3.23 Thing

No work expected.

Name:	
Point Values in	boxes

1. | 1 | Fill in the blanks.

For
$$c \neq 0$$
, $\sum_{n=0}^{\infty} cr^n$ converges to $\frac{C}{1-r}$ if $|r| < |r|$ and diverges if $|r| > |r|$.

- 2. 3 Please indicate True or False.
 - (a) T (F): If $a_n \to 0$ as $n \to \infty$, the series $\sum a_n$ converges. (b) T (F) If $a_n \to 0$ as $n \to \infty$, the series $\sum a_n$ diverges.

 - (c) T /F If $a_n \to 0$ as $n \to \infty$, the series $\sum a_n$ neither converges nor diverges.
 - (d) (T) $F : \text{If } a_n \to 2 \text{ as } n \to \infty, \text{ the series } \sum a_n \text{ diverges.}$
 - (e) T /(F) The geometric series

$$1 + \frac{5}{2} + \frac{25}{4} + \frac{125}{8} + \frac{625}{16} + \cdots$$

converges to $\frac{1}{1-\frac{5}{2}}$.

(f(T)) **F**: The geometric series

$$1 - \frac{2}{5} + \frac{4}{25} - \frac{8}{125} + \frac{16}{625} - \cdots$$

converges to $\frac{1}{1+\frac{2}{2}}$.

- 3. 2 For each of the following series, determine if it is a Convergent geometric series, a Divergent geometric series, or Not a geometric series.
 - (a) C / D (N) $\sum \left(\frac{3}{n}\right)^n$
- (c) \bigcirc D / N : $\sum \frac{-7}{3^n}$

(b) \bigcirc D / N : $\sum 4^{-n}$

- (d) C \bigcirc N : $\sum \frac{3^{2n}}{(-7)^n}$
- 4. 2 We discussed the Integral Test in class on Tuesday. In order to apply that test we need a function f(x) with the following properties. (Choose all that are required. Assume each statement is true for all x > N.)
 - $\underbrace{(a) \ f(x) > 0}_{(b) \ f(x) < 0}$

- 5. 2 For each statement, determine if the use of the Comparison Test is Valid or Invalid.
 - (a) V I: Since $0 < \frac{1}{n} < \frac{1}{n-1}$ and $\sum \frac{1}{n}$ diverges, by comparison $\sum \frac{1}{n-1}$ also diverges.
 - (b) V (1: Since $0 < \frac{1}{n+3} < \frac{1}{n}$ and $\sum \frac{1}{n}$ diverges, by comparison $\sum \frac{1}{n+3}$ also diverges.