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,1"( CHAPTER 10. SEQUENCES AND SERIES

10.3 Geometric Series

An important, perhaps the most important, type of series is a geometric series.
We have already seen one example, our walk across the room.
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Before we dive into the general theory, we should look closely at this example.
As before, we consider the Nth partial sum Sy.
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10.3. GEOMETRIC SERIES

o]
Theorem 10.3.1 (Geometric Series). Forc #0, Y cr" = : ¢ -

n=0
divererwise.
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Remark. The more general result is

n _ first term

Lo =,

for|r| < 1.
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We will need additional machinery to deal with this last example.
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Since finite sums and limits are both linear, so are series.

Theorem 10.3.2 (Linearity of Series). Assume the following series are convergent,
then
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We can now return to the example from the previous page and a similar

example. .
2) n _"l._
Zo 32 Z 1" Z +)

==
n=o

Bt (30 2 (5)

n=0
= l - i i + i = E_.S_,
[ -5 1-(%) 2 9 18

Remark. The assumption that all the series converged in the theorem is
necessary. For example,
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Since neither of the last series converge.
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In our discussion of geometric series, the common ratio * was constant. What
happens if we let r vary?

Example 10.3.1. Find the values of x for which the followmg series converges
and find what it converges to.
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Example 10.3.2. Find the values of x for which the following series converges
and find what it converges to.
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Remark. The two series on this page are representations of functions. They are
examples of series we will refer to to as power series, the topic section 10.5.

% Homework From section 10.2 in the text, # 23, 25, 27, 29, 33, 39, 43, 47, 49, 57
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Figure 10.2: von Koch curve

Figure 10.3: Sierpinski gasket

can view the construction as replacing each interval with four intervals of one
third the length, see Figure 10.2.

We will soon see that the Cantor set has zero length. Curiously, the snowflake
curve has infinite length. Nonetheless, the curve has zero area in the plane. It
will be useful to find a measure of the size of this curve, and similar objects, that
is a more useful measurement than infinite length or zero area. One such
measure of size is the dimension, which we will discuss soon. However, two
additional examples are worth familiarizing ourselves with before we dive in.

The final two examples are similar to the construction of the Cantor set and
both due to the Polish mathematician Waclaw Sierpiniski. The Sierpiriski gasket
is constructed from an equilateral triangle. At each iteration we divide the
triangle, or triangles, into four congruent subtriangles and remove the central
subtriangle, see Figure 10.3. A Sierpinski carpet is constructed from a square.
At each iteration we divide the square, or squares, into nine congruent
subsquares and remove the central subsquare, see Figure 10.4.

We will soon see that the area of the gasket and the carpet are both zero. Again
we see that area is a poor measure of these objects. A more useful analytic tool
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Figure 10.4: Sierpiriski carpet

for these types of fractals is their dimension.

Before we consider the concept of dimension, we should verify the claims made
earlier.

Exercise 10.4.1. Show the length of the Cantor set is 0.

This is homework.

Exercise 10.4.2. Show the lenght of the von Koch curve is infinite.

Solution. Tt is clear the line segment Vj has length 1. At the next iteration we
replace the segment by four pieces one third the length, so the length of V; is
(4/3). The length grows by this factor at each step, so V, has length (4/3)?, V3
has length (4/3)%, and in general V;, has length (4/3)". Since (4/3)" — oo as

n — oo we see the length of the von Koch curve V is infinite. This is an example
of a divergent geometric sequence, see Theorem 10.1.6.

Exercise 10.4.3. Show the area of the Sierpiniski gasket is 0.

This is homework.

Exercise 10.4.4. Show the area of the Sierpiriski carpet is 0.

Solution. The area can be computed by subtracting the removed squares from
the total area. Conviently, the area of removed squares form a geometric series.

1 8 8 1/9
=1l ... =117 _1-.1=
Area =1 <9+92+93+ ) 1 1-8/9 1=0
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For these types of mathematical toys, and many real world objects that have
self-simliar structures at various scales, a useful measure is the dimension.
There are many concepts of dimension, we will discuss a very basic version.

What is dimension?
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Roughly,

number of pieces = (1/(‘size’ of pieces))dimension
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Solving for the dimension in the previous gives.

In (number of pieces)
— In ("size’ of pieces)

dimX = ()

Or formally, if X is self similar shape made of N copies of itself, each scaled by a
similarity with contraction factor r then we define the similarity dimension as

InN
- Inr

dimg X =

The examples we have seen have the following similarity dimensions.

e Cantor set K, dimg K = {22 ~ 0.63

e von Koch curve V, dimgV = ﬁ— 1.26
e Sierpinski gasketG, dimg G = -h‘—z 1.58
e Sierpiniski carpet S, dimg S = 1n£§ 1.89

Although similarity dimension is very easy to compute for our examples, it is
not very flexible. For more complicated objects, mathematical or real world,
other more rigorous methods are needed. But, we are already beyond the scope
of the class, so we should return to the topic at hand.
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