1. 2 Please circle True or False, as appropriate.

- (a) T F: The Harmonic Series converges.
- (b) T /F: If $a_n \to 0$ as $n \to \infty$, the series $\sum a_n$ converges.
- (c) \mathbf{T} / \mathbf{F} : $\sum n^p$ converges for p < -1.
- (d) (T)/ **F**: If $\sum a_n$ converges, $a_n \to 0$ as $n \to \infty$.

2. 1 For each of the following series, determine if the Test for Divergence can be used to show the series Converges, Diverges, or is Inconclusive.

(a) C / D $\underbrace{1}:\sum \frac{1}{n}$

(c) C $\stackrel{\frown}{\mathbb{D}}$ I : $\sum \frac{1}{1 + \left(\frac{2}{3}\right)^n}$

(b) C / D /(I): $\sum \frac{1}{n^2}$

(d) C / \bigcirc I : $\sum \sin n$

4. $\boxed{2}$ For what values of x does the following converge? For those x, find the sum.

$$\sum_{n=0}^{\infty} 3(2x)^n$$

$$= \frac{3}{1-2x} \qquad \qquad \int_{1-2x} |2x| \, dx$$

5. 4 Use the Integral Test to show the following series converges or diverges.

$$\sum_{n=1}^{\infty} \frac{1}{1+n^2}$$

Let
$$f(x) = \frac{1}{1+x^2}$$
.

For
$$x > 1$$
, $f(x)$ is positive, continuous, and decreasing $f'(x) = \frac{-2y}{(1+x^2)^2}$.

Furthermore, For

$$\int \frac{dx}{1+x^2} = \lim_{N \to \infty} \arctan R - \arctan R$$

$$= \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}.$$

By the Integral Tast, since \int_{17x2} converges