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Example 10.7.2. Using the Ratio Test we can show that Z (x 2 converges
n=1

for|x — 2] < 2 and dlverges for|x —2| > 2. Does it converge when |x — 2| = 2?
When x = 4 we have
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When x = 0 we have
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Our current tools do not address this situation, but the following section will

Exercise 10.7.3. From section 10.3 in the text do # 79 using the Integral Test 19,
21,25, 31, 39, 41, 43, 47.



44 CHAPTER 10. SEQUENCES AND SERIES

10.8 Conditional and Absolute Convergence

Initially we note that everything we discussed regarding positive series ¥ ay, i.e.
an > 0, in the previous section applies to negative series ¥ by, i.e. b, < 0, after
we factor out the negative (series are linear). For series with both signs, we will
need additional tools.

Definition 10.8.1. } a, converges absolutely if }_|a,| converges.
Remark. A convergent positive series is absolutely convergent by definition.

Theorem 10.8.1. If J_a, converges absolutely, then ¥ ay converges.
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Remark. To use either of the comparison tests we must have nonnegative terms,
so often testing for absolute convergence is necessary.



10.8. CONDITIONAL AND ABSOLUTE CONVERGENCE

Example 10.8.1.
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is the Alternating Harmonic Series. Since the Harmonic Series diverges, the
Alternating Harmonic Series does not converge absolutely. But, does it
converge? This was the question we left off with in Example 10.7.2.

Definition 10.8.2. }a, converges conditionally if it converges, but not
absolutely.

Definition 10.8.3. For a, > 0, a series of the form ¥ (—1)"a, or Y(—1)"*1g, is
an alternating series.

Theorem 10.8.2 (Alternating Series Test). If a, > 0, a,, decreasing, and a, — 0 as
n—sco, then § = Y _(—1)"*a, converges. Additionally, we have the following

n=1
estimates for N > 1:
1. 0< S <y,

2. S55n<S< SZN—H/ and

3. |S - SN‘ < ﬂN+1.

Sketch of Proof.
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Example 10.8.2. Find the interval of convergence for the power series
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As before, we use either the Ratio or Root test to find the radius of convergence.
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Now we check the endpoints individually.

For x = —5 we have
w ~,
e () Sk e by e
"
("‘"‘) 3 P
) P
e Verae S |
Slnte O <« —% 1 d 2w e
2w n+
For x = 1 we have
Cad "
)" 3 > - b, e AST
R, » ‘N\\"sp\\ gg\(\)f/"jﬁs \
w " el
<o ‘ 3 nee
. | L . £ ,,_‘_..... ——ee O
Sinee et 20 L ne2 wt w8

& so g (-5‘(] S 4l iw.—!xf:_\_)z\ £ tawverg entt .

—I:C we a\;?mv.'cwb(«_ _V(_l) o ith ,.-—E‘—-q-_z%: L“w L,, oN: dve e ! [3-g2)<2}
, |
e mpe
15 i} o2 ver ¢ ohpmede o 2 wndep. W;v&f ‘ 4. 33%6'



10.8. CONDITIONAL AND ABSOLUTE CONVERGENCE 47

Example 10.8.3. In Example 10.5.2 we found a power series representation for
arctan x by integrating the power series for 1/(1 + x2), in particular

) (._1)nx2n+1 %3 x5 x7
arctan x n;) T R e (10.4)

which was valid for|x| < 1. Theorem 10.5.2 assured us that the radius of
convergence remained 1, but it does not tell us anything about the convergence
or divergence at the endpoints of the interval. We test the two endpoints now.

At x = 1 we have
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We conclude that (10.4) is valid for —1 < x < 1.
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Example 10.8.4. In Example 10.5.1 we found a power series representation for
In (1 + x) by integrating the power series for 1/(1 + x), in particular

X (-1 nxn+1 x2 xS x4
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which was valid for|x| < 1. As in the previous example, we would like to check
the endpoints for convergence.

At x = 1 we have
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We conclude that (10.5) is valid for —1 < x < 1. It would be a problem if the
series converged at x = —1 since we would be computing the value of In0.
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Example 10.8.5. Show /
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converges conditionally. This argument requires two parts.

First, we must show (10.6) does not converge absolutely.
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Second, we must show (10.6) does converge.
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Conditional Convergence is Curious, or, a brief bit a mathematical weirdness.
In the previous example we saw that
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We consider rearranging the terms as follows
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This turns out to be the case with all conditionally convergent series, if we
rearrange the terms we can change the sum, or even make the series diverge.

Theorem 10.8.3 (Riemann Rearrangement Theorem). If }_a,, is a conditionally
convergent series, then for any M € R there exists a rearrangement of {a,} into {b,},
i.e. a one-to-one onto mapping, such that Y b, = M. Furthermore, there is a different
rearrangement of {a, } into {c, } such that }_c, = oo.

Theorem 10.8.4. If }_a, is absolutely convergent, then any rearrangement also
converges absolutely and to the same value.
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Remark. Now that we have the appropriate language it should be noted that the
conclusion in both the Root and Ratio test is that the series in question
converges absolutely when the appropriate limit is less than one. Similarly,
power series converge absolutely on their radius of convergence. Since absolute
convergence implies convergence, the results as written are true, but not as
strong as they are properly.

Homework

Exercise 10.8.6. True or False.

1. T /@If )_an converges conditionally, then ¥|a,| converges.
2.@F : If 3 ay, converges absolutely, then }_|a,| converges.
3.@F : If }°|a,| converges, then Y a, converges.

4, T@ ay — 0 as n — oo, then ¥ a, converges.

5. T@ |ay] — 0 as n — oo, then ¥ a, converges.

Exercise 10.8.7. Determine if the following CONVERGE ABSOLUTELY, CONVERGE
CONDITIONALLY, Or DIVERGE. Proper justification will be expected on quizzes
and exams, now is a good time to practice.
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Exercise 10.8.8. Find an error estimate for % — (1 - % + %) , < [
Hint: See Theorem 10.8.2 and Example 10.8.3.

Exercise 10.8.9. From section 10.6 in the text do # 11, 13, 19, 23 (Note: for n > 1,
Inn < n), 29



