- 1. 2 Consider the power series $\sum_{n=0}^{\infty} b_n (x-3)^n$. Assume the series converges for x=5 and diverges for x=0. For each of the following values of x, determine if the series Converges, Diverges, or if there is Not enough information to tell.
 - (a) C / D / N : x = -1

(c) C / D / N = 6(d) C D N : x = 8

(b) $(\widehat{\mathbf{C}})/\widehat{\mathbf{D}}/\mathbf{N}: x=2$

- 2. 2 Assume $\sqrt[n]{c_n} \to 2$ as $n \to \infty$. Find the radius of convergence R for the power series $\sum c_n(x+7)^n$.

3. 2 What is the Taylor series about x = c for f(x).

$$\sum_{\infty} \frac{N!}{t_{(n)}(c)} (x-c)_{\nu}$$

4. 2 Yesterday we showed the Taylor series about x = 0 for $f(x) = e^x$ is $\sum_{n=0}^{\infty} \frac{x^n}{n!}$. Use the Ratio Test to find the radius of convergence R.

$$\left|\frac{\partial u+1}{\partial u}\right| = \left|\frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n}\right| = \frac{|x|}{n+1} \xrightarrow{n \to \infty} 0 \quad \text{so } \mathbb{R} = \infty$$

- 5. 2 Given $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ for |x| < 1.
 - (a) Find a power series representation for $\frac{1}{1+4x^2}$.

$$\sum_{n=0}^{\infty} \left(-4x^2\right)^n$$

(b) Find the interval of convergence for the series above.

$$|-4x^2| \le |x| \le |x| \le \frac{1}{2}$$