Math 172 Disks Name:

You will find the following identities useful.

\[\cos 2x = \cos^2 x - \sin^2 x \quad \tan^2 x + 1 = \sec^2 x \quad \int \sec u du = \ln |\sec u + \tan u| + c \]

1. Consider the region bounded by \(y = \sqrt{x}, y = (3-x)/2, \) and the \(x \)-axis. Carefully sketch the region.

 (a) 4 The region is rotated about \(y = 2 \). Express the volume as a sum of two integrals. Do not evaluate.

 \[
 \int \ldots
 \]

 (b) 6 The region is rotated about \(x = 4 \). Find the volume.

2. 10 Consider the region bounded by \(y = \ln x, x = e, \) and the \(x \)-axis. Carefully sketch the region. The region is rotated about the \(y \)-axis, find the volume.

 \[
 \int \ldots
 \]
3. Consider the region bounded by $y = \cos x$ and $y = \sin x$ for $x \in [0, \pi/4]$. Carefully sketch the region.

(a) The region is rotated about the y-axis. Express the volume as a sum of two integrals. Do not evaluate.

(b) The region is rotated about the x-axis. Find the volume.

4. Consider the region bounded by $y = \tan x$ and $y = \sec x$ for $x \in [0, \pi/4]$. Carefully sketch the region. The region is rotated about the line $y = 2$, find the volume.