

dx
=
dy

dt
/
dx

dt
.

6. Consider the prolate cycloid given by

x(t) = t− 2 sin t

y(t) = 1− 2 cos t.
(1)

See the Desmos project linked on my webpage.

(a) 1 For what values of t ∈ [0, 2π) is dx
dt = 0? Note, these correspond to vertical tangent lines

(provided dy
dt 6= 0).

(b) 1 For what values of t ∈ [0, 2π) is dx
dt < 0? What does this tell us about the direction of

travel?

(c) 1 For what values of t ∈ [0, 2π) is dy
dt = 0? How have we referred to these points in the past?

(d) 1 Find the slope of the curve, dy
dx , at t = π/6.


