1. $\boxed{5}$ Calculate the fluid force of a plate in the shape of the region shown in the figure below. The surface of the mystery fluid of density ρ is at y=1.

Force: =
$$fg(1-y)e^{y} \Delta y$$

Force = $fg(1-y)e^{y} dy$
 $u = 1-y dv = e^{y} dy$
 $du = -dy v = e^{y}$
 $fg(1-y)e^{y} = fg(e-2)$
 $fg(1-y)e^{y} = fg(e-2)$

2. $\boxed{2}$ Find parametric equations, x(t) and y(t), for the line segment from (3,2) to (5,-2). Include the domain of t.

$$x = 3 + 2t$$

 $y = 2 - 4t$ $0 \le t \le 1$

3. 2 Find parametric equations, x(t) and y(t), for the circle with center (1, -2) and radius 3. Include the domain of t.

$$x = 1 + 3\cos t$$

 $y = -2 + 3\sin t$ 0 5 1 = 2 TT

4. $\boxed{1}$ We can change the 'speed' of a parametric curve by scaling the parameter. For example, replacing t with 2t will increase the speed by a factor of two, i.e. the curve will be traced out twice as fast. We can change the direction a curve travels by similarly altering the parameter.

A cyloid generated by a circle of radius 1 has a parameterization given by

$$x(t) = t - \sin(t), \quad y(t) = 1 - \cos t.$$

Find a parameterization of a cycloid generated by a circle of radius 1 that goes 'backwards.'

$$x = -t - sin(-t)$$
, $y = 1 - cos(-t)$