Sections: 10.1-10.2 25 October 2018

- 1. 3 Please circle True or False, as appropriate.
 - (a) $(\widehat{\mathbf{T}})/\mathbf{F}$: If $a_n \to 0$ as $n \to \infty$, the sequence $\{a_n\}$ converges.
 - (b) T (F) If $a_n \to 0$ as $n \to \infty$, the series $\sum a_n$ converges.
 - (c) T /F If $a_n \to 0$ as $n \to \infty$, the series $\sum a_n$ diverges.
 - (d) $\widehat{\mathbf{T}}$ **F**: If $a_n \to 1$ as $n \to \infty$, the sequence $\{a_n\}$ converges.
 - (e) T /(F:) If $a_n \to 1$ as $n \to \infty$, the series $\sum a_n$ converges.
 - (f) $\widehat{\mathbf{T}}$ **F**: If $a_n \to 1$ as $n \to \infty$, the series $\sum a_n$ diverges.
- 2. 2 State the Divergence Test.

If an to 0 25 n - so then I an diverges.

3. 2 Use the Divergence Test to show the following series diverges.

Since $\frac{n}{n+2}$ $\sum_{n=0}^{\infty} \frac{n}{n+2}$ Since $\frac{n}{n+2}$ $| \neq 0 |$ by the Divergence lest $\frac{n}{n+2}$ diverges

- 5. $\boxed{2}$ For what values of x does the following converge? For those x, find the sum.

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \qquad \text{if } |x| \leq 1$$