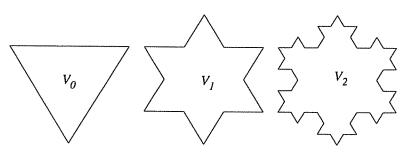
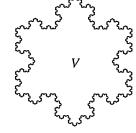
- 1. 9 Please circle True or False, as appropriate.
 - (a) (T)/ F: If $a_n \to 0$ as $n \to \infty$, the sequence $\{a_n\}$ converges.
 - (b) $\widehat{\text{(T)}}/\text{ F: If } a_n \to \pi \text{ as } n \to \infty, \text{ the sequence } \{a_n\} \text{ converges.}$
 - (c) T / F:If $a_n \to \infty$ as $n \to \infty$, the sequence $\{a_n\}$ converges.
 - (d) T /F: The Fibonacci sequence $\{1, 1, 2, 3, 5, 8, 13, \ldots\}$ converges.
 - (e) (T) F: The Fibonacci sequence $\{1, 1, 2, 3, 5, 8, 13, \ldots\}$ is monotone.
 - (f) $\stackrel{\frown}{\mathbf{T}}$ **F**: If r = -0.3, the geometric sequence $\{-7r^n\}$ converges.
 - (g) T /(F:)If r = 1.3, the geometric sequence $\{0.1r^n\}$ converges.
 - (h) T / \mathbf{F} : The sequence $\{-1, 1, -1, 1, -1, 1, \ldots\}$ converges.
 - (i) **T** F: The sequence $\{-1, 1, -1, 1, -1, 1, ...\}$ is bounded.
 - (j) T: If $a_n = f(n)$ for $n \in \mathbb{N}$ and $\lim_{x \to \infty} f(x) = L$, then $\lim_{n \to \infty} a_n = L$.
 - (k) T F: If $0 < a_n < b_n$ and $b_n \to 0$ as $n \to \infty$, then the sequence $\{a_n\}$ converges.
 - (l) T / F: A bounded sequence converges.
 - (m) T /F: A monotone sequence converges.
 - (n) T F: A bounded monotone sequence converges.
 - (o) T / $(1+\frac{1}{n})^n \to 1$ as $n \to \infty$.
 - (p) T /F: The 3rd partial sum of $\sum_{n=0}^{\infty} \frac{1}{2^n}$ is $S_3 = 1 + \frac{1}{2} + \frac{1}{4}$.
 - (q) T/F: If the sequence $S_N = \sum_{n=0}^N a_n$ converges to 7, then $S_N = \sum_{n=0}^\infty a_n$ converges.
 - (r) T / For $P_0 > 0$, the sequence $\left\{P_0\left(\frac{4}{3}\right)^n\right\}$ converges, i.e. the sequence of perimeters of the approximations of the von Koch Snowflake converges.



Perimeter = P_0

Perimeter = $P_0(4/3)$

Perimeter = $P_0(4/3)^2$



Perimeter = ?

2. 1 Determine the limit of the sequence or state that the sequence diverges.

$$a_n = \arcsin\left(\frac{n^2 + 2n + 1}{1 - 2n^2}\right) \longrightarrow \arcsin\left(\frac{1}{2}\right) = -\frac{\pi}{6}$$