1. Convert the following polar equations into rectangular coordinates, or rectangular to polar expressing your solution in the form \(r = f(\theta) \).

(a) \(r = \frac{4}{2 \sin \theta - \cos \theta} \)

(b) \((x + 2)^2 + y^2 = 4\)

2. Find the length of the polar curve \(r = \sec \theta \) for \(\theta \in [0, \pi/4] \).
Given: \(\sin(2x) = 2 \sin x \cos x \) \\
\(\sin^2 x = (1 - \cos(2x))/2 \) \\
\(\cos^2 x = (1 + \cos(2x))/2 \)

3. Polar area and graphing.

(a) Sketch the curves \(r = 1 \) and \(r = 1 + \cos \theta \).

(b) Find the area inside the curve \(r = 1 + \cos \theta \) but outside the curve \(r = 1 \).

Shade the region to indicate the area you are trying to find.