1. [] Please circle True or False, as appropriate.
 (a) T / F: The Harmonic Series converges.
 (b) T / F: If \(a_n \to 0 \) as \(n \to \infty \), the series \(\sum a_n \) converges.

2. [] For \(c \neq 0 \), the p-series \(\sum_{n=1}^{\infty} \frac{c}{n^p} \) converges for \(p > 1 \) and diverges for \(p \leq 1 \).

3. [] For \(c \neq 0 \), the Geometric Series \(\sum_{n=0}^{\infty} cr^n \) converges to \(\frac{c}{1-r} \) for \(|r| < 1 \) and diverges for \(|r| \geq 1 \).

4. [] Find the interval of convergence \(I \) for the following power series. For \(x \in I \), find the sum.
 \[
 \sum_{n=0}^{\infty} 3(2x)^n = \frac{3}{1 - 2x}
 \]
 \[
 -1 \leq 2x \leq 1
 \]
 \[
 |x| < \frac{1}{2}
 \]
 \[
 x \in \left(-\frac{1}{2}, \frac{1}{2} \right)
 \]

5. [] What specific topic, or topics, are you struggling with the most?
1. Please circle True or False, as appropriate.
 (a) T / F: The Harmonic Series converges.
 (b) T / F: If \(a_n \to 0 \) as \(n \to \infty \), the series \(\sum a_n \) converges.

2. For \(c \neq 0 \), the p-series \(\sum_{n=1}^{\infty} \frac{c}{n^p} \) converges for \(\underline{\text{_________}} \) and diverges for \(\underline{\text{_________}} \).

3. For \(c \neq 0 \), the Geometric Series \(\sum_{n=0}^{\infty} cr^n \) converges to \(\underline{\text{_________}} \) for \(\underline{\text{_________}} \) and diverges for \(\underline{\text{_________}} \).

4. Find the interval of convergence \(I \) for the following power series. For \(x \in I \), find the sum.
 \[
 \sum_{n=0}^{\infty} 3(2x)^n
 \]

5. What specific topic, or topics, are you struggling with the most?